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Abstract 

Background:  Overcrowding is a serious problem that impacts the ability to provide optimal level of care in a timely 
manner. High patient volume is known to increase the boarding time at the emergency department (ED), as well as 
at post-anesthesia care unit (PACU). Furthermore, the same high volume increases inpatient bed transfer times, which 
causes delays in elective surgeries, increases the probability of near misses, patient safety incidents, and adverse 
events.

Objective:  The purpose of this study is to develop a Machine Learning (ML) based strategy to predict weekly fore‑
casts of the inpatient bed demand in order to assist the resource planning for the ED and PACU, resulting in a more 
efficient utilization.

Methods:  The data utilized included all adult inpatient encounters at Geisinger Medical Center (GMC) for the last 
5 years. The variables considered were class of inpatient encounter, observation, or surgical overnight recovery (SORU) 
at the time of their discharge. The ML based strategy is built using the K-means clustering method and the Support 
Vector Machine Regression technique (K-SVR).

Results:  The performance obtained by the K-SVR strategy in the retrospective cohort amounts to a mean absolute 
percentage error (MAPE) that ranges between 0.49 and 4.10% based on the test period. Additionally, results present a 
reduced variability, which translates into more stable forecasting results.

Conclusions:  The results from this study demonstrate the capacity of ML techniques to forecast inpatient bed 
demand, particularly using K-SVR. It is expected that the implementation of this model in the workflow of bed 
capacity management will create efficiencies, which will translate in a more reliable, inexpensive and timely care for 
patients.

Keywords:  Census, Overcrowding, Support vector machine, K-SVR

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Designing and implementing effective hospital capacity 
management decisions and efficient staffing decisions is 
a critical challenge in every healthcare system. Specifi-
cally, a mismatch in bed capacity to bed demand and the 
corresponding clinical staffing requirements can have 

negative effects on key performance indicators like hos-
pital access, wait times, quality of care as well as patient 
and employee satisfaction. It also invariably results in an 
increase of an assortment of costs. When the supply of 
hospital beds exceeds the demand of beds, it will likely 
result in higher costs and wasted resources from main-
taining and staffing open beds [1, 2]. When the demand 
for beds exceeds the supply, the hospital will likely expe-
rience longer waiting times especially for patients in the 
ED who are waiting for an inpatient bed, which can result 
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in sub-standard quality of care, poor employee satisfac-
tion, increase rate of near-misses, and lower patient sat-
isfaction [3–5].

The only independent variable in this phenomenon is 
the bed demand, which naturally fluctuates to express flu 
season, holidays, vacations, etc. Studying these changes 
in the demand for inpatient beds is a widely discussed 
and studied problem which impacts hospital’s ability to 
provide timely care for patients, among other negative 
effects such as increased probabilities of adverse events 
[6, 7], higher length of stay in the ED [8, 9], increased 
mortality [10], and low patient and staff satisfaction [11]. 
To tackle this issue, a myriad of strategies have been pro-
posed and tested. For instance, the creation of holding 
units, the introduction of early discharge [12] and the 
adoption of surgical demand smoothing [13] were identi-
fied as effective approaches that can increase patient flow 
[14].

Many of these concepts include data insights provided 
by predictive modeling or ML approaches which relies on 
data from clinical admissions [15–17]. We recognize that 
providing near-term bed demand forecasts to adminis-
trative personnel such as operating room, schedulers, 
inpatient bed coordinators, and operations managers can 
increase their ability to assertively maintain efficient lev-
els of occupancy.

While highly variable patient bed demand makes hos-
pital capacity management even more challenging, the 
utilization of ML algorithms can help hospital operations 
stakeholders make better decisions by combining their 
insights with advanced analytics. There have been recent 
advances in ML techniques that are utilized in predictive 
analytics, outperforming traditional time series tech-
niques (described in the literature review). This study 
leverages ML techniques and implements a strategy in 
the area of predictive analytics at a non-profit integrated 
healthcare system in Danville, Pennsylvania.

The objective of this study is to develop a ML based 
strategy able to provide an accurate forecast of the inpa-
tient bed demand for the week. The proposed model will 
use tailored ML techniques to achieve a minimal error 
in the prediction, so the hospital’s capacity management 
team can take proactive measures, provided the best pos-
sible information, to ensure efficient patient flow, and 
therefore, outcomes.

Background
This project takes place at Geisinger Medical Center 
(GMC), a hospital located in Danville, Pennsylvania 
and a part of Geisinger. GMC is a tertiary/quaternary 
teaching hospital with approximately 350 licensed and 
staffed adult inpatient beds. Since GMC is the only level 
1 trauma center serving a large portion of the central 

Pennsylvania region, it is crucial that the capacity man-
agement plan has a reliable amount of bed capacity avail-
able to provide appropriate care to all patients in the area. 
The adult occupancy rate of GMC is frequently above 
90% (well above national average).

Previous efforts at GMC focused on the development 
of a Monte Carlo simulation (MC) to study the rela-
tionship between the surgical schedule and crowding, 
by modeling length of stay and patient flow for surgical 
and non-surgical patients [18]. The results of the MC 
simulations were then reported and used by the Geis-
inger Placement Services (GPS) to predict overcrowd-
ing and make management decisions. When excessive 
bed demand is forecasted, the GPS team can decide to 
take actions including decanting surgical cases to nearby 
affiliated hospitals to perform non-urgent surgeries, reor-
ganizing surgical case schedules, giving priority to expe-
dited discharge processes, and adjusting staffing levels. 
The MC could accept user input to run what-if scenarios 
based on planned changes to surgical volumes at GMC 
to re-estimate inpatient bed demand. When surgeries are 
moved to nearby affiliated hospitals, the beds at GMC 
can be reallocated to meet the demand of the ED, OR and 
other arrival sources. This approach was able to capture 
the logic of the problem, but fell short in performance, 
making it necessary to revise the model.

To improve the performance of the forecast, a predic-
tive modeling approach was proposed. A series of neu-
ral network-based models were built to predict from 1 to 
5 days ahead, improving the performance obtained by the 
MC.

Literature review
Hospital census forecasting
The majority of work published about forecasting in hos-
pitals relates to patient visits to the ED or other specific 
departments inside hospitals [13, 19–24]. An additional 
layer of complexity is added through the irregularity and 
volatility of in-patient visits when predictions are made 
for a hospital’s in-patient census. These predictions 
involve patients not just in the ED but in other depart-
ments which have different process flows, service times 
and lengths-of-stay (LOS). ML based models overcome 
this input complexity by using relevant factors as predic-
tors [25].

The analysis from one research study identified that 
at an occupancy level of 100%, there is a 28% chance of 
at least one severe event occurring and a 22% chance of 
more than one severe event occurring [6]. Depending on 
the type of strategic decision-making time horizon, there 
are different models developed for predicting inpatient 
demand. Longer term strategy needs give rise to mod-
els that predict monthly forecasts [25]. More immediate 
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strategies need to give rise to models with shorter hori-
zons like the next 3, 5, or 7 days [24].

Forecasting methods
There is a relatively small number of previous research 
developed in the context of bed demand forecasting 
[26], particularly using ML models. Simple autoregres-
sive integrated moving average (ARIMA) models are 
among the first tools used to forecast bed demand [27]. 
One of the most common methodologies for estimat-
ing hospital bed demand is based on the valuation of 
the patient’s LOS at the hospital [28, 29]. Mackay et  al. 
in 2005 proposed that these models are defective due to 
the complexity of the long-stay distribution, among other 
reasons. Hence, the authors investigated model selection 
and assessment in relation to hospital bed compartment 
flow models using The Bed Occupancy Management 
Planning System (BOMPS) software, in which hospital 
bed prediction models are developed from the simplest 
to the most complex, depending on their prediction hori-
zon and model structure [30]. Ordu et al., in 2019 devel-
oped a framework for generating demand prediction 
models for each of the hospital areas [31]. The models are 
simple in nature and vary from ARIMA models to expo-
nential smoothing, multiple linear regression (MLR), and 
seasonal and trend decomposition, where the predic-
tion horizons are daily, weekly, or monthly depending on 
the hospital unit. The models proposed, for instance for 
Accident and Emergency admissions, have a low adjusted 
R2 value of 60%, where the monthly MLR produced the 
best goodness of fit. Kutafina et al. in 2019 developed a 
recursive neural network model for forecasting hospital 
bed demand occupancy (the most similar study to ours). 
In this article, authors propose different training alter-
natives for prediction models based on different time 
intervals for the training data set (from 1 to 5 year) and 
different dates and horizons for prediction [26]. Their 
results show an average mean absolute percentage error 
(MAPE) of 7.22% (5.76–9.22%) with a mean absolute 
error (MAE) of 15.65 beds for yearly predictions between 
2009 and 2015. As discussed in26 the model that is pro-
posed here (K-SVR) requires only historical admissions 
and no private/sensitive patient information (e.g., age or 
vital signs), as those models, for instance, try to infer the 
patient’s LOS. We show with our model that the decom-
position of the historical demand provides a better means 
to generate accurate predictions of hospital bed demand 
for 1 and 2 days ahead.

Methods
Inpatient bed demand
We define inpatient bed demand as the number of 
patients occupying inpatient beds (census) plus the 

number of patients that should be in inpatient beds but 
are in another location (or in a holding pattern) such as 
the ED, PACU, or Cardiac Recovery Suite (CRS).

The population in this study included all adult patient 
encounters at GMC for 5  years. The data was comple-
mented with 2  years of the most recent data. Patient 
and hospital data were collected using Geisinger’s elec-
tronic health record (EHR) and unified data-architecture 
(UDA). The data was then extracting by querying our 
data warehouse server and shared with our research part-
ners via data use agreement. Our population included 
patients who had a patient class of inpatient, observation, 
or SORU at the time of their discharge. The population 
excluded patients who spent any time in a pediatric unit, 
had a level of care of psych, or did not have one of the 
following levels of care: critical care, step down, medical, 
surgical, telemetry, or surgical overnight.

K‑SVR forecasting model
The predictive strategy used in this study follows the 
model proposed by Feijoo, Silva and Das., (2016), which 
combines a classification stage followed by a regres-
sion (forecast) stage. The engine seeks to assign (classi-
fication stage) the response variable, in this case, future 
bed demands, into one of different groups or clusters of 
demands. The classification stage of the forecast engine 
is performed using a Support Vector Machine (SVM) 
model. Following the classification stage, for each of the 
clusters, a Support Vector Regression (SVR) model is 
locally developed, i.e., each cluster considers a unique 
forecasting regression model that seeks to accurately pre-
dict bed demands of days that follow similar historical 
patterns (forecast stage of the forecasting engine). Hence, 
the forecaster engine contemplates a set of “K” SVR mod-
els (K-SVR), where K represents the number of clusters 
to be considered. The cluster analysis and the subse-
quent selection of K (number of clusters) is based on the 
K-means clustering method; however, any other cluster-
ing approach could be used. A schematic representation 
of the forecaster engine is shown below in Fig.  1. As it 
can be noted, the algorithm starts with the data process-
ing followed by the cluster analysis and the feature engi-
neering step. As mentioned above, the clustering analysis 
guides the selection of K clusters, while the feature engi-
neering step (based on partial and autocorrelation func-
tions) allows to determine lagged values and seasonal 
patterns used in the regression stage (SVR model). Once 
K, lagged, and seasonal parameters are selected, we train 
an SVM model (classification stage) based on the clusters 
identified with the K-means method. For each of these 
clusters, a regression model, based on SVR, is trained, 
considering the lagged and seasonal parameters found in 
the feature engineering preprocessing step. Note that the 
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framework is general enough to work as a simple 1-day 
ahead prediction, or for more complex tasks of recur-
sively forecasting n-days ahead.

The SVR models are developed using a mixed-features 
a selection method, based on the information provided 
by the autocorrelation and partial autocorrelation func-
tions (see Fig.  2 in results). These functions suggest the 
use of previous or lagged values for demand (previous 
days) and seasonal patterns for the model. On the other 
hand, an incremental strategy is simultaneously used 
for variable or feature selection, which refers to starting 
with an empty model and then adding potential predic-
tors. As predictors are added to the model, this strategy 
seeks to explain whether and to what extent each pre-
dictor reduces unexplained variation. The list of final 
selected covariates used in the model, which provide the 
best forecast accuracy in the training process, is shown in 
Table 1. Hence, bed demand can be forecasted using time 
series information from previous demand days as well as 
other covariates’ historical information. Mathematically, 
the SVR model can be represented as a regression model 
as follows,

(1)Ŷt+1 =
l−1∑

i=0

βiYt−i + βYt−(s−1) +
P∑

j=1

l−1∑

i=0

βijX
j
t−i

where Ŷt+1 represents the forecasted bed demand for 
1  day ahead (t + 1), Yt−i represents the lagged values (l 
lagged values) of bed demand days, Yt−(s−1) accounts for 
the seasonal association (s denotes the lag for a seasonal 
trend), and Xj

t−i considers every other covariate (P covar-
iates) used for the prediction that is not a lagged value of 
bed demand (see Table 1 for a list of all covariates).

Measures of forecast performance
The K-SVR model is developed and tested as follows. First, 
we chose 5 clusters to be used by the forecasting engine. 
The number of clusters is chosen based on minimizing the 
sum of squares within clusters (sum of cluster’s individual 
errors). It is important to balance between the number of 
clusters and the available data that falls within each clus-
ter. A large number of clusters will significantly reduce 
the sum of squares within clusters, however, it is possible 
to obtain clusters with few data points, for which the local 
SVR model will tend to forecast overfitted values. Here, we 
made the selection of 5 clusters based on the errors shown 
in Fig. 3. The classification SVM layer as well as the local 
SVR models are created using 70% of the data for train-
ing purposes, and tested on specific dates (days, weeks) 
that fall within the testing period. The training and testing 
time series do not have any overlapped data points. Addi-
tionally, the model is tested (testing time series) on four 
independent test weeks (without overlapping). Also, both 

Fig. 1  Schematic representation of the forecaster engine K-SVR and data preprocessing
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SVM and the SVR models were developed by optimizing 
(tuning) their input hyper-parameters and then trained 
with a tenfold cross validation. Finally, using the ACF and 
PACF information, we selected a lagged value (l parameter 
in Eq. 1) of 3 and a seasonal value (s parameter in Eq. 1) of 
7. The model performance was tested using the following 
objective measures.

(2)MAPE =
1

N

N∑

i=1

∣∣∣Yr
i − Ŷf

i

∣∣∣
Yr
i

,

The elements Y r
i  and Ŷ f

i  in Eqs.  (2)–(4) represent the 
real and forecasted bed demand, respectively. Equation 2 
estimates the MAPE, defined as the average among the 
absolute value of the error forecast over the real bed 
demand (average error of the forecast model), where 
N forecast have been performed. The MAE is shown 
in Eq.  3. The MAE provides the average absolute error 
in terms of beds being missed forecasted by the model. 
Finally, we use the standard Root Mean Square Error 
(RMSE = 

√
MSE ) as a third metric to measure for error 

variability.

Results
We now present the results from the model on distinct 
instances. First, we developed a model to forecast the bed 
demand for 1 day ahead while considering patients com-
ing into the ED during the weekends. This approach helps 
to better correlate the data, even though there are no sur-
geries scheduled on those days. As a counterpart case, 
we present a model that only uses weekday (Monday to 
Friday) data, hence creating a different lagged pattern on 
the model. We then develop and present the results for a 

(3)MAE =
1

N

N∑

i=1

∣∣∣Yr
i − Ŷ

f
i

∣∣∣,

(4)MSE =
1

N

N∑

i=1

(
Y
r
i − Ŷ

f
i

)2

Fig. 2  Autocorrelation and Partial autocorrelation functions results. Information used to select lagged values for K-SVR models

Table 1  Variable definition

Data set and variable definition

Demand (Dt) Present day demand data

Dt.1 Demand from one day ago

Dt.2 Demand from two days ago

Dt.3 Demand from three days ago

Dt.7 Demand from seven days ago

Dt.1.2 Interaction between Dt.1 and Dt.2

Mt Yesterday Medicine Census

Ut Yesterday Surgical Census

Cen_Mid Yesterday’s total 12AM census
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2  day ahead bed demand prediction following the same 
approach data availability approach (weekends and week 
only data).

Data set statistical description
The K-SVR model is built based GMC data correspond-
ing to all adult patient encounters at GMC for 5  years. 
The specific variables obtain from the data and used to 
create the K-SVR model are described next.

Table  1 shows the variable definition. The data con-
siders historical utilization of beds (demand). We used 
lagged values (3 days) and a weekly seasonal lag (7 days) 
of demand. Such lags were obtained based on the ACF 
and PACF functions, as shown in Fig. 2. The significance 
of the lagged values can also be observed on the correla-
tion matrix as shown in Fig. 4.

We develop four different models, each correspond-
ing to different forecasting timeframes (1 day and 2 days 
ahead, with and without weekends data). For all four 
models, we used a number of K = 5 clusters. This number 
is obtained based on the within-groups sum of squares 
results shown in Fig. 3. From the figure we observe that 
for a number of clusters (K) larger than 5, the reduc-
tion of the sum of squares (error or differences within 

clusters) is small. Also, it is important to note that a 
larger value of K can be chosen if variance within clusters 
wants to be reduced. However excessively reducing vari-
ance on each clusters may result in subsets with a small 
number of data points, increasing the risk of developing 
overfitted models. Therefore, using the standard “elbow” 
method in clustering analysis, K = 5 is chosen. Finally, 
all models are tested on four non-consecutive different 
test weeks (same weeks for each of the four K-SVR mod-
els developed) that do not belong to the training time 
series data. Results of the K-SVR models are compared 
to an autoregressive integrated moving average (ARIMA) 
model, as data satisfies the assumptions for such models, 
as well as a version of K-SVR with K = 3 (as compared to 
K = 5), to demonstrate the fact that lower values of K in 
fact increase the variability within each cluster, increas-
ing the forecast error.

Prediction of bed demand for a day considering weekends
As previously mentioned, an initial model with K = 5 was 
developed to generate a prediction for 1 day ahead while 
using weekend data. The optimal K-SVR model is com-
pared against an ARIMA model and a different version 
of K-SVR with lower number of clusters (non-optimal). 

Fig. 3  Within groups sum of square based on the number of clusters considered to group historical bed demand
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The performance of all models was evaluated based on 
the MAPE, MAE, RMSE and error variance, as shown 
in Table  2. The average bed demand error (MAE) for 
the days on which the K-SVR (K = 5) model was tested 
(random weeks on the test data, not overlapping with 
time series used for training of the models), as indicated 
in the last column, shows a mean absolute deviation of 
3.81 beds per day with a standard deviation of 4.36 beds, 
representing an average percentual error of 1.11%. The 
K-SVR model with K = 3 obtained an average (across 
the four test weeks) MAPE of 1.35%, while the ARIMA 
model resulted in an average MAPE of 3.29%. When ana-
lyzing the test week individually (not average), we obtain 
MAPE results as low as 0.49, showing the high accuracy 

that the optimal K-SVR model can obtain. For this week, 
the mean error is of 1.76 beds with an RMSE of 1.90. The 
test week 4 shows the lowest (but still accurate) perfor-
mance, with a MAPE of 1.81%, resulting in mean abso-
lute error of 6.24 with an RMSE of 6.64. Figure 5 shows 
the high precision of the forecast results for the four test 
weeks.

Prediction of bed demand for 1 day ahead 
without considering weekends
We tested the two K-SVR (K = 5 and K = 3) and the 
ARIMA models on the same four sample weeks as in 
"Data set statisticaldescription"  section. where data that 
is available during the weekend days is removed from 

Fig. 4  Correlation Matrix for data used in the forecast model
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the model. For instance, predictions for the first day of 
the week, Monday, is made based on the information 
available on the Friday from the corresponding previous 
week. Thereafter, since this is a 1  day ahead prediction, 
forecasts for Tuesday are made based on data from the 
Monday of the same week and the lagged value 2 would 
correspond to Friday from the previous week. The same 
logic applies for the lag values 3 and 7 and the remain-
ing days of the test weeks (Wednesday to Friday). Results 
of the models for the 4 performance measures are also 
shown in Table 2. It is possible to observe that, on aver-
age, the optimal K-SVR model obtains a MAE of 6.15 
beds per day, with a RMSE of 7.41 beds per day, repre-
senting an average percentual error of 1.78%. As in the 
previous case, the best performance was obtained for 
the test week 3, with a MAPE value of 0.88%, represent-
ing a MAE of 3.13 beds per day with a RMSE of 3.93 
beds per day. Figure  5 shows the comparison between 
the forecasted values and the actual values for each of 
the test weeks. For this case, opposite to the case where 
weekend data is available and for two-days ahead forecast 
(see next subsections), the two K-SVR models showed 

similar results, while the ARIMA model was again the 
least accurate.

Generally, when compared to the previous case (1 day 
ahead with weekend data), we observed that the fore-
cast accuracy slightly drops. Among the 4  weeks, the 
average MAPE for this case is 1.78%, compared to 1.11% 
when weekend data is considered, representing a 0.67% 
difference. In absolute terms, the difference in the (aver-
age) MAE is 2.34 beds (3.81 versus 6.15 when weekend is 
considered) with a RMSE difference of 3.05 beds per day 
(7.41 compared to 4.36). Depending on the data access 
and availability, the small differences between the two 
models allows for reliance on both models. The forecast 
comparison for both previous models (with and without 
considering weekend data) and the real demand, for the 
four random test weeks, are presented in Fig. 5.

Prediction of two‑day bed demand considering weekends
In this section we present and explain the results for 
the 2  day ahead forecast model. The model charac-
teristics are the same as those presented earlier, with 
the consideration that the forecast is made for 2  days 

Table 2  Summary of the results (performance measures) for K-SVR model for 4 random test weeks

Metric Model Week 1 Week 2 Week 3 Week 4 Average

1-day ahead with weekend data

MAPE (%) K-SVR 0.93 1.19 0.49 1.81 1.11

K-SVR(3) 0.76 1.49 0.73 2.40 1.35

ARIMA 3.45 2.64 2.86 4.22 3.29

MAE (bed/day) K-SVR 3.25 4.01 1.76 6.24 3.81

K-SVR(3) 2.69 5.03 2.65 8.30 4.67

ARIMA 11.89 8.92 10.19 14.47 11.37

RMSE (bed/day) K-SVR 3.46 5.45 1.90 6.64 4.36

K-SVR(3) 3.15 6.31 3.32 9.08 5.98

ARIMA 13.68 9.87 10.55 15.27 12.34

Error variance K-SVR 1.00E−05 1.20E−04 0.00E+00 4.00E−05 5.00E−05

K-SVR(3) 2.12E−05 1.27E−04 2.86E−05 1.14E−04 7.27E−05

ARIMA 5.16E−04 2.05E−04 6.67E−05 2.68E−05 2.04E−04

1-day ahead with weekend data

MAPE (%) K-SVR 2.55 1.02 0.88 2.65 1.78

K-SVR(3) 1.85 0.92 0.65 3.39 1.70

ARIMA 3.42 2.05 2.96 4.00 3.11

MAE (bed/day) K-SVR 8.91 3.45 3.13 9.11 6.15

K-SVR(3) 6.33 3.19 2.30 11.65 5.87

ARIMA 11.69 7.08 10.41 13.75 10.73

RMSE (bed/day) K-SVR 11.74 4.33 3.93 9.65 7.41

K-SVR(3) 8.11 3.61 3.01 12.05 7.63

ARIMA 14.56 10.06 12.40 15.22 13.06

Error variance K-SVR 4.60E−04 1.00E−05 4.00E−05 9.00E−05 1.50E−04

K-SVR(3) 2.34E−04 2.91E−05 3.12E−05 9.25E−05 9.67E−05

ARIMA 8.35E−04 5.07E−04 4.78E−04 4.58E−04 5.69E−04
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ahead. Hence, proper data manipulation must be con-
sidered to correctly define the lag-values that are used 
as inputs for the model. We first present the results for 
the 2  day ahead model with the consideration of the 
weekend data for all three models (two K-SVR and the 
ARIMA model).

Table  3 shows the results for the scenario described 
above and for four sample weeks used to test the 
2  day ahead model. We obtain, on average among the 
4 weeks, a MAE 4.89 beds per day, with a RMSE of 5.77 
beds per day, which translates to an MAPE of 1.42% 
(optimal K-SVR). Note that, for a fair comparison in 
this case, we consider the same four random test weeks 
as in the case for 1 day ahead. Figure 6 shows the result 
of the forecasted demand and the actual values for each 
of the test weeks. Interestingly, when weekend data is 
considered, the optimal K-SVR model behaves similarly 
as the case of the 1 day ahead model. The lowest MAPE 
values were obtained for the sample week 3, followed by 
week 2. As previously noted, the ARIMA model again 
shows the least accurate results, while the K-SVR with 
K = 3 performs better than ARIMA but not as accurate 
as the case of K-SVR with 5 clusters.

Prediction of bed demand for 2 days without considering 
weekends
Lastly, we use both K-SVR and the ARIMA models to 
forecast 2  days ahead without considering weekend 
data. We use the same four sample weeks as in the pre-
vious three cases. As in the case for 1  day ahead, the 
data that can be available during weekend days is con-
sidered to fit the K-SVR model. Hence, the bed demand 
prediction made for the first day of the week, Monday, 
considers information available on the Thursday from 
the corresponding previous week (the real prediction 
is 4  days ahead when no weekend data is considered). 
Since this is a 2  day ahead prediction, the forecast for 
Tuesday is made based on data from the Friday of the 
previous week. This process is repeated until the fore-
cast for the whole test week is completed. The same logic 
applies for the lag values 2, 3, and 7 and the remaining 
days of the test weeks (Wednesday to Friday). Results of 
the models for the 4 performance measures are shown 
in Table 3. It is possible to observe that for the optimal 
K-SVR, on average, the MAE corresponds to 11.59 beds 
per day, with an RMSE of 14.10 beds per day, represent-
ing a MAPE of 3.34%. As in the previous case, the best 

Fig. 5  Forecast results from the K-SVR engine for one day ahead considering with and without weekends for four distinct sample weeks
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performance was obtained for test week 3, with a MAPE 
value of 2.75%, representing a MAE of 9.89 beds per day 
with an RMSE of 12.79 beds per day. Similarly, to previ-
ous cases, the alternative K-SVR (K = 3) and the ARIMA 
model do not achieved the accuracy levels than the best 
K-SVR (K = 5) model. In this particular case, when con-
sidering 3 clusters, K-SVR even performs similarly to the 
ARIMA model. Figure 6 shows the comparison between 
the forecasted values and the actual values for each of the 
test weeks. To facilitate the comparison, Fig. 6 also shows 
the results for 2 day ahead with weekend data. It is clearly 
observed that the results for 2 day ahead model without 
weekends (i.e., 4 days ahead for the first 2 days of a week) 
are the less accurate among all the models and cases pre-
sented here.

When we compare the two cases (with and without 
weekends) for a 2 day ahead forecast (see Fig. 6) using the 
K = 5 SVR model, we observed that the forecast accuracy 
drops significantly for the latter case. Among the 4 weeks, 
the average MAPE for this case is 3.34%, compared to 
1.42% when weekend data is considered, representing 
a 1.92% difference between these two cases. In absolute 

terms, the difference in the (average) MAE is of 6.7 beds 
per day (11.59 versus 4.89 when weekend is considered).

The reasons for the model to perform better with week-
end data are twofold. First, as seen in Fig. 7 below, typi-
cally the census drops on the weekend after mid-week 
highs. This is primarily due to more scheduled surgeries 
and physician availability during the weekdays. Leaving 
this data out is analogous to leaving a part of the trend 
out from the model. For example, the lows on Sunday 
might play an important role on the rate of increase of 
census Monday through Wednesday. Including week-
end data would help identify these signals. Secondly, in 
our analysis we saw the interactions between the pre-
vious few days as significant. Excluding weekend data 
would mean that we are excluding these interactions of 
the past few days. Excluding weekends and predicting for 
Monday using last Friday’s data is similar as predicting 
3 days ahead instead of 1 day ahead. The further into the 
future we forecast, the further the prediction accuracy is 
expected to drop. This drop in performance would also 
explain the performance difference between the models 
that used weekday and weekend data.

Table 3  Summary of the results (performance measures) for the 2-day ahead K-SVR model for 4 random test weeks

Metric Model Week 1 Week 2 Week 3 Week 4 Average

2-day ahead with weekend data

MAPE (%) K-SVR 1.41 1.07 0.58 2.62 1.42

K-SVR(3) 1.83 1.40 0.83 2.62 1.67

ARIMA 3.87 2.62 8.25 3.13 4.47

MAE (bed/day) K-SVR 4.87 3.61 2.08 9.01 4.89

K-SVR(3) 6.33 4.75 2.94 8.98 5.75

ARIMA 14.15 9.61 26.42 10.84 15.26

RMSE (bed/day) K-SVR 6.88 4.51 2.36 9.32 5.77

K-SVR(3) 7.74 5.06 3.39 9.92 6.99

ARIMA 16.98 10.49 29.04 13.26 17.44

Error variance K-SVR 2.10E−04 6.00E−05 0.00E+00 5.00E−05 8.00E−05

K-SVR(3) 2.63E−04 6.13E−05 4.56E−05 2.76E−04 1.61E−04

ARIMA 7.51E−04 1.56E−04 2.12E−03 5.91E−04 9.04E−04

2-day ahead without weekend data

MAPE (%) K-SVR 3.18 4.10 2.75 3.33 3.34

K-SVR(3) 6.21 4.32 6.17 5.98 5.67

ARIMA 3.97 3.16 9.75 3.80 5.17

MAE (bed/day) K-SVR 11.08 13.91 9.89 11.46 11.59

K-SVR(3) 21.72 14.74 21.65 20.56 19.67

ARIMA 14.41 11.32 30.98 12.97 17.42

RMSE (bed/day) K-SVR 12.39 17.84 12.79 13.38 14.10

K-SVR(3) 29.48 17.69 25.68 25.51 24.96

ARIMA 16.73 12.43 38.59 14.52 20.57

Error variance K-SVR 2.60E−04 1.12E−03 5.10E−04 4.00E−04 5.70E−04

K-SVR(3) 3.02E−03 9.51E−04 1.43E−03 1.79E−03 1.80E−03

ARIMA 6.41E−04 2.82E−04 7.28E−03 4.88E−04 2.17E−03
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Fig. 6  Forecast results from the K-SVR engine for 2 day ahead considering with and without weekends for four distinct sample weeks

Fig. 7  Demand by weekday/weekend day
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Discussion and conclusions
While hospitals in general would like to reduce occu-
pancy rates to improve patient outcomes, hospitals also 
need to proactively plan on having enough capacity and 
improve processes in order to provide timely care for 
patients to improve patient wait times and satisfaction. 
Additionally, maintaining staffed beds is expensive and 
challenging, therefore, hospitals have an economic incen-
tive to maintain high utilization without running out of 
capacity. When hospital operations decision makers have 
easy access to near term bed demand forecasts, com-
bined with their expertise and real time assessment of 
their bed capacity, they can make proactive, data driven 
operational decisions. Inputs to these models consist of 
daily updated time-series data which is captured in our 
hospital’s UDA. Once the model is trained, we deploy 
it on our servers where it makes daily forecasts with 
updated data. These forecasts can be made accessible to 
key hospital operations decision makers through interac-
tive dashboards or other modes of communication.

The MAE and MAPE performance for the models pre-
sented in this paper are within acceptable parameters to 
hospital administration stakeholders, allowing them to 
make data driven decisions. When bed demand forecasts 
are high, they can begin expediting low acuity patient 
discharges, decant elective surgical cases to nearby affili-
ate hospitals or reschedule them, and mandate nurs-
ing overtime one to 3 days in advance to prepare for the 
increased bed demand. Mandating nursing overtime or 
increasing nursing staffing days in advance eliminates the 
need to rely on expensive, contracted nursing and sup-
port staff. Extra bed capacity can then be used to handle 
the increased patient demand, allow appropriate patient 
flow in accordance with their level of care, and minimize 
patient holding times in the PACU, the ED, and other 
patient arrival sources. When forecasts point to lower 
bed demand, stakeholders can ensure hospitals aren’t 
overstaffed and potentially increase patient satisfaction 
with private patient rooms. We currently predict the 
adult census for the entire hospital and don’t delineate by 
level of care. In the future, with access to additional gran-
ular department level data, we can extend the models 
presented in this paper to get detailed forecasts for indi-
vidual departments within a hospital. Considering what’s 
currently been seen with the COVID-19 pandemic, this 
model, with additional COVID-19 hospitalization data, 
could be used to help manage hospital capacity in uncer-
tain times. Now that COVID-19 will be a part of every 
hospitals’ bed demand, advanced bed demand models 
will be necessary more than ever to quantify and forecast 
hospital capacities for a variety of scenarios including 
surges and shut-downs.
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