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Abstract 

Background:  Drug repurposing, the process of identifying additional therapeutic uses for existing drugs, has 
attracted increasing attention from both the pharmaceutical industry and the research community. Many existing 
computational drug repurposing methods rely on preclinical data (e.g., chemical structures, drug targets), resulting in 
translational problems for clinical trials.

Results:  In this study, we propose a novel framework based on clinical connectivity mapping for drug repurposing 
to analyze therapeutic effects of drugs on diseases. We firstly establish clinical drug effect vectors (i.e., drug-laboratory 
results associations) by applying a continuous self-controlled case series model on a longitudinal electronic health 
record data, then establish clinical disease sign vectors (i.e., disease-laboratory results associations) by applying a 
Wilcoxon rank sum test on a large-scale national survey data. Eventually, a repurposing possibility score for each 
drug-disease pair is computed by applying a dot product-based scoring function on clinical disease sign vectors and 
clinical drug effect vectors. During the experiment, we comprehensively evaluate 392 drugs for 6 important chronic 
diseases (include asthma, coronary heart disease, congestive heart failure, heart attack, type 2 diabetes, and stroke). 
The experiment results not only reflect known associations between diseases and drugs, but also include some hid-
den drug-disease associations. The code for this paper is available at: https://​github.​com/​HoytW​en/​CCMDR

Conclusions:  The proposed clinical connectivity map framework uses laboratory results found from electronic 
clinical information to bridge drugs and diseases, which make their relations explainable and has better translational 
power than existing computational methods. Experimental results demonstrate the effectiveness of our proposed 
framework, further case analysis also proves our method can be used to repurposing existing drugs opportunities.

Keywords:  Drug repurposing, Connectivity map, Electronic health record, National Health and Nutrition Examination 
Survey
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Background
Traditional de novo drug discovery is a long and com-
plicated process [1, 2], which usually takes more than 
15 years [3], and costs 800 million to 1 billion US dollars 
[4] to develop a new drug. Drug repurposing, investi-
gation of potential additional uses for existing drugs, is 
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becoming an appealing research field given its potential 
in lowering overall costs and shortening drug develop-
ment timelines [5].

There has been a surge of computational methods pro-
posed for drug repurposing in recent years, which can 
be roughly classified into two categories based on dif-
ferent data sources: preclinical data-based and clinical 
data-based. Preclinical data-based methods often build 
machine learning models based on preclinical data, such 
as drug chemical structure, protein targets and gene 
expression information, to identify potential drug-dis-
ease associations. For example, Keiser et al. [6] use drug 
structural similarity as the measurements to find the 
drugs with similar effects. Lamb et al. [7, 8] raise the con-
nectivity map (CMap) approach for drug repurposing by 
using gene expression data, which is based on molecular 
activity. Luo et al. [9] develop a server named DPDR-CPI 
which predicts the new indications of existing drugs by 
analyzing the chemical-protein interactome (CPI) pro-
file. Some researchers also tried to construct computa-
tional frameworks that integrated several kinds of data 
sources and even disease similarity measurement profiles 
to make better predictions. PreDR model proposed by 
Wang  et  al.  [10] integrated drug structure, drug target, 
side-effects and disease phenotype data to find the novel 
drug indications. Zhang et al. The similarity constrained 
matrix factorization method raised by [11] take known 
drug-disease associations, drug features and disease 
semantic information as input to predict drug-disease 
association. However, all of these methods rely heavily 
on preclinical information to make predictions. This will 
cause a large translation gap when we apply the drugs on 
humans. It is estimated that of all compounds effective in 
cell assays, only 30% of them could work in animals and 
only 5% of them could work in humans [12].

Compared with preclinical data, clinical data pro-
vide more applicable and reliable data sources for drug 
repurposing as clinical information (e.g., laboratory test 
results) because it records direct read-outs drug effects 
on patients, so there is no need to consider about the 
translational problems. Many computational frameworks 
based on clinical information has been raised due to the 
large amount of available electronica clinical data.

Jung et al. [13] find the connection between drugs and 
diseases in clinical diagnose notes by literature mining, 
but it does not include any other structured data, like lab-
oratory test results. Jang et al. [14] propose a framework 
that use laboratory test results to reflect the influence of 
drugs and diseases on human physiological activities, and 
the method they use to establish drug effects is counting 
co-occurrence between drug and laboratory tests. How-
ever, it is not efficient enough to dig the hidden relation 
between drugs and laboratory tests, especially when we 

have a large dataset and include many laboratory and 
existing drugs in our experiment. Kuang  et  al.  [15] and 
Ghalwash  et  al.  [16] raised more advanced methods to 
compute the influence of drugs on laboratory tests, how-
ever, they reflect the effect of drugs on single laboratory 
(e.g., blood sugar level), which it is not enough to rep-
resent the state of the complex human system. It would 
be more efficient and accurate if we build an electronic 
clinical information-based drug repurposing framework 
and implement it by more efficient statistical analysis 
methods designed for large datasets. During this pro-
cess, we will include as many laboratory tests as we can 
in our experiment to completely represent the state of 
human biological system. The idea of CMap raised by 
Lamb  et  al.  [7, 8] which uses gene expression values to 
bridge drugs and diseases, directly inspires us to formu-
late and leverage all the laboratory tests involved in our 
experiment to build associations between drugs and dis-
eases from clinical perspective.

In this paper, we propose a clinical connectivity map 
framework for drug repurposing (CCMDR) by leveraging 
laboratory tests to analyze the influence of drugs and dis-
eases on the human biological system. The overall frame-
work is illustrated in Fig.  1. Experimental results show 
that our method can not only retrieve the known drug-
disease associations in high accuracy but also can find 
potential indications, which can be verified from medi-
cal literature. Moreover, the associations between the 
predicted drug-disease can be clearly and vividly repre-
sented via the corresponding complementarity between 
laboratory tests of drug effect vectors and disease sign 
vectors, which make our results more explainable. Thus, 
the evaluation performance and explainability show the 
potential that our method could be used in future drug 
repurposing tasks.

In brief, the contribution of the paper can be summa-
rized as below:

•	 We propose a clinical connectivity mapping frame-
work for drug repurposing. The new framework 
solely based on the clinical patient data, thus with 
less translational problems.

•	 We evaluate our framework for 392 drugs on 6 
important chronic diseases (include asthma, coro-
nary heart disease, congestive heart failure, heart 
attack, type 2 diabetes, and stroke). Experimental 
results show that our method achieves high accuracy 
in retrieving the known indications of drugs.

•	 We study the predicted drug repurposing candidates 
via the corresponding complementarity between lab-
oratory tests of drug effect vectors and disease sign 
vectors. Case studies with literature support show 
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the potential of our method to discover previously 
unknown indications of existing drugs.

Methods
Dataset and data preprocess
We use the questionnaire and laboratory results from 
the National Health and Nutrition Examination Sur-
vey (NHANES) [17] to establish the clinical disease sign 
vectors. According to the questionnaire survey (e.g., 
“Has been diagnosed with type 2 diabetes?”), individual 
samples are divided into disease group (who answered 
“yes”) and healthy group (who answered “no”). Next, we 
perform the statistical analysis to identify those disease-
related clinical variables from collected laboratory results 
in NHANES data. We extract 87,464 individual samples, 
986 numerical clinical variables and more than 30 disease 
conditions from NHANES data range from 1999 to 2016. 
Here, we only consider the disease conditions with more 
than 1000 individual samples, which results in 6 unique 
diseases (i.e., asthma, coronary heart disease, congestive 
heart failure, heart attack, type 2 diabetes and stroke).

We use the prescription and laboratory result histo-
ries of patients in a proprietary deidentified Electronic 

Health Record (EHR) to establish the clinical drug 
effect vectors. We transform the prescription records 
of patients into matrixes based on medication use situ-
ations. To study the associations between prescribed 
drugs and laboratory results, we apply a continuous 
self-controlled case series model [15] to analyze the 
effects of a drug on the laboratory results. We only con-
sider patients with complete records (i.e., having both 
prescription and its corresponding laboratory results), 
which results in 91,934 patients, 1344 kinds of treat-
ments and 65 kinds of laboratory results. After exclud-
ing those prescriptions with less than 1000 patients, we 
obtain 392 unique prescribed drugs.

We bridge the drug and disease using the laboratory 
results obtained from each side. Since the laboratory 
results are from different data resources (i.e., national 
survey data and electronic health records), we need to 
standardize those laboratory results for further analy-
sis. The laboratory results that appear in both datasets 
are included and mapped to a standard list with con-
sistent names. Also, the non-numerical laboratory 
results are excluded. Finally, we obtain 35 laboratory 
results considered as clinical variables. The full list of 
the 35 clinical variables can be found in Additional 

Fig. 1  This figure presents the pipeline of our framework. The framework contains three main components: (1) establishing clinical drug effect 
vectors by applying a continuous self-controlled case series model on a longitudinal electronic health record data (EHR), (2) establishing clinical 
disease sign vectors by applying a Wilcoxon rank sum test on a large-scale national survey data (NHANES), (3) computing repurposing possibility 
score for each drug-disease pair by applying a dot product-based scoring function on clinical disease sign vectors and clinical drug effect vectors. 
We do a terminology mapping before we establish the clinical drug effect vectors and clinical disease sign vectors to make sure each clinical vector 
includes the same laboratory tests. There are three kinds of relation types in the clinical vectors (“Up”, “Down”, “No”), which represent increasing, 
decreasing and not significantly changing laboratory tests level, respectively
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file 5: Table S1. Our inference of a drug-disease pair is 
based on the complementary and adverse effects that 
each drug candidate and disease condition has on the 
35 clinical variables.

Clinical disease sign vector
We extract 6 disease conditions and 35 clinical variables 
from NHANES after preprocessing to establish the clini-
cal disease sign vector. The dimension of each disease 
sign vector is 1× 35 . There are three types of relations 
between a disease and clinical vectors (i.e., “Up”, “Down” 
and “No”), which represents increasing, decreasing and 
not significantly changing of laboratory results level, 
respectively. As mentioned above, the combined data 
is divided into disease group and control group accord-
ing to the questionnaire data, we apply Wilcoxon rank 
sum test (a.k.a., Mann Whitney U test) on two groups 
to calculate the p-value for each clinical variable. Cer-
tain p-value cut-off is used to examine whether the 
value change is significant or not [18]. In our work, the 
p-value threshold is set to be 0.05. Only the clinical vari-
ables satisfy the condition that p-values are less than 0.05 
can be regarded as significant clinical variables concern-
ing the disease. We consult the Mann–Whitney table 
of α = 0.05 . If the smaller value of U1 and U2 is larger 
than the value given in the table, the null hypothesis is 
true otherwise false. Then we assign relation direction 
to this clinical variable by comparing the average clinical 
variable value of the disease group and control group. Up 
relation (“↑ ”) indicates a significant value increase in the 
disease group compared with the control group, while 
down relation (“↓ ”) means the laboratory value of the dis-
ease group is significantly lower than that of the control 
group, no relation (“-”) indicate the laboratory result level 
will not be significantly influenced by the disease.

Clinical drug effect vector
To establish clinical drug effect vectors, we extract 392 
drugs and 35 clinical variables from EHR data. The clini-
cal variables used here are the same as ones in establish-
ing the disease sign vectors. So, the dimension of each 
drug effect vector is 1× 35 . We need to consider the 
prescription records of patients and their corresponding 
laboratory results records simultaneously, and the EHR 
dataset we use is a large dataset that includes millions of 
records. So, we need to find a way to analyze the high-
dimensional longitudinal data. In our work, we adopt the 
continuous self-controlled case Series (CSCCS) model 
proposed by Kuang et al. [15], it is a lasso regression anal-
ysis model designed to do the data analytical work for 
EHR dataset.

Assuming there are N patients with a specific kind of 
clinical variable measurement and M kinds of drugs in EHR 
dataset. Continuous variable yij , where i ∈ {1, 2, . . . ,N } , 
j ∈ {1, 2, . . . , Ji} , indicates the value of jth clinical variable 
measurement taken among a total number of Ji measure-
ments for the ith patient, while binary variable xijm , where 
i ∈ {1, 2, . . . ,N } , j ∈ {1, 2, . . . , Ji} , m ∈ {1, 2, . . . ,M} , are 
used to indicated the drug whether ith patient are exposed 
to the mth drug when the jth clinical variable measurement 
is taken. 0 represents no and 1 represents yes.
yij is regard as the output variables when we fit the struc-

tured data into the linear regression model, so we have:

αi in Eq.  (1) represents the average baseline level of yij 
on ith patient. That means it is independent of the date 
the measurement was taken and drugs the patient used 
when the measurement was taken. Each patient has an 
individual baseline value. ǫij here is an independent and 
identically distributed Gaussian noises with zero means 
and fixed but unknown variance σ 2 . Then the linear 
model can be easily converted to a least square problem 
as follows:

where

where Z is a block diagonal matrix and 1i is a Ji × 1 vector 
in which all the components are 1. By solving this prob-
lem, we can get the optimized parameter β , which is also 
the interest of our task. β is a 1×M parameter vector, 
parameter βm in β indicates the effect of mth drug on the 
output variable y . The optimized parameter we get with 
the CSCCS model is numerical. Positive and negative 
parameters in this vector represent the corresponding 
drugs that may increase and decrease the level of output 
variable respectively, while 0 indicates the corresponding 
drugs do not influence it. In the CSCCS model, param-
eter α is regarded as a nuisance parameter, our interest is 
parameter β so we do not need to care the value of α . To 
eliminate the effect of α , [15] consider:

(1)

yij|xij =αi + β⊤xij + ǫij , ǫij
iid
∼N
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,
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Where y is a N × 1 vector which includes the average 
value of clinical value among N patients, yi = 1

Ji

∑Ji
j=1 yij . 

X  is a N ×M matrix and X i =
1
Ji

∑Ji
j=1 x

⊤
ij  . So, the 

expression of CSCCS model below, which is free of α , is 
derived by substituting Eq. (3) into Eq. (2):

When we apply the CSCCS model on the high-dimen-
sional longitudinal EHR data, we will add a L1 penalty 
term because there is an assumption that the level of 
clinical variables will only be significantly influenced by 
a small portion of drugs. The L1 penalization drives most 
components of β to zero or closed to zero [19]. In other 
words, we simply want to know the drugs which are most 
correlated to the level change of clinical variables. So the 
final expression of the CSCCS model we apply to this 
problem is:

where � > 0 , � decides the sparsity of optimized result so 
we need to tune this parameter to get a final result with 
proper sparsity level.

In order to further filter out the drugs which do not 
have a significant effect on clinical variables, our imple-
mentation also returns the p-value of each component in 
β . We apply the same p-value cut-off strategy on the opti-
mized result. Parameters with a p-value greater than 0.05 
in β are regarded as insignificant effect and we assume 
their corresponding drugs are uncorrelated with clini-
cal variable level change. The significant effects can be 
divided into increasing or decreasing effect based on the 
coefficient value is positive or negative. Then we assign 
each drug-clinical variable pair up (“↑”), down (“↓ ”) and 
no (“-”) relation type just like clinical disease sign vectors.

Scoring function
After we establish the clinical vectors for each drug-
disease pair, we need to define a scoring function to 
calculate the repurposing possibility score for each drug-
disease pair. The inference for each drug-disease pair is 
based on complementary and adverse effects. Specifi-
cally, complementary effect refers to the opposed relation 
type between a clinical disease sign vector and clinical 
drug effect vector on the same clinical variables, while 
adverse effect refers to the same relation type between a 
clinical disease sign vector and clinical drug effect vector 

(3)

∂L(α,β)

∂α
= 0 ⇒ α =

(

Z⊤Z
)−1

Z⊤(y − Xβ) = y − Xβ

(4)arg min
β

1

2
�y − Zy − (X − ZX)β�22

(5)arg min
β

1

2
�y − Zy − (X − ZX)β�22 + ��β�1

on the same clinical variables. The complementary rela-
tion direction between the two vectors will increase the 
final repurposing possibility score of a drug-disease pair 
while adverse relation direction will decrease it. Here, 
we use a dot product-based scoring function to consider 
both complementary and adverse effects of a drug candi-
date on a disease. The scoring function can be written as 
follow:

where CVDrug is the clinical drug effect vector, and 
CVDisease is the clinical disease sign vector. We transform 
the 3 kinds of relation type in clinical vectors (“↑ ”, “ ↓ ” and 
“−”) into numerical values (1.0, −1.0 , 0.0) for the con-
venience of calculation. To rank the drugs in descending 
order and emphasize the most powerful drug candidates 
predicted by our model, we add a minus sign before the 
product of the two vectors. So, the positive result cal-
culated by this scoring function means there are more 
complementary relation directions than adverse relation 
directions between a drug candidate and a disease, while 
negative results indicate more adverse relation directions 
between this pair.

Results and discussion
Evaluation metrics
After we calculate the repurposing possibility score of 
each drug-disease pair, we need to prove that the score 
is qualified enough to serve as a metric to show whether 
a drug candidate is likely to be the potential treatment or 
not. The final drug candidate list is sorted by the repur-
posing possibility score in a descending order for the con-
venience of validation. The validation data we use comes 
from Side Effect Resource(SIDER) [20]. It contains drugs 
with indications or side-effects for many kinds of disease 

(6)TSdisease−drug = −CVDrug · CVDisease

Fig. 2  Top K precision of each disease condition demonstrates 
the proportion of known drug-disease pairs among the top K 
ranking drugs in our prediction list. This prediction list is ranked by 
repurposing possibility score
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conditions. We take it for ground truth to testify whether 
our method can retrieve known indications of drugs. The 
hypothesis is that drug candidates with higher repurpos-
ing possibility score are more likely to be the treatment of 
the disease, which means most of the top-ranking drugs 
can be found in the drugs with indication and most of 
the bottom ranking drugs can be found in the drugs with 
side-effects provided by SIDER. In this case, those drugs 
can not be found in the validation data but still predicted 
with high repurposing possibility score by our model 
could be served as a potential treatment of the disease. So 
we need to use some evaluation metrics to test whether 
the known drug-diseases pairs are enriched at the top of 
our prediction list. We will use two kinds of evaluation 
metrics to validate our prediction.

Precision at K
The First kind of evaluation metric is precision at K. The 
top K precision value is the ratio of known treatment for 
a disease among the top K drug candidates for the disease 
predicted by our framework.

For each disease, we rank the drugs using the calcu-
lated repurposing possibility score. Then we compute the 
precision at K ( K ∈ {5, 10, 15, 20} ) of each disease using 
the top-ranked K drugs (e.g., precision at 10 corresponds 
to the proportion of correct retrieved drugs among the 
top 10 ranked drugs).

Fold‑enrichment test
Another evaluation metric to access whether our repur-
posing possibility score is correlated with the likelihood 
that disease-drug pair occurs or not is the fold-enrich-
ment (FE) test. FE score can be defined by the following 
formula:

where M is the number of all the mapped drugs and N 
is the number of drugs in the gold-standard dataset cor-
responding to each kind of disease condition. We will 
divide all the mapped drugs evenly into several groups 
according to their repurposing possibility score. So, m is 
the total number of drugs in one group and n is the num-
ber of drugs involved in the gold-standard dataset within 
the group. FE test can demonstrate the enrichment of 
known disease-drug pair (we assume the drug-disease 
pairs in SIDER is ground truth) within different score 
ranges. Our prediction can be proved to be reasonable if 
the FE test score is positively correlated with the repur-
posing possibility score. There are 392 drug-disease pairs 
for each kind of disease condition in our experiment, and 
all of them are ranked by repurposing possibility score 
and binned into groups of 80 pairs (the last group con-
tains 72 drug-disease pairs). The scoring function is rea-
sonable if the FE score is decreasing with the ascending 

(7)FE Score =
(n/m)

(N/M)

Fig. 3  Fold-enrichment result of each disease condition, we divide the drug-disease pair into 5 groups with the descending order of average 
repurposing possibility score. So, the negative linear relations between the group order and FE score indicate the positive relationship between the 
average repurposing possibility score. It shows our scoring function is useful in finding the drugs which have a therapeutic effect on target diseases
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order of the 5 groups because the average repurposing 
possibility score of each group is decreasing in that order.

Established disease and drug vectors
In our experiment, we first establish all of the clinical dis-
eases and drug vectors. All the clinical disease sign vec-
tors are represented in Additional file 1: Table S2, and all 
the clinical drug effect vectors are represented in Addi-
tional file 2: Table S3.

Then, we calculate the repurposing possibility score 
of 392 kinds of drugs on six disease conditions (asthma, 
coronary heart disease, congestive heart failure, heart 
attack, type 2 diabetes and stroke). The repurposing pos-
sibility score of each drug-disease pair is listed in Addi-
tional file 4: Table S4. We also transform the table into a 
heat map Fig.  4 to vividly present the repurposing pos-
sibility score. Due to page limitation, we just present the 
drugs that have an influence on any of the 6 diseases in 
our experiment (153 kinds of drugs). The complete heat 
map can be is in Additional file 3: Fig. S3. Then we per-
form validations on our prediction for each of the six 
disease conditions. Each of the six disease conditions has 
enough sample size which can make our validation result 
more confident. We extract a list of drugs from the drug 
indication information resources for each of the six dis-
ease conditions provided by SIDER. All of the drugs in 
the six lists are known to treat the six disease conditions 
respectively, so we assume them as the ground truth and 
further compare them with our prediction.

Evaluation of known drug‑disease associations
The results of the prediction at K for 6 disease conditions 
are shown in Fig.  2. The figure demonstrates the preci-
sion of our prediction at K ∈ {5, 10, 15, 20} . For type 2 
diabetes, stroke, heart attack and congestive heart failure, 
it is clear that most of the drugs can be mapped into the 

ground truth(SIDER drug list) when the K is small, the 
precisions of all the four disease conditions in the figure 
are greater than or equal to 0.8 when K = 5 , their preci-
sion will decrease with the increase of K. However, the 
results of asthma and coronary heart disease were not 
as expected. For coronary heart disease, there is not so 
many known drug-disease pair in SIDER, which could be 
a reason for the low precision of this disease condition. 
Some of the clinical variables, like cholesterol, LDL (low-
density lipoprotein), HDL (high-density lipoprotein) and 
triglycerides are more salient features than other clinical 
variables. So, our analysis for the disease condition which 
does not have a strong correlation with these clinical var-
iables could have low precision. Apart from those known 
treatments of each target disease that can be found in 
the ground truth, there could be some unknown drug 
candidates which are likely to be the treatment of target 
disease.

The results of the FE test are shown in Fig. 3. As we can 
see, there is a negative linear relationship between the 
FE score and the group order. Since the average FE test 
score is decreasing with the ascending order of groups, 
so there is a positive linear relationship between FE score 
and average repurposing possibility score. The result in 
Fig. 3 shows that all 6 disease conditions demonstrate a 
negative linear relationship between their FE score and 
group order. Therefore, our scoring function is proven to 
be reasonable.

Case study and explainability
Having presented that our model successfully identified 
known associations between drugs and diseases, we fur-
ther demonstrate the explainability of our model via cor-
responding complementarity between laboratory results 
of drug effect vectors and disease sign vectors. To exem-
plify this, we select 5 drug-disease association pairs (i.e., 

Table 1  This table presents the selected previously unknown drug-disease pairs predicted by our method, we just show the clinical 
variables that contribute to the final repurposing possibility of each drug-disease pair in the table

Laboratory result Alkaline 
phosphatase

Cholesterol Glucose HDL LDL Triglycerides

Disease Type 2 diabetes ↓ ↑ ↑ ↓ ↑ ↑

Drug Clopidogrel Hydrogen sulfate – ↓ – – ↓ –

Disease Type 2 Diabetes ↓ ↑ ↑ ↓ ↑ ↑

Drug Doxycycline hyclate – – ↓ – – –

Disease Coronary heart disease ↑ ↑ ↑ ↓ ↑ ↑

Drug Alendronate sodium ↓ – – ↑ – –

Disease Congestive heart failure ↑ ↑ ↑ ↓ ↑ ↑

Drug Alendronate sodium ↓ – – ↑ – –

Disease Heart attack ↑ ↑ ↑ ↓ ↑ ↑

Drug Alendronate sodium ↓ – – ↑ – –
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Type 2 diabetes-Clopidogrel hydrogen sulfate, Type 2 
diabetes-Doxycycline hyclate, Coronary heart disease-
Alendronate sodium, Congestive heart failure-Alen-
dronate sodium and Heart attack-Alendronate sodium). 
For a given disease, the selected drugs are in its top-20 
predicted list but not have been indicated as the treat-
ment. In order to vividly compare the clinical vectors of 
the drug candidates and the corresponding disease, we 
present the clinical variables which contribute to their 
repurposing possibility score in Table 1. All the detailed 
clinical vectors can be found in Additional file 1: Table S2 
and Additional file  2: Table  S3. Combining the clinical 
disease vectors with clinical drug effect vectors, we can 
analyze why the drug candidates we select are poten-
tial treatments for corresponding disease conditions 
from the standpoint of clinical variables included in our 
experiment.

In the case of type 2 diabetes, we found that clopidogrel 
hydrogen sulfate could have a therapeutic effect on type 2 
diabetes and Doxycycline Hyclate. Clopidogrel hydrogen 
sulfate is an antiplatelet medication and can be used to 
reduce the risk of myocardial infarction and stroke [21]. 
A study reported that clopidogrel will alleviate insulin 
resistance and improve glycemic control in type 2 dia-
betic patients [22], which is an important cause of insulin 
resistance. From the clinical drug effect vector of clopi-
dogrel and clinical disease sign vector of type 2 diabe-
tes, we can see clopidogrel and type 2 diabetes have the 
opposite effect on the cholesterol and LDL level. Lower 
cholesterol and LDL levels are biological markers of good 
glycaemic control [23], which is also corresponding to 
the literature study. Doxycycline Hyclate is an antibiotic 
which is primarily used to treat a wide range of bacte-
rial infections. From the clinical vectors of Doxycycline 
and type 2 diabetes, we can see they have the opposite 
effect on the serum glucose level. High fasting blood glu-
cose level is a common biological marker among type 2 
diabetes patients. This finding is supported by a medical 
study that doxycycline can improve insulin resistance and 
fasting blood glucose level [24]. The analysis based on the 
opposite effect of type 2 diabetes and clopidogrel proves 
our prediction is reasonable, clopidogrel and doxycycline 
may be used as treatments for type 2 diabetes.

Alendronate sodium is usually used to treat osteopo-
rosis [25]. We found it can potentially have a therapeu-
tic effect on cardiovascular disease, including congestive 
heart failure, heart attack and coronary heart disease. 
Experiments show that alendronate can induce signifi-
cantly lower cardiovascular mortality and reduce the 
risk of cardiovascular incidents [26]. A possible expla-
nation given by this study is that bone and cardiovascu-
lar remodeling share some biological markers. From the 
clinical drug effect vectors of alendronate, we can see 

Fig. 4  Heat map of drug-disease repurposing possibility scores. 
X-axis stands for the 6 disease conditions and Y-axis is the name of 
the 153 drugs that have an influence on any of the diseases involved 
in our experiment. The color bar above the heat map annotates the 
scores that different colors in the heat map stand for
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alendronate can lower alkaline phosphatase (ALP) and 
elevate the HDL level. Researches show that ALP can 
catalyze the inhibitor of vascular calcification, thus high-
level ALP may lead to vascular hardening and promotes 
the atherosclerotic process [27]. On the other hand, HDL 
will promote reverse cholesterol transport, which could 
reduce the risk of cardiovascular events [28]. Thus, it 
seems possible that alendronate could be repurposed as a 
treatment for cardiovascular disease.

Highly related drugs and diseases
In Fig. 4, we demonstrate part of the repurposing possi-
bility scores in the form of heat map. To further digging 
the relation within different drugs or diseases, we use bi-
clustering algorithm to do a clustering for the drugs and 
diseases in Fig. 4. Bi-clustering is a data mining technol-
ogy that simultaneous clustering of both row and column 
sets in a data matrix [29]. Given an m× n , bi-clustering 
algorithm will generate new m× n matrix that a subset 
of rows which exhibit similar behavior across a subset of 
columns, or vice versa. In our work, we use bi-cluster-
ing algorithm to find different drugs with similar effect 
on some a disease and different diseases which can be 
treated with same kind of drug. The clustering result is 
plotted in Fig. 5. As shown in Fig. 5, type 2 diabetes has 
a strong correlation with heart diseases and stroke. We 
can also find many drugs that can decrease blood lipid 
or sugar level have a therapy effect on those diseases. In 
the further, these findings can help to find potential drug-
disease pairs.

Limitations and further work
The verification results above show that our framework 
may identify some potential drug indications and thus 
help researchers find novel uses of existing drugs. How-
ever, our framework still has some limitations and space 
to improve.

First of all, we only include 6 kinds of diseases and 392 
kinds of drugs in the our work. Actually, there are some 
other disease conditions and drugs that can be found in 
NHANES and EHR dataset. The reason we just include 
a part of drugs and diseases is that many of them have a 
small sample size so that we can not get a reliable result 
from them. To guarantee the results we get from the 
dataset are reliable enough, the sample size of each drug 
and disease that included in this work is larger than 1000. 
Due to this threshold, the experiments are conducted on 
6 diseases conditions and 392 drugs, but the results we 
get are reliable and robust. In the future, we can include 
more drug-disease pairs with a large-scaled dataset.

The second limitation is the clinical variables involved 
in the experiment. Hundreds of clinical variables (labora-
tory results) can be found in the NHANES dataset, but 

Fig. 5  The heat map after bi-clustering, X-axis stands for the 6 
disease conditions and Y-axis is the name of the 153 drugs that have 
an influence on any of the diseases involved in our experiment. The 
color bar above the heat map annotates the scores that different 
colors in the heat map stand for
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we still need to match them with the clinical variables in 
the EHR dataset. However, 35 kinds of clinical variables 
cannot completely reflect the human physiological activ-
ity, so it would be also addressed if we have a larger EHR 
dataset that contains more clinical variables.

Conclusion
In this paper, we establish a drug repurposing com-
putational framework by using the electronic clinical 
information from the National Health and Nutrition 
Examination Survey (NHANES) and Electronic Health 
Records(EHR). We consider both of the opposite and 
same expressions between clinical disease sign vec-
tor and clinical drug effect vector in each drug-disease 
pair to calculate the repurposing possibility score. Our 
inferences of the novel use for different drugs are based 
on their repurposing possibility score with different 
disease conditions. We verify our predictions by fold-
enrichment test and top K precision. Then, we further 
prove the feasibility of our model by doing a literature 
analysis of our prediction result. The result shows that 
our framework can not only retrieve the known indi-
cations of existing drugs but also find the previously 
unknown indications of existing drugs. So our frame-
work can be potentially used in the drug repurposing 
tasks.
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