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Abstract 

Background:  Early detection and prediction of type two diabetes mellitus incidence by baseline measurements 
could reduce associated complications in the future. The low incidence rate of diabetes in comparison with non-
diabetes makes accurate prediction of minority diabetes class more challenging.

Methods:  Deep neural network (DNN), extremely gradient boosting (XGBoost), and random forest (RF) performance 
is compared in predicting minority diabetes class in Tehran Lipid and Glucose Study (TLGS) cohort data. The impact of 
changing threshold, cost-sensitive learning, over and under-sampling strategies as solutions to class imbalance have 
been compared in improving algorithms performance.

Results:  DNN with the highest accuracy in predicting diabetes, 54.8%, outperformed XGBoost and RF in terms 
of AUROC, g-mean, and f1-measure in original imbalanced data. Changing threshold based on the maximum of 
f1-measure improved performance in g-mean, and f1-measure in three algorithms. Repeated edited nearest neigh-
bors (RENN) under-sampling in DNN and cost-sensitive learning in tree-based algorithms were the best solutions to 
tackle the imbalance issue. RENN increased ROC and Precision-Recall AUCs, g-mean and f1-measure from 0.857, 0.603, 
0.713, 0.575 to 0.862, 0.608, 0.773, 0.583, respectively in DNN. Weighing improved g-mean and f1-measure from 0.667, 
0.554 to 0.776, 0.588 in XGBoost, and from 0.659, 0.543 to 0.775, 0.566 in RF, respectively. Also, ROC and Precision-
Recall AUCs in RF increased from 0.840, 0.578 to 0.846, 0.591, respectively.

Conclusion:  G-mean experienced the most increase by all imbalance solutions. Weighing and changing threshold 
as efficient strategies, in comparison with resampling methods are faster solutions to handle class imbalance. Among 
sampling strategies, under-sampling methods had better performance than others.
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Introduction
Diabetes mellitus (DM) is a chronic disease and accord-
ing to the International Diabetes Federation (IDF), it is 
one of the fastest growing global health emergencies in 

this century. About 463 million diabetic people lived 
worldwide in 2019, of whom 352 million people are of 
working age (between 20 and 64 years old). It is projected 
417 million adults will live with diabetes by 2030. In 2019, 
the proportion of undiagnosed diabetes is estimated at 
50.1% around the world. Untreated diabetes can dam-
age the heart, kidneys, nerves and can cause eye difficul-
ties such as diabetic retinopathy [1]. According to IDF, 
in 2019, total health expenditures for diabetes was 760.3 
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billion dollars and it is expected to increase to 824.7 bil-
lion dollars by 2030 [2]. Identifying at-risk people, in 
addition to prevent health problems and promote quality 
of life, can save billions of dollars.

In recent years, machine learning methods, specifi-
cally deep neural networks have provided considerable 
applications in the health system [3–7]. Machine learn-
ing algorithms can model complicated and nonlinear 
patterns to identify at-risk people. In addition, some 
algorithms could extract and determine features impor-
tance [8, 9]. Healthcare researchers are often interested 
in predicting disease cases which are rare in comparison 
with normal population. As a result, class imbalance is a 
common issue in most medical datasets. In the presence 
of class imbalance, minority class has a lower significant 
number of instances relative to other class. Most classi-
fiers aim to achieve optimal performance on the whole 
classes. It has been proved that algorithms tend not to 
perform well on the minority class [10, 11]. There are sev-
eral reasons for the poor results of learning algorithms in 
the classification of minority class. Rare samples may 
be treated as noisy, small sample size could cause chal-
lenges for models to detect rare patterns and evaluation 
metrics are biased towards the majority class [12, 13]. In 
the healthcare applications, misclassification minority 
class of patients, impose more costs than an error in clas-
sifying healthy persons. However, standard learning algo-
rithms mostly assume an equal misclassification error 
and balanced class distribution [14]. Analyzing diabetic 
data to predict occurrence of diabetes mostly has been 
challenging. Complex and non-linear patterns of risk fac-
tors, in addition to the imbalance distribution of diabe-
tes, are big issues in the prediction models.

To cope with the class imbalance problem, two main 
approaches have been established in the literature [15]. 
At data level, class distribution of data becomes fairly 
balanced with sampling techniques [16, 17]. At algo-
rithm level, the distribution of data remains unchanged, 
but by modifying the cost of misclassification in minority 
class, model has been adjusted to focus more on learning 
rare class [18]. In threshold moving which is categorized 
under the algorithm level approach, class label predic-
tion will be based on the optimal threshold instead of the 
default threshold (0.5) which is used routinely [15].

In this study, we will evaluate three the state-of-the-
art machine learning algorithms, deep neural network 
(DNN), extreme gradient boosting (XGBoost), and ran-
dom forest with various imbalance solving strategies 
including sampling methods, cost-sensitive learning, and 
threshold moving to improve prediction accuracy for the 
risk of diabetes. We will compare the effect of each strat-
egy on algorithms performance based on various metrics 
and determine the best solution.

Methods and materials
Data description
We used data from the Tehran Lipid and Glucose Study 
(TLGS) which its details have been published previously 
[19–21]. Briefly, this study aims to determine atheroscle-
rosis risk factors on a representative sample of district-13 
of Tehran residents (n = 15,005, age ≥  3) that started at 
1999–2001 as cross-sectional prevalence study (phase 
1). To determine the efficacy of population-based meas-
ures in preventing the incidence of diabetes mellitus 
and dyslipidemia, lifestyle intervention implemented in 
selected people that started at 2002–2005 as prospective 
follow-up study (phase 2). Data of all participants meas-
ured repeatedly every three years. The TLGS study was 
approved by the ethics committee at the Research Insti-
tute for Endocrine Sciences at Shahid Beheshti University 
of Medical Sciences. The study procedure and its aims 
were explained to all participants prior to data collec-
tion, and all participants in the study provided informed 
consent. All methods were carried out in accordance 
with relevant guidelines and regulations. Approval for 
undertaking the current project was also obtained from 
the Research Institute for Endocrine Sciences, Shahid 
Beheshti University of Medical Sciences. Non-diabetic 
people who aged > 20  years were selected from phase 3 
(2005–2008) (i.e. second re-examination) of this popula-
tion-based ongoing study. These subjects were followed 
for the next three phases (phase 4, 2008–2011, phase 5, 
2011–2014, phase 6, 2014–2017). During phases 4 to 6, 
315, 326, and 326 new cases of DM type-2 were identi-
fied respectively. Type-2 diabetes was defined based on 
fasting plasma glucose (FPG) ≥  126 mg/dL or 2 h post-
challenge plasma glucose (2 h-PG) ≥ 200 mg/dL or tak-
ing antidiabetic drugs. We considered people diabetic if 
they had one of the mentioned conditions in any 3 con-
secutive phases. Nondiabetic subjects who were lost to 
follow-up in the last phase were discarded because we 
could not consider them surely nondiabetic by the end of 
follow-up. Hence 1930 individuals were eliminated from 
7600. In the end, 967 of the 5670 subjects were diagnosed 
with type-2 diabetes, while 4703 of the subjects were 
nondiabetic.

All selected variables for the study included demo-
graphic, anthropometric measures, physical activity, 
family history of CVD and Diabetes, biochemical blood 
parameters, systolic and diastolic blood pressure, smok-
ing status, and medication for hypertension and hyper-
lipidemia. The dependent variable was the incidence of 
diabetes during the 9-year follow-up period.

Data preprocessing
To detect outliers in this high dimensional data we 
used the Isolation Forest method. It is an efficient way 
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in identifying outliers based on random forest. When a 
sample is an outlier, it will be isolated in a shorter path 
than a normal sample in recursive splitting in the fitted 
decision trees [22].

To impute missing values, we implemented a mul-
tivariate iterative method based on extremely rand-
omized tree (extra tree) regressors. In this method, 
each feature with missing values is considered as a 
dependent variable and other features are predictors in 
a regression model. It repeated iteratively for each fea-
ture and for a certain number of rounds. We used extra 
tree classifier for categorical features, and extra tree 
regressors for continuous variables. Extra tree algo-
rithm is an ensemble of randomized decision trees on 
various sub-samples of the dataset [23, 24].

Since the distribution of classes is imbalanced, strati-
fied split with 70% for training and 30% for testing is 
used. With stratified split strategy, the ratio of diabet-
ics to nondiabetics individuals remains the same in 
train and test data. All preprocessing methods included 
outlier detection and imputing parameters are only 
learned from training data and then transformed to 
testing data. It prevents information leakage from test-
ing data to the learning process that could lead to an 
optimistic evaluation of models performance. It means 
that testing dataset had no contribution to the learning 
process and only have used for evaluating final models 
performance.

All programming was carried out in Python version 
3.6 using Scikitlearn, Imbalanced-learn, Keras, and other 
related libraries.

Machine learning algorithms
To compare various algorithms performance in predict-
ing the patients with diabetes, we applied deep neural 
network, extremely gradient boosting, and random forest 
methods.

Algorithms
Deep neural network In neural network independent 
variables input to the first layer, all neurons in this layer 
are fully connected to neurons in subsequent layers 
which are called hidden layers. The last layer outputs the 
prediction of the network. Deep neural networks have 
more than one hidden layer. Each neuron is weighted, 
and a bias value is added to the summation of weighted 
neurons. Weights control the contribution of each neu-
ron in learning the network. In a neural network archi-
tecture, first, initial random weights are assigned to input 
neurons, then an activation function is used to calculate 
the output of each neuron in the hidden layer.

in this formula, x represents the value of neuron in the 
layer, and w represents the corresponding weight which 
after their multiplication, the sum of them is added to 
a bias term. Then activation function is applied to this 
value. The most popular activation function in hidden 
layers is Rectified Linear Unit (ReLU), which is calculated 
as follows:

ReLU solves the traditional vanishing gradient prob-
lem in learning deep neural networks [25]. For non-
negative values, it simply returns the input value. 
Because output of each layer is the input of the next 
layer, applying multiple activation functions connected 
in a chain, represent nonlinear and complex relations 
between variables. In the last layer, sigmoid activation 
function is applied to project values to the range from 
0 to 1 (Fig. 1). This estimated value illustrates the prob-
ability of being diabetic for the input variables.

Concerning the error of the network in predicting of 
being diabetic for each individual, initial weights will 
be updated to reach stop criteria. To prevent overfit-
ting and to increase generalization of the trained model 
to unseen data, we used early stopping and drop out 
in learning of the model. By increasing the number 
of neurons in hidden layers, training error decreases, 
but testing error after some point increases. Drop out 
is a type of regularization which randomly deactivate 
a fraction of neurons and all connections of them in 
a hidden layer during the learning process. With this 
approach, in each iteration of training, some neurons 
are omitted from learning, so, different neurons con-
tribute to train model and it leads to an ensemble of 
sub-networks. Each sub-network could learn a different 
aspect of data. Early stopping is another kind of regu-
larization and it stops the learning process when per-
formance of the model starts to decrease in hold out 
validation data [26].

Extreme gradient boosting It is an efficient implemen-
tation of gradient boosting algorithm. Classification and 
regression trees (CART), which assign a prediction score 
to each leaf, are the base learners. First, an initial value 
is assumed as prediction. This prediction is improved by 
adding a new tree to the residuals of its predecessor tree. 
This structure is showed in Fig.  2. After learning each 
tree, its contribution to the final model is weighted by the 
learning rate which is commonly between 0.1 and 0.3. In 
addition to the use of regularization term and shrinking 
learning rate to reduce overfitting, in XGBoost we can 
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implement sub-sample of columns and rows before cre-
ating each tree [27].

Random forest It is an ensemble of decision trees which 
are constructed based on bootstrap samples. Each tree is 
learned by a random sample that is taken with replace-
ment from training data. In the presence of a strong pre-
dictor, most of constructed trees use this predictor in the 
top split [28]. In random forest algorithm each split is 
built based on a random subsample of predictors. By this 

approach, all predictors take chance in learning data and 
model generalization to unseen data is increased. In clas-
sification, the most predicted class is the final prediction 
of the ensemble model.

Evaluation metrics
Accuracy measures overall performance of the algorithm, 
but in imbalanced data, this metric can be misleading. 
If algorithm always classify all samples as majority class, 

Fig. 1  DNN structure for classification diabetes

Fig. 2  XGBoost structure for classification diabetes
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accuracy will be as high as the ratio of majority class, but 
definitely, this algorithm is useless. G-mean is geomet-
ric mean of sensitivity and specificity. Poor performance 
in diabetic class leads to a low g-mean, even if all non-
diabetic persons correctly be predicted. F1-measure is 
a harmonic mean of recall (sensitivity) and precision 
that weighs precision and recall equally. Matthews Cor-
relation Coefficient (MCC) is robust to data imbalance. 
It is a discretization of Pearson correlation between the 
observed and predicted classes [29]. Receiver Operating 
Characteristic (ROC) curve represents sensitivity (recall) 
versus 1-specificity for all possible thresholds. Area 
under it (AUC) is summary of this curve [30]. Precision-
Recall (P-R) curve represents precision versus recall for 
all possible thresholds. In imbalanced datasets, P-R curve 
is more informatics than ROC curve [31]. In the case of 
focusing on classification successes, g-mean is not biased 
towards the majority class. But, if we also want to con-
sider classification errors, MCC is preferred [29]. Select-
ing a suitable metric to determine best algorithm, always 
have been challenging [32].

Parameter and feature selection
To determine hyper-parameters (these parameters are 
specified by the analyst in order to optimize the per-
formance of the model, and they cannot be estimated 
from the data) of classifiers, we used fivefold stratified 
cross-validation grid search. In this method, all possible 
values of different parameters are considered. Then, for 
each combination of these values, the model is fitted to 
four training folds and evaluated by a remained test fold. 
Finally, the average of the results is considered. The com-
bination which leads to highest g-mean is chosen as the 
best hyper-parameters.

After selecting optimal values of hyper-parameters, to 
determine the most important features, we used SHAP 
(SHapley Additive exPlanation) [33] values which could 
explain black-box machine learning algorithms. Shapley 
value as a concept in the game theory, calculates each 
player contribution to the final team result. It is the aver-
age marginal contribution of each player by considering 
all possible combination of players. For machine learning 
algorithms, SHAP estimates Shapley values to determine 
each features contribution to the output of the model.

Tackling class imbalance
Threshold moving This is the simplest way in handling 
class imbalance [34]. In unequal class distribution and 
costs of misclassification, default threshold (0.5) is 
not appropriate in the prediction of class labels. The 
optimized threshold can be selected based on max of 
g-mean in ROC or f1-measure in P-R curves. These two 
approaches yield different thresholds.

Cost-sensitive learning Learning of algorithms are 
based on minimizing loss function. Each instance of the 
training dataset has equal weight in updating unknown 
parameter values during the iterative learning process of 
the algorithm. by assigning higher weights to minority 
class, and minimizing weighted loss function, instances 
from this class will have a greater role in the learning pro-
cess [35].

Sampling Repeated edited nearest neighbors (RENN) 
as an under-sampling method is a strategy to remove 
noisy, redundant, and borderline samples. Each instance 
in majority class is classified by its k nearest neighbors. 
If sample is misclassified by its neighbors, it will be 
removed, otherwise this sample is remained. In repeated 
edited nearest neighbors this editing is repeated several 
times [36].

One sided selection (OSS) as an under-sampling 
method selects all minority class samples, and one ran-
domly chosen sample form majority class combined to 
construct a new, smaller training set (C). Then, all origi-
nal training samples are classified by 1 nearest neighbor 
classifier. Each sample from majority class which is mis-
classified by its nearest neighbor will be added to C. In 
the next step, all majority Tomek links samples which 
are the nearest neighbors from different classes [34] are 
removed from C. As a result, the under-sampled training 
set (C) contains all minority class samples in addition to 
cleaned set of the majority class from redundant, noisy-
borderline samples [37].

Synthetic minority oversampling technique (SMOTE) 
generates synthetic examples by operation in feature 
space [16]. For oversampling, an instance and its near-
est neighbors are randomly selected. Then, based on the 
desired amount of oversampling, some neighbors are 
chosen at random. After that, the difference between the 
selected sample and its neighbor in the feature space is 
taken. This difference is multiplied by a random number 
from (0,1) distance and is added to the selected instance. 
By this approach, synthetic samples are generated 
between two neighbors in the minority class.

SVM-SMOTE this method only oversample instances 
from minority class which are in borderline. To identify 
borderline instances, support vector machine (SVM) 
algorithm is applied. SVM finds the best hyperplane that 
separates samples of two classes with maximum mar-
gins. This optimal hyperplane is only found based on a 
few samples which are called support vectors. In SVM-
SMOTE, samples from minority class that are around 
this borderline support vectors are oversampled by inter-
polation and extrapolation. In this algorithm, based on 
the number of nearest neighbors of majority class around 
minority class support vectors, oversampling is applied. 
If most of the m nearest neighbors of chosen minority 
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support vector are from the majority class, as SMOTE 
strategy, new samples are generated by interpolation. 
But, if less than a half of m nearest neighbors are from 
the majority class, SMOTE oversampling is applied by 
extrapolation (Fig. 3) [38].

Hybrid approach class balance can be improved by 
combination of under and oversampling. ENN-SMOTE 
is a hybrid technique that performs under-sampling in 
majority class by edited nearest neighbor method and 
oversampling in minority class by SMOTE.

Results
From 5670 samples considered in this study, 57 sam-
ples have identified as outliers and have been discarded. 
Family history of cardiovascular disease (CVD) and dia-
betes, and also being exposed to second-hand smoke at 
home or work had respectively 29, 24, and 18 percent of 
missing values. Other variables had less than 3 percent 
missing values. Diabetic class percentage was 16.5% in 
training data. Characteristics of individuals at baseline 
(phase 3) has been summarized in Table 1.

Optimal values of hyper-parameters for each algorithm 
have been reported in Table 2. Based on SHAP values, for 
the XGBoost model, the most important variables in pre-
dicting diabetes were fasting plasma glucose, two-hour 
postprandial plasma glucose, BMI, waist-hip ratio, age 
and family history of diabetes with mean absolute values 
of 0.637, 0.586, 0.356, 0.214, 0.201, and 0.201, respec-
tively. For random forest, top variables were two-hour 
postprandial plasma glucose, fasting plasma glucose, 
BMI, age, and triglyceride with mean absolute values of 
0.0848, 0.0775, 0.0286, 0.0144 and 0.0125, respectively.

The results indicated that XGBoost and DNN (except 
for accuracy) in terms of all metrics outperform random 
forest (Table 3). In comparison with XGBoost, DNN has 
higher values in f1-measure, g-mean, and AUROC. Based 
on MCC, these two algorithms have approximately simi-
lar performance, but in terms of AUPRC, XGBoost per-
forms better than DNN.

Figure 4 depicts best thresholds that lead to maximum 
of g-mean and f1-measure in ROC and P-R curves in all 
algorithms. Based on g-mean criteria, the thresholds are 
0.266, 0.12, and 0.168 for DNN, XGBoost and random 
forest, respectively. For f1-measure these thresholds are 
0.427, 0.310, and 0.294 respectively.

Changing threshold from an ordinary value (0.5) to one 
based on maximum of g-mean has led to higher g-mean, 
but other metrics have experienced a drop in all algo-
rithms (Table  4). While changing threshold based on 
maximum of f1-measure yields better performance in 
f1-measure, g-mean in all algorithms, and MCC in DNN, 
and XGBoost. The percent of improvements based on 
f1-measure and g-mean were 1.6, and 4.4 in DNN, 3.2, 
and 7.1 in XGBoost, and 2.1, and 7.4 in random forest, 
respectively. MCC has enhanced by 0.3 and 0.1 percent in 
DNN and XGBoost. Only for random forest, there was a 
0.7 percent decrease in MCC. Moving threshold does not 
affect ROC and P-R AUCs, because they are independ-
ent of the selected threshold. Based on both approaches 
accuracy has decreased in all algorithms.

Weighing diabetic class in all algorithms in comparison 
with original models have increased f1-measure, g-mean, 
AUROC, and AUPRC. Only for weighted XGBoost, there 
is a slight drop in the ROC and P-R AUCs (0.1 and 0.2 
percent, respectively). Among improved metrics, g-mean 
experienced the most increase by 6.7 percent in DNN, 
10.9 percent in XGBoost and 11.6 percent in random 
forest. When compared to changing threshold based on 
maximum of g-mean, weighing has boosted performance 
in terms of accuracy, f1-measure, and MCC in all algo-
rithms and g-mean in XGBoost, and random forest. On 
the other hand, only g-mean improved in weighted algo-
rithms in comparison with changing threshold based on 
maximum of f1-measure.

For the last approach to enhance accuracy in prediction 
diabetes, we have used 5 sampling methods which their 
effect on the distribution of classes have shown in Fig. 5.

RENN under-sampling method consistently has 
increased f1-measure, g-mean, and AUROC in all algo-
rithms (Table  5). Also, AUPRC improved by RENN in 
DNN algorithm. The other under-sampling method, 
OSS, only has boosted g-mean in all algorithms. In 
terms of f1-measure, g-mean, MCC, AUROC and 
AUPRC, one of under-sampling methods outperforms 
other sampling strategies in DNN and random forest. Fig. 3  The flowchart of the SVM-SMOTE algorithm
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Table 1  Baseline characteristics of adult participants of the Tehran Lipid and Glucose Study in phase 3

Categorical variables Diabetic individuals Non-diabetic individuals Total population

Number (%) Number (%) Number (%)

Sex

Women 522 (56.3) 2690 (57,4) 3212 (57.2)

Men 405 (43.7) 1996 (42.6) 2401 (42.8)

Marital status

Single 47 (5.1) 788 (16.8) 835 (14.9)

Married 819 (88.3) 3707 (79.1) 4526 (80.7)

Divorced 8 (0.9) 60 (1.3) 68 (1.2)

Widowed 53 (5.7) 129 (2.8) 182 (3.2)

Education

High (> 12 years) 135 (14.8) 1034 (22.4) 1169 (21.1)

Moderate (6–12 years) 478 (52.35) 2756 (59.7) 3234 (58.4)

Low (< 6 years) 300 (32.85) 830 (18) 1130 (20.4)

Smoking status

Never or in the past 809 (88.8) 4137 (89.6) 4946 (89.5)

Current 102 (11.2) 480 (10.4) 582 (10.5)

Exposed to second-hand smoke at home or work

No 688 (84.7) 3357 (81.1) 4045 (81.7)

Yes 124 (15.3) 783 (18.9) 907 (18.3)

Physical activity

Low 331 (36.7) 1647 (36.1) 1978 (36.2)

High 570 (63.7) 2918 (63.9) 3488 (63.8)

Family history of diabetes

No 351 (45.3) 2001 (57.4) 2352 (55.2)

Yes 424 (54.7) 1484 (42.6) 1908 (44.8)

Use of lipid-lowering drug

No 884 (95.4) 4584 (97.8) 5648 (97.4)

Yes 43 (4.6) 102 (2.2) 145 (2.6)

Use of antihypertensive drug

No 878 (94.7) 4595 (98.1) 5473 (97.5)

Yes 49 (5.3) 91 (1.9) 140 (2.5)

Family history of CVD

No 457 (66.6) 2371 (72.4) 2828 (71.4)

Yes 229 (33.4) 902 (27.6) 1131 (28.6)

Continuous variables Mean ± SD Mean ± SD Mean ± SD

Age (years) 49.56 ± 13.58 40.60 ± 12.89 42.09 ± 13.42

Height (cm) 161.35 ± 9.46 163.34 ± 9.53 163.01 ± 9.54

Weight (kg) 78.13 ± 13.75 71.55 ± 13.19 72.64 ± 13.51

Waist (cm) 97.71 ± 11.36 88.79 ± 12.22 90.27 ± 12.53

BMI (kg/m2) 30.04 ± 4.95 26.80 ± 4.37 27.33 ± 4.63

Waist-hip ratio 0.94 ± 0.083 0.88 ± 0.094 0.89 ± 0.094

Systolic blood pressure (mm HG) 120.90 ± 18.24 110.61 ± 15.26 112.31 ± 16.25

Diastolic blood pressure (mm HG) 77.10 ± 10.42 72.23 ± 9.94 73.04 ± 10.18

Fasting plasma glucose (mg/dL) 97.80 ± 10.61 87.10 ± 7.47 88.87 ± 8.99

Two-hour postprandial plasma glucose (mg/dL) 127.64 ± 33.18 96.42 ± 23.18 101.58 ± 27.65

High-density lipoprotein (mg/dL) 39.69 ± 8.97 42.43 ± 10.43 41.98 ± 10.25

Triglyceride (mg/dL) 185.19 ± 101.01 140.42 ± 82.24 147.82 ± 87.22

Low-density lipoprotein (mg/dL) 126.33 ± 31.87 114.91 ± 30.88 116.80 ± 31.33

Creatinine (mg/dL) 1.06 ± 0.17 1.03 ± 0.16 1.04 ± 0.164

Cholesterol (mg/dL) 200.64 ± 39.51 185.72 ± 37.90 188.18 ± 38.56
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Table 1  (continued)
CVD cardiovascular disease, BMI body mass index

Table 2  Optimal hyper-parameters values based on fivefold stratified cross-validation grid search

Model Hyper-parameters

DNN Number of layers = 4, number of nodes in each layer = (100,75,50,1), dropout rate in each layer = (0.5,0.5,0.25), activation function in 
each layer = (ReLU, ReLU, ReLU, sigmoid)

XGBoost Learning rate = 0.3, maximum depth of each tree = 3, minimum loss reduction to split each node = 1, regularization term on 
weights = 20, subsample ratio of columns for each tree = 0.5

Random forest Number of trees in the forest = 1500, maximum depth of each tree = 19, the minimum number of samples to split each node = 8

Table 3  Comparison between deep neural network, extremely gradient boosting and random forest based on various metrics in test 
dataset

MCC Matthews Correlation Coefficient; AUROCReceiver Operating Characteristic Area Under Curve; AUPRC Precision-Recall Area Under Curve
* MCC has been projected from [-1,1] to [0,1] by MCC+1

2
 formula

** Predicted and actual, non-diabetic and diabetic percent are presented in confusion matrix

Accuracy F1-measure G-mean MCC* AUROC AUPRC Confusion 
matrix**

DNN 0.862 0.575 0.713 0.747 0.857 0.603 0.926 0.074

0.452 0.548

XGBoost 0.872 0.554 0.667 0.748 0.854 0.622 0.956 0.044

0.534 0.466

Random forest 0.869 0.543 0.659 0.741 0.840 0.578 0.955 0.045

0.545 0.455

Fig. 4  ROC and Precision-Recall curves to find best threshold based on maximum of g-mean and f1-measure for all algorithms. Note: Star marker 
corresponds to threshold which maximize g-mean in ROC curve and f1-measure in P-R curve
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Table 4  Evaluation the effect of moving threshold and weighing in performance of the algorithms

g-t maximum g-mean based moved threshold, f1-t maximum f1-measure based moved threshold

Accuracy F1-measure G-mean MCC AUROCC AUPRC

DNN
g-t 0.784 0.554 0.786 0.732 0.857 0.603

f1-t 0.848 0.591 0.757 0.750 0.857 0.603

weighted 0.822 0.581 0.780 0.744 0.858 0.606

XGBoost
g-t 0.774 0.538 0.774 0.721 0.854 0.622

f1-t 0.855 0.586 0.738 0.749 0.854 0.622

weighted 0.832 0.588 0.776 0.748 0.853 0.620

Random forest
g-t 0.777 0.534 0.767 0.717 0.840 0.578

f1-t 0.841 0.564 0.733 0.734 0.840 0.578

weighted 0.810 0.566 0.775 0.735 0.846 0.591

Fig. 5  Comparison between various sampling methods on distribution of diabetic (black circles) and non-diabetic (red circles). X, y and z axes are 
first to third principal components
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For XGBoost algorithm, this superority is based on 
f1-measure and g-mean metrics.

In comparison with original data, g-mean in all algo-
rithms, and f1-measure in XGBoost has increaed by 
SMOTE. While, SVM-SMOTE has resulted in improve-
ment in both g-mean and f1-measure in three algo-
rithms, and AUROC in tree based algorithms. Lastly, 
AUROC in random forest and g-mean in three clas-
sifers have boosted by ENN-SMOTE sampler.

In comparison among sampling methods, based on 
AUROC, RENN is the best sampling methods in all 
algorithms and based on AUPRC, SVM-SMOTE in 
XGBoost, OSS in random forest and RENN in DNN 
have the best performance.

To summarize the results, for DNN algorithm, best 
strategies to deal with imbalance issue among three 
applied approaches are, OSS in terms of accuracy, 
f1-measure and MCC, and RENN under-sampling 
methods in terms of ROC and P-R AUCs. For XGBoost 
algorithm, with approximately same values of MCC, 
AUROC and AUPRC, weighing yields an improvement 
of 3.4 and 10.9 percent in f1-measure and g-mean, 
respectively. In terms of mentioned metrics, weigh-
ing, and in terms of AUROC, RENN are the best 
approaches. For random forest algorithm, as XGBoost, 
weighing has increased f1-measure and g-mean by 2.3 
and 11.6 percent, respectively. In addition to mentioned 
metrics, AUROC and AUPRC experienced an improve-
ment of 0.6 and 1.3 percent, respectively. Based on all 

these metrics, as well as MCC, weighing is the best 
solution to tackle imbalance issue for random forest.

Discussion
We studied three powerful machine learning algorithms 
to predict diabetes incidence in the future based on 
some demographic, biochemical, and anthropometric 
measures. To tackle minority diabetes class imbalance, 
we used three strategies. Changing threshold as a sim-
ple strategy, cost-sensitive learning and sampling which 
involve more searching to fit optimal algorithm, are 
applied.

We evaluated the performance of algorithms before 
and after providing a solution to the imbalance issue by 
examining various metrics. Each metric focuses on a spe-
cial aspect of performance. Except ROC and P-R AUCs, 
all metrics are constructed based on confusion matrix. 
Accuracy is consistently decreased after applying imbal-
ance solutions, while g-mean as unbiased metric in 
imbalanced data [29] is raised substantially. Other met-
rics had variable behavior.

Our results show that changing threshold based on 
value that maximizes f1-measure, improved f1-meas-
ure, g-mean, and MCC (except for random forest) in 
three investigated algorithms. In changing threshold 
approach, the algorithm is not refitted. As a conse-
quence, training time is reduced in comparison with 
other strategies which imply new hyper-parameters. 
This effortless solution could have comparable results 

Table 5  Comparison between various sampling methods on the performance of algorithms

Accuracy F1-measure G-mean MCC AUROC AUPRC

DNN
RENN 0.830 0.583 0.773 0.745 0.862 0.608

OSS 0.856 0.594 0.747 0.753 0.855 0.599

SMOTE 0.805 0.556 0.768 0.729 0.855 0.594

SVM-SMOTE 0.827 0.580 0.773 0.743 0.856 0.602

ENN-SMOTE 0.818 0.563 0.763 0.733 0.850 0.599

XGBoost
RENN 0.814 0.572 0.779 0.740 0.856 0.588

OSS 0.831 0.554 0.733 0.727 0.842 0.591

SMOTE 0.859 0.568 0.708 0.742 0.848 0.592

SVM-SMOTE 0.844 0.555 0.718 0.730 0.858 0.605

ENN-SMOTE 0.857 0.548 0.688 0.733 0.845 0.594

Random forest
RENN 0.808 0.556 0.764 0.728 0.844 0.553

OSS 0.832 0.561 0.741 0.731 0.837 0.569

SMOTE 0.842 0.543 0.704 0.724 0.840 0.550

SVM-SMOTE 0.838 0.548 0.717 0.726 0.842 0.552

ENN-SMOTE 0.844 0.531 0.687 0.719 0.843 0.541
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with other solutions [34]. Our study also demonstrates 
its efficiency. Although, ROC and P-R AUCs remain 
constant, for a powerful trained algorithm changing 
threshold could be a first solution to enhance overall 
performance and to increase prediction accuracy in 
minority diabetes class.

For tree-based algorithms, XGBoost and random 
forest, cost-sensitive learning was the best approach 
based on f1-measure and g-mean. Besides, it had good 
results in DNN. In comparison with sampling strate-
gies, weighing only has one hyper-parameter which 
should be tuned. As a result, the complexity of the 
training procedure and run-time are lower than sam-
pling methods. By increasing the weight of minority 
diabetes class, sensitivity is consistently increased but 
on the other hand, specificity is decreased [39, 40].

Usually, to address the imbalance problem, sam-
pling strategies are applied [41–43]. We studied five 
sampling methods. Among sampling strategies, one 
of the under-sampling methods outperformed over-
sampling and hybrid procedures based on f1-measure 
and g-mean in all algorithms. Although in comparison 
with original data, sampling resulted in better perfor-
mance, they were not the best solution to solve imbal-
ance distribution between diabetic and healthy classes. 
Only for DNN, sampling method outperformed other 
approaches. Sampling strategies have multiple hyper-
parameters that should be tuned precisely.

Overall, in original imbalanced data, DNN had high-
est accuracy for minority diabetes class and outper-
formed other classifiers based on mean of metrics. 
After giving solution to class imbalance, in terms 
of AUROC and AUPRC, under-sampled DNN and 
weighted XGBoost were better performers, respec-
tively, among combination of algorithms and solving 
imbalance problem approaches. One of the applied 
advantages of XGBoost is its ability to model data with 
missing values which is a common case in medical 
data [27]. In addition, it is trained very fast and as a 
powerful algorithm, it has attracted attention in mod-
eling challenging data [44, 45].

One limitation of our work is the low number of 
investigated sampling methods. SMOTE oversam-
pling is frequently applied to handle class imbalance 
[12], but in our study, it was not the best performer. 
A possible explanation for this could be the high 
overlap between two classes in our data. Applying 
SMOTE could result in more ambiguous border-
line between diabetes and non-diabetes classes. To 
explore the efficiency of sampling strategies, we will 
study a larger number of methods in the future with 
other datasets.

Conclusion
To conclude, we studied three main approaches to 
address the class imbalance in predicting diabetes risk. 
Our optimized algorithms led to a considerable rise in 
accurate prediction of rare diabetes class before and after 
giving imbalance solutions for TLGS data [43]. Weighing 
and changing threshold, compared to resampling meth-
ods are faster solutions to handle class imbalance. Our 
study results could assist researchers to choose the best 
way to deal with class imbalance for medical data.
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