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Abstract 

Background:  Out of the pressure of Digital Transformation, the major industrial domains are using advanced and 
efficient digital technologies to implement processes that are applied on a daily basis. Unfortunately, this still does 
not happen in the same way in the medical domain. For this reason, doctors usually do not have the time or knowl-
edge to evaluate all alternative treatment options for each patient accurately and individually. However, physicians 
can reduce their workload by using recommender systems, still having every decision under control. In this way, they 
also get an insight into how other physicians make treatment decisions in each situation. In this work, we report the 
development of a novel recommender system that uses predicted outcomes based on continuous-valued logic and 
multi-criteria decision operators. The advantage of this methodology is that it is transparent, since the model out-
comes emulate logical decision processes based on the hierarchy of relevant physiological parameters, and second, it 
is safer against adversarial attacks than conventional deep learning methods since it drastically reduces the number of 
trainable parameters.

Methods:  We test our methodology in a patient population with diabetes and heart insufficiency that becomes a 
therapy (beta-blockers, ACE or Aspirin). The original database (Pakistan database) is publicly available and accessible 
via the internet. However, to explore methods to protect the patient’s identity and guarantee data privacy we imple-
mented a methodology on a variable-by-variable basis by fitting a sequence of regression models and drawing syn-
thetic values from the corresponding predictive distributions using linear regressions and norm rank. Furthermore, we 
implemented a deep-learning model based on logical gates modeled by perceptrons with fixed weights and biases. 
While a first trainable layer automatically recognizes a meaningful parameter hierarchy, the implemented Logic-
Operator Neuronal Network (LONN) simulates cognitive processes like a rational, logical thinking process, considering 
that this logic is joined by fuzziness, i.e., logical operations are not exact but essentially fuzzy due to the implemented 
continuous-valued operators. The predicted outcomes of the model (kind of therapy-ACE, Aspirin or beta-blocker- 
and expected therapy time of the patient) are then implemented in a recommender system that compares two 
different models: model 1 trained on a population excluding negative outcomes (patient group 1, with no patient 
dead and long therapy times) and a model 2 trained on the whole patient population (patient group 2). In this way, 
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Background
The management and quality of hospital services 
depend to a large extent on individual medical deci-
sions. For example, based on their experience, each 
physician may select treatments coded into specific 
keys (Treatment Keys, or TK) for disease management 
and the cost of treatment; each of these treatments is 
then combined with a cost refund respectively which 
is encoded in specified keys in the Electronic Health 
Records (EHR) and on medical bills. These keys would 
have an ‘economic effect’ on the health system [1]. 
The reimbursement system’s behavior, in some cases, 
enables what physicians could do to offer more health 
services to help a patient, regardless of whether the 
additional care is economically optimal. At the same 
time, physicians can also ignore their colleagues’ expe-
riences by using alternative treatments that might be 
more suitable for treating a disease. Other deficien-
cies may stem from the fact that physicians are either 
overloaded by a large number of patients and/or by sev-
eral therapeutic options to consider, which is part of a 
portfolio that has more than 100 different alternative 
treatments per patient [2]. Because of this, physicians 
do not usually have the time or knowledge to evaluate 
all of the different alternative options accurately and 
individually.

By using recommender systems, physicians can reduce 
their workload, yet still have each decision made under 
their control. They will also get an insight into how other 
physicians recommend a treatment in the same given 
situation.

Nowadays, recommender systems have proven to 
be invaluable for online users to cope with information 
overload in many different fields (e.g. e-commerce, deci-
sion support systems, etc.) [3, 4]. However, the archi-
tecture of recommender systems and their evaluation 
in real-world problems is still an active area of research. 
We have investigated and implemented a recommender 
system intending to transfer this technology in the field 
of medicine to support physicians seeking to predict the 
rating or preference of a treatment key for new patients.

Recommender systems in medicine are not new. There 
are about 911 search items in published medical journals, 
with articles reporting recommender systems for patients 
using personal health systems [5]. Until the last few years, 
most of these techniques were used for analyzing rich 
EHR-data based on traditional machine learning and 
statistical techniques such as logistic regression, support 
vector machines (SVM) [6], and random forests. How-
ever, recently, deep learning techniques have achieved 
great success in many domains through deep hierarchical 
feature construction and capturing long-range depend-
encies in data effectively, particularly for the analysis of 
EHRs in medicine [7]. For a recent review article on rec-
ommender systems in healthcare see e.g. Tran et al. [8].

Here, we are introducing a new type of recommender 
system which is a combination of methods to gener-
ate synthetic populations while keeping personal data 
protected when needed for Artificial Intelligence (AI) 
applications and the use of novel methods based on con-
tinuous-valued logic and multi-criteria decision opera-
tors aimed for robust, safer, and more understandable 

we provide a recommendation of the best possible therapy based on the outcome of the model and the confidence 
of this recommendation when the outcome of model 1 is compared with the outcome of model 2.

Results:  With the applied method for data synthetization, we obtained an error of about 1% for all the relevant 
parameters. Furthermore, we demonstrate that the LONN models reach an accuracy of about 75%. After comparing 
the LONN models against conventional deep-learning models we observe that our implemented models are less 
accurate (accuracy loss of about 8%). However, the loss of accuracy is compensated by the fact that LONN models are 
transparent and safe because the freezing of training parameters makes them less prone to adversarial attacks. Finally, 
we predict the best therapy as well as the expected therapy time. We were able to predict individualized therapies, 
which were classified as optimal (binary value) when the prediction fully matched predictions made with models 1 
and 2. The results provided by the recommender system are displayed using a graphical interface. The current is a 
proof of concept to improve the quality of the disease management, while the methods are continuously visualized 
to preserve transparency for the customers.

Conclusions:  This work contributes to simplify administrative functions and boost the quality of management of 
patients improving the quality of healthcare with models that are both transparent and safe. Our methodology can 
be extended to different clinical scenarios where recommender systems can be applied. The acceptance and further 
development of the app is one of the next important steps and still requires further development depending on spe-
cific requirements of the health management, the physicians or health professionals, and the patent population.

Keywords:  Recommender system, Artificial intelligence, Deep learning, Continuous valued logics, Data privacy, 
Health records
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use of deep learning. By combining neural networks with 
continuous logic and multi-criteria decision-making 
tools, thus reducing in this way the black-box nature 
of neural network models [9–12]. By doing this, we are 
exploring the (often overlooked) possibility of combining 
neural networks with continuous logical systems. This 
strategy provides a clear advantage in the medical field 
since it is a system that, due to its nature, can be easily 
understood by physicians and/or medical practitioners, 
who often make their decisions relying on continuous 
logical rules. We aim to reach more transparency of AI 
applications in medicine while preserving efficient deep 
learning methods. The synthetic populations are mainly 
used for training the Deep Learning machinery. They are 
completely anonymized yet keep their original structure 
of the original data sample used for ML use.

Our customers consist of physicians handling indi-
vidual patient diagnoses. In this way, by providing these 
recommendations, we are seeking to reach both an eco-
nomic and clinical efficacy:

•	 Persuade physicians to make use of best-suited treat-
ment keys aims to reduce the costs of the patient 
management.

•	 Improve the management of a diagnosis of the dis-
ease by helping the physicians to discover additional 
keys that could improve the treatment of patients.

These two items seem to be contradicting since one 
aspect has an economic motivation while the second 
aspect has a medical nature. But they represent the typi-
cal conflict of interest that each physician faces daily. Phy-
sicians should act accordingly to the following principles:

•	 Best medical care for the patient with optimum eco-
nomic impact (i.e. cost efficiency) for those who have 
to pay the bill finally. So, if there are two equal treat-
ments available, the system should recommend the 
cheaper one with the same if not better treatment 
quality result than the more expensive option.

•	 Depending on the health system of a particular coun-
try and how billing/charging is carried out, there may 
be another conflict that the physician has to contend 
with: optimizing the cost-income ratio of the organi-
zation that is treating patients.

As the system is learning from the best physicians in 
the community, the recommendations made could be 
seen as the best advice from the best physicians around.

Our recommender system consists of a collaborative 
filtering approach. The goal is to build a model from the 
past behavior of several physicians selecting treatment 
keys that are correlated to the patient’s diagnosis keys 

(codified by the ICD system). Therefore, when a new 
patient with specific ICDs enters the system, the physi-
cian is shown a recommendation list of the plausible 
treatment keys for this patient with the most effective 
therapy. Thus, to extract structured medical concepts, 
such as diseases and treatment procedures, we use sin-
gle-concept extraction in electronic medical records [6].

In the next section, we will introduce the architecture 
implemented in this project. After that, we will describe 
the implemented methodology and present the validation 
results compared to conventional dense networks. Then 
we will further show the visualization method imple-
mented in a recommender system. Finally, we will dis-
cuss the implication of this implementation and conclude 
with a deviation on how this methodology can be further 
improved.

Methods
Solution architecture
The implemented recommender system analyzes the fre-
quency of medical events in the EHR and delivers a rec-
ommendation based on the preferred events. Therefore, 
our system works like collaborative filtering, i.e. items are 
chosen based on the patients’ rating history. This implies 
that our system, unlike systems implemented by Amazon, 
does not use details of the registered user’s profile (i.e., the 
physician).1

The workflow of the implemented recommendation 
system requires the diagnose encoded b y International 
Classification of Diseases (ICDs), age, sex to predict the 
more probable Therapy Keys (TKs) per patient as param-
eters; and the following steps ensure:

a.	 Synthesize the patient’s information and store the 
result with the relevant patient parameters: age, sex, 
Patient Identifications (ID), ICDs.

b.	 Cluster ICDs and TKs. This step is required to reduce 
the dimensionality of both parameters (high num-
ber of items) and perform predictions of TKs group 
number depending on patient parameters, including 
ICDs groups.

c.	 Train (deep learning model), validate, and export 
model to medical/hospital documentation and infor-
mation system.

d.	 Introduce a user interface for the recommender sys-
tem, using the trained deep learning model based on 
the medical information system’s data to recommend 
the treatment keys. As part of the combination of 
medical/hospital documentation and information/

1  https://​towar​dsdat​ascie​nce.​com/​intro​ducti​on-​to-​recom​mender-​syste​ms-​
6c66c​f15ada

https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
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recommender system, this is the process where the 
physician accepts or discards the recommended TK 
in his/her professional autonomy and charges it via 
the charging system.

The different steps in the workflow are resumed in 
Fig. 1. Once the recommender system is defined, using it 
implies the following steps:

1.	 The physician asks for a recommendation of the most 
frequently used TKs using the recommender system.

2.	 The physician gets a recommendation.
3.	 The physician selects the appropriate recommenda-

tions and does the treatment based on his own deci-
sion.

4.	 The new updated information about selected TKs is 
stored in the database (DB).

The implementation of this system is far from trivial, 
and we have to overcome several challenges:

•	 Data privacy: generating synthetic data from the 
original microdata containing confidential infor-
mation so that they are safe to be released to users. 
Synthetic data are generated from sensitive records 
by replacing them with values simulated from prob-
ability distributions specified to preserve the actual 
observed data’s key features.

•	 Data extraction: By using our techniques, we can 
synthesize large numbers of patients’ data, however, 
we also require robust techniques to filter large data 
amounts to synthesize data efficiently based on paral-
lelization methods. To this end, data pre-processing 
was implemented using Spark.2

•	 Model selection: Selection of a robust model enables 
us to establish a relation between diagnoses and TKs.

In the following sections, we provide solution strategies 
for each one of these challenges.

Modeling
Synthetic populations
Synthetic patients are generated from a representative 
patient database with samples of diabetic patients, some 
with heart insufficiency (Pakistan Database, from the 
UCI repository3). Diabetic patients with heart insuffi-
ciency often impose onerous requirements and restric-
tions for their lives. A clinical, as well as the economic 
impact, can be obtained with improved management of 
the disease based on a recommender system applied to 
Electronic Health Records (EHR) predicting “preference” 

Fig. 1  Structure of the implemented recommender system

2  https://​spark.​rstud​io.​com/
3  The data has been obtained from the [uci repository] (https://​archi​ve.​ics.​
uci.​edu/​ml/​datas​ets/​Heart+​failu​re+​clini​cal+​recor​ds).

https://spark.rstudio.com/
https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records
https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records


Page 5 of 15Ochoa et al. BMC Med Inform Decis Mak          (2021) 21:186 	

(best clinical outcome) and “rating” (best reimburse-
ment) that a physician would give to an item4 encoded in 
treatment keys (TK).

In the first instance, we only focus on heart insuffi-
ciency patients and combine this database with already 
known kinds of therapies. The goal is to combine the 
patient data with data from diabetic patients (group 
numbers extracted and analyzed in the recommenda-
tion system). To complement the data corresponding to 
the therapy, we would also include the treatment of heart 
insufficiency [13]. More than 90% of heart failure patients 
with reduced ejection fraction (systolic heart failure, or 
SHF, Group 1) and diabetes were treated with an ACE 
inhibitor (ACEi) or angiotensin receptor blocker (ARB) 
or with beta-blockers. By contrast, patients with diabe-
tes and preserved ejection fraction (Heart Failure with 
Preserved Ejection Fraction, or HFNEF, Group 2) were 
less likely to receive these substance classes (p < 0.001) 
and had the worst blood pressure control (p < 0.001). 
Compared to patients without diabetes, the probabil-
ity of receiving these therapies was increased in diabetic 
HFNEF patients (p < 0.001), but not in diabetic SHF 
patients. Aldosterone receptor blockers were given more 
often on diabetic patients with reduced ejection frac-
tion (p < 0.001), and the presence and severity of diabetes 
decreased the probability to receive this substance class, 
irrespective of renal function.

Therefore, the hybrid database with typical TK and 
ICD groups (non-identifiable) combined with the Paki-
stan database for diabetic patients with heart insuffi-
ciency had the following attributes:

•	 Attributes from the Pakistan Database, including age 
and sex.

•	 Therapy groups depending on the kind of heart fail-
ure.

The total number of parameters, included input (V1 to 
V10) and output (O1 and O2) parameters, is illustrated in 
Table 1.

Notice that the parameter “Time” is the total number of 
days that the patient has been treated, in relation to the 
entire six months when this database has been obtained. 
Short times can mean that either the patient has recently 
entered into the system or that the therapy outcome was 
negative and/or the patient has decreased.

To better assess the quality of therapy, we used the 
treatment outcome as a reference parameter to generate 
a control population with a positive therapy outcome (no 
death patients).

The steps required to generate the synthetic population 
are (see Fig. 2):

1.	 Querying of databases to extract a table with 
anonymized patient’s parameters; before modeling 
the patient’s clinical profile.

2.	 We model the distribution of each one of the param-
eters in the population and use the distribution func-
tions to model and clone fully synthetic patients.

3.	 The data is stored in a database for further modeling 
when needed.

Personal information, like the identification number 
(ID), is randomly generated. For the simulation of the 
distribution of diagnoses and treatment keys (TKs, in 
Fig. 2), we used the “synthpop” package5 [14].

The input data in our model is stored in csv files in a 
normalized format. Furthermore, since we are synthesiz-
ing data, there are no inconsistencies between the origi-
nal and the synthesized data. To test the quality as well 
as the consistency of the synthesized data we estimated 
the mean distance of the frequency distributions f (x) 
between the original ( x ) and synthesized ( ̂x ) variables 
(see Additional file  1: Table  S1-1 in the supplementary 
section), an additional qualitative comparison between 
original and synthesized datasets for some parameters 
is presented in Additional file  1: Figure S1-1. A more 

Table 1  Principal input and output parameters extracted from 
the HER of diabetic patients with heart insufficiency, according to 
the parameters contained in the original database

Input/output Variable Kind of parameter

– ID Character

V1 Sex Binary

V2 Age Real value

V3 Creatinine_phosphokinase Real value

V4 Ejection_fraction Real value

V5 High blood pressure Binary

V6 Platelets Real value

V7 Serum_creatinine Real value

V8 Serum_sodium Real value

V9 Smoking Binary

V10 Anemia Binary

O1 Time (feedback period) Real value

O2 Treatment key TK (AEC, Aspirin or 
Beta Blocker – depending on 
heart failure group)

Binary

4  In this case, the best treatment.
5  https://​www.r-​blogg​ers.​com/​gener​ating-​synth​etic-​data-​sets-​with-​synth​pop-​
in-r/

https://www.r-bloggers.com/generating-synthetic-data-sets-with-synthpop-in-r/
https://www.r-bloggers.com/generating-synthetic-data-sets-with-synthpop-in-r/
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detailed description of the performed data synthesis is 
provided in the supplementary material.

Observe that in this work we used public-available data, 
instead of data stored for instance in electronic health 
records. However, this architecture perfectly adapts to 
the analysis from real patient repositories. In such a case, 
each repository needs a Query engine that adapts eas-
ily into the Data definition of the Repository. Directly 
attached to the Query Engine is the “Normalizer” which 
outputs the data into the native format of the model. The 
normalized data provides the format in each line: Patient 
(Age, Sex, Laboratory Values) actual Diagnosis (encoded 
by ICD10), Date of Treatment, Treatment Key.

Deep‑learning methods
The recommender system is based on the fuzzy classifi-
cation system, such that the ICD groups, patients’ age, 
and sex are used as input parameters to predict the TKs.

To this end, a deep-learning method based on a mul-
tilayer neural net (NN) has been implemented. A dense 
NN is a type of artificial neural network (ANN) com-
posed of multiple hidden layers, where every neuron in 
layer i is fully connected to every other neuron in layer 
i + 1 . Typically, these networks are limited to a few 

hidden layers, and the data flows only in one direction, 
unlike recurrent or undirected models.6

Extending the notion of a single layer ANN, each hid-
den unit computes hi a weighted sum of the outputs from 
the previous layer, followed by a non-linear activation σ 
of the calculated sum as

Here, d is the number of units in the previous layer, xj is 
the output from the previous layer’s jth node, and wij and 
bi represent the weight and bias terms associated with 
each xj.

Considering that neural networks emulate the spikes in 
neuronal processes, its result as a logical choice to select 
sigmoidal activation functions between different neurons 
in the different layers is clear. Recent investigations have 
demonstrated that rectified linear functions are the most 
effective in representing data processing in neural net-
works,7 particularly for networks with many layers, and 
thus more effective to process information [15]. In our 
investigation, we replaced these kinds of dense neuronal 

(1)hi = σ





d
�

j=1

xjwij + bi





Fig. 2  Workflow for the generation of synthetic patients. From this data, we analyze the parameter distribution and generate entirely new synthetic 
parameters using these distributions, which meant that we could generate synthetic patient populations completely and that this data provides 
more anonymization of the original clinical data

6  https://​en.​wikip​edia.​org/​wiki/​Multi​layer_​perce​ptron
7  https://​schol​arwor​ks.​utep.​edu/​cgi/​viewc​ontent.​cgi?​artic​le=​2170&​conte​
xt=​cs_​techr​ep

https://en.wikipedia.org/wiki/Multilayer_perceptron
https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=2170&context=cs_techrep
https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=2170&context=cs_techrep
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layers with continuous-valued logical operators in the 
last layers that can emulate fuzzy logical operations.

Continuous‑valued logic multi‑criteria decision operators 
and interpretability
Our strategy consists of implementing networks based on 
logical gates, modeled by Perceptron with fixed weights 
and biases. This hybrid neural model was introduced in 
[9, 10]. Here, a single Perceptron in the NN network is 
activated by so-called Squashing activation functions, 
differentiable, a parametric family of functions that sat-
isfy natural invariance requirements and contain rectified 
linear units as a particular case [16, 17]. These Squash-
ing functions approximate the cutting function in the nil-
potent logical operators. A relevant characteristic of this 
family is its differentiability, which is vital for employing 
gradient-based optimization techniques.

In this investigation, we implemented the following 
function:

where β is a real nonzero value that needs to be 
adjusted to let the model be convergence.

Thus, the Perceptron in the neural networks’ hidden 
layers can model a threshold-based nilpotent operator [9, 
10]: a conjunction, a disjunction, or even an aggregative 
operator.

This means that the weights of the first layer are to be 
learned, while the hidden layers of the pre-designed neu-
ral block, worked as logical operators with frozen weights 
and biases. This means:

1.	 The first layer is trainable and has been implemented 
using an Exponential Linear Unit (ELU) activation 
function.

2.	 At the same time, the activation functions in the 
hidden layers, model the cutting function to avoid 
the vanishing gradient problem with the so-called 
squashing function Sβint (x) in the nilpotent logical 
operators (defined by Eq. 2), representing the internal 
layers. Besides logical operators, preference operators 
can also be modeled this way [10].

3.	 The final layer is again trainable, with a sigmoid acti-
vation function.

The weights in the first, Hi , and last layer, Oi , are opti-
mized during training to establish an association between 
input x and output y. In the second layer, we define the 
nodes Mi , layers with different and frozen weights wij 
and biases bij (see Eq.  1), grouping different relations 
between the input parameters. Thus, each of these nodes 

(2)Sβ(x) =
1

β
ln

(

1+ eβ·x

1+ eβ·(x−1)

)

,

is essentially a hypothesis grouping of all the parameters 
with different statistical weights. Finally, the additional 
internal layers perform logical operations; some of them 
are resumed in Table 2. In Fig. 3, we illustrate this archi-
tecture, considering 4 Mi nodes.

In both the reference (Dense layers with “ReLU” activa-
tion functions) and our implemented Logic-Operator 
neural network (LONN) models, we implemented as a 
loss function the mean squared error 
( MSE =

n
∑

i=1

(

Yi − Ŷi

)2

 ) between labels Yi and predic-

tions Ŷi . For the optimization process, we implemented 
an ADAM method, which is an algorithm for gradient-
based optimization of stochastic objective functions [19], 
with a learning rate adjusted to 0.02 (see Table 4).

Due to that the categorical parameters were binary 
(for instance sex, smoke, anemia), we converted 
them to 1 and 0  s. The other numerical parameters 
were normalized using the normalization function 
norm(x) = (x −min(X))/((X) −min(X)) , where min(x) 
and max(x) are the minimal and maximal values of the 
vector X where x belongs. With these data transforma-
tions, we were able to get a homogeneous input matrix 
for the deep-learning model.

Finally, we selected 80% of shuffled data for training 
to get a balanced sample for training and avoid even-
tual biases as well as overfitting in the training process. 
The list of the optimizer hyperparameters are listed 
in Table  3, while the list of model hyperparameters are 
listed in the Table  4. These parameters were manually 
tuned. An implementation of automatically tuned param-
eters will be presented in a future work.

Therefore, our LONN model simulates cognitive pro-
cesses like rational, logical thinking process, considering 
that this logic is joined by fuzziness, i.e., logical opera-
tions are not exact but essentially fuzzy due to the imple-
mented continuous-valued operators (see Fig. 4) [20].

Even though we were inspired in this design by cog-
nitive processes, our aim is not to reproduce the native 
human thinking process in silico but rather to implement 
processes much closer to the natural processes in making 
information processing interpretable. Furthermore, we aim 

Table 2  Some examples of logical operators and their 
corresponding implementation (Csiszár et al. 2020c)

Logical operation wij bi

AND 1 − 1

OR 1 0

NOT (x) 0 1

NOT (y) − 1 1

Not (x) and Not (x) − 1 1
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to retain a flexible modeling method that can be applied 
in different and relevant medical environments: the model 
needs only a few parameters out of the medical space, but 
addresses the major medical workflow, from medical analy-
ses to diagnoses and treatment selection. The main relevant 

result is plausible suggestions of medical treatments. That 
should be applicable in nearly all medical domains.

Results
Model validation
The ANN has been implemented using tensor flow in an 
R environment. The data ingestion and pre-processing are 
made with Spark. The data ingested in the model is nor-
malized, and the internal model validation is performed 
using this normalized data. From this data, we use 80% for 
model training and 20% for model validation.

We implemented a control model using “ReLU" activa-
tion functions with the same topology as the LONN. The 
main model hyperparameters of both the control and the 
continuous-valued multi-criteria network are listed below 
in Table 4. Observe that we fixed the model architecture, 
i.e. the number of layers and neurons was constant for all 
the tests.

For the parameters β , we performed different validation 
runs to explore the optimal value for the first ( βinp ) and 
internal ( βint ) layers. The effect of this parameter on the 
slope of the function Sβ(x) is shown in Fig. 5.

Observe that the Squashing functions go through the 
point (0.5, 0.5) for all values of β and that:

β > 0, squashing function is increasing;

β < 0, squashing function is decreasing .

Fig. 3  For now, with simplicity in mind, we implement two AND layers (conjunctions), followed by an OR layer (disjunction), to logically evaluate 
the nodes Mi , which is a process modeling human reasoning in the decision process

Table 3  Hyperparameters of the ADAM optimizer for a dense 
Layer network ReLu and LONN

Tested range Selected value

batchsize 32, 50, 100 50

lr (learning rate) 0.01, 0.02, 0.05 0.02

epochs 50, 100, 500 100

Table 4  Model-specific hyperparameters for comparison a 
dense Layer network ReLu vs. a LONN

NN–dense layers/ReLU 
activation

LONN

βint – 1.5

Learning rate (lr) 0.02 0.02

# Internal layers 4 4

# Neurons per layer 10, 4, 3, 2 10, 4, 3, 2

# Trainable parameters 293 116

# Non-trainable parameters 0 59
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Moreover, Sβ(x) = S−β(1− x) holds, i.e., S−β(x) is the 
reflection of Sβ(x) over the axis x = 0.5. This means that 
in the interpretation, for a negative β value, a negation 
operator is applied.

The systematic test of the mean error considering dif-
ferent βint (Fig.  6) implies that the relative fluctuation 
of the error is larger for β > 0 . But the variations are 
extremely minimal and have no significant influence on 
the final training error.

We performed a model validation with these param-
eters in mind and compared the dense control layer 
NN and the LONN shown in Fig. 3. The results are pre-
sented in Fig. 7.

At first glance, we observe that the model defined 
with continuous-valued logic multi-criteria decision 

operators is less accurate (training error 29.79%) than 
conventional networks (training error 25.46%).

An inspection of the dependency of the model accu-
racy on the number of neurons in the internal layers (4 
Mi neurons, Fig. 8A, and 10 Mi neurons with a corre-
sponding modification of the connection of the logical 
operators, Fig. 8B) demonstrates that an increase of the 
number of neurons has a slight influence on the mean 
absolute error (training error 27.24%), i.e. as expected, 
the increase of the number of neurons in each layer 
minimizes the training error.

We finally tested the overall accuracy of the model 
against test data by computing the frequency of true 
positives for the predicted therapies as well as the 
mean squared error of the predicted therapy time (see 
Table  5). The overall accuracy of the model could be 
improved by increasing the number of neurons per 
layer as well as the number of layers, but the training 
error was higher than the validation error (Fig. 8B). For 
this reason, we conclude that the quality of the model 
8A is higher; for this model, we additionally found 
a precision of 64.14% and a recall of 98.43%. The low 
accuracy and precision of the model are perhaps origi-
nated in the available database used for this model; 
we expect to obtain more accurate results when these 
models will be trained on data from real EHRs.

In a nutshell, the observed loss of accuracy in fuzzy 
logic networks is compensated by the model interpret-
ability and by the fact that we dramatically reduce the 
number of trainable parameters.

Fig. 4  Representation of natural thinking processes (A) and by neural networks (B). Logical processes, like the combination of “and” and “or” 
processes, are implemented as fuzzy logic, representing natural uncertainties in the thinking process

Fig. 5  Squashing function Sβ(x) for different parameters β
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Model consumption and visualization of recommendations
We have trained two different models for the final 
model consumption, one with the whole database 
(Model 1, Fig.  9A) and another with a database that 
selects only positive outcomes (Model 2, Fig. 9A). The 
goal of this training method is to make predictions 
based on the positive outcomes and then evaluate the 
confidence of the prediction:

•	 High confidence when the predictions of both 
models overlap (Fig. 9B)

•	 Low confidence when there is no matching. In this 
case, we provide recommendations based on the 
outcomes of model 2, but with a warning that this 
prediction has low confidence (Fig. 9B)

In this way, we aim to set up a recommender system, 
leading to outcomes that should be almost positive for 
the patients.

The trained model is finally exported and used for 
consumption and data ingestion (as shown in Fig. 1):

•	 The physician asks for a recommendation once he 
has a clear diagnosis of the patient, correspondingly 
encoded in ICDs.

•	 The trained model ingests the ICDs, as well as the 
sex and age of the patient, and delivers correspond-
ing TKs recommendations encoded as group num-
bers.

•	 The final TKs are decoded.

Fig. 6  Training error of the model presented in Fig. 3 for different βint (x-axis) estimated after 50 epochs for each validation run

Fig. 7  Internal model validation with a dense NN (two internal layers, with 10 and 4 neurons with ReLU activation function, A), versus the 
logic-operators NN (LONN, B) for 100 epochs
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•	 The final recommendation is finally deployed and 
visualized, for instance, in an application or the phy-
sician’s software.

To improve the model interpretability, we require a 
visualization of the distribution of the input parameters, 
automatically generated by the model, as shown in the 
supplementary Sect.  2 (Additional file  1: Figure S2-1). 
From this result, we discover a parameter hierarchy, with 
the creatinine concentration (serum and phosphoki-
nase) as the relevant parameter. This result makes sense 
regarding the fact that the creatinine concentration is a 
metabolite that indicates how good the patient’s adher-
ence to therapy is [21].

The final recommendations are then visualized in a 
dashboard, as is shown in Fig.  10. Not only the recom-
mendations but also the confidence of the prediction 
based on positive outcomes (binary value: 1 for confi-
dence, 0 for non-confidence) is visualized. In the case of 
low confidence, the two alternative treatments from the 

two trained models are deployed. In this Dashboard, the 
physician can provide subjective feedback about how 
useful or accurate are the deployed recommendations.

Finally, indifferent to whether the recommended TKs 
are accepted or not by the physician, the recommenda-
tion is stored in the database. This final step implies that 
the database is continuously updated with new informa-
tion, implying that models have to be trained periodi-
cally to guarantee their quality. This implies that a robust 
implementation of this system requires an automatic sys-
tem that allows its new training.

Discussion
As it is well-known, deep learning methods are advanta-
geous because they allow the modeling of non-linear sys-
tems while at the same time being robust against small 
changes of training data, unlike methods as random 
forest.8 With our implemented methodology, we aim to 
further improve deep learning methods in the following 
three ways:

•	 Interpretability Implementing a combination of logi-
cal operators/gates, i.e., the different parameters are 
logically combined. Since the parameters of the deep 
layers are frozen, we can rely on the parameter clas-

Fig. 8  Test of two LONNs with two different topologies with different numbers of internal layers and logical operators

Table 5  Measured accuracy of LONN models from Fig. 8

LONN-network 
A (%)

LONN-
network B 
(%)

Training error 29.79 27.24

Accuracy—therapy prediction 63.49 64.00

RMS error—therapy time 32.15 33.02

8  https://​chris​tophm.​github.​io/​inter​preta​ble-​ml-​book/​other-​inter​preta​ble.​
html

https://christophm.github.io/interpretable-ml-book/other-interpretable.html
https://christophm.github.io/interpretable-ml-book/other-interpretable.html
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sification in the first layer, which provides interpret-
able information about how a parameter hierarchy 
influences the model outcome. Furthermore, these 

Fig. 9  Training method for the recommender system. We train two different models based on the whole data set (Model 1) and a dataset 
consisting only of positive outcomes (Model 2). After that, we use both models to make different predictions. If there is a matching in the 
predictions, then Prediction 1 is used as the standard with high confidence; otherwise, predictions from Model 2 are provided but have low 
confidence

Fig. 10  Diagram of a potential app based on the model outcomes
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operators are implemented using fuzzy logic, which 
is closer to natural thinking processes.

•	 Safety The statistical weights and biases in the inter-
nal layers are frozen, i.e., they do not change in the 
training process. This guarantees that these param-
eters are robust, even when adversarial examples are 
employed.

•	 Increased efficiency Fewer parameters to be trained.

These aspects are extremely relevant when neural 
networks are implemented in a medical field, not only 
because of the high safety standards required but also 
because physicians need to understand how the network 
delivers results. With our implementation of the LONN 
in a deep-learning environment, we have demonstrated 
that we can implement more transparent models with 
highly efficient computational tools.

Observe that in this approach we are providing a rather 
precise interpretation for an epistemological problem 
in machine learning that has not been fully solved [22]: 
with our implemented LONN we know that from the 
extracted features in the layer Mi , we perform a logi-
cal combination of the recommendations, i.e. we know 
which are the internal operations in the network. How-
ever, our LONN implementation is partially interpret-
able since the feature extraction has been trained in the 
Keras environment and cannot be fully interpreted. For 
this reason, with our methodology, we can better justify 
a result, and we can provide a partial explanation about 
how the algorithm works, without pretending to provide 
a full causal relation between the input parameters and 
the model outputs.

Several problems will persist in the implementation 
of recommender systems in medicine. Patient databases 
are dynamic and evolve depending on the disease distri-
bution in the patient population, which can eventually 
invalidate trained models. Once activated, recommender 
models can influence physicians’ decision-making, 
which will be reflected in how treatments are suggested 
to patients who are registered in the database. This fact 
implies a co-evolution of the database and the imple-
mented AI model coupled to the recommender system, 
considering that AI models need to be trained and vali-
dated regularly.

Besides selecting the correct methodology to process 
and analyze the data for predictive modeling, the most 
challenging problem is protecting patient’s data. When it 
comes to data protection, three main aspects are prob-
lematic: The access to the patient’s data for machine 
learning is limited as it always requires the patient’s con-
sent; recommendation systems can generate incorrect 
patient profiling, which simultaneously can be misused; 

Physicians seldom get enough support in their day-to-
day work.

In the real world, the data is protected in a way that you 
may not get enough data to train the network sufficiently. 
To solve this contradiction the idea of synthesizing came 
to attention, to produce larger amounts of training data 
with the same properties of the real data, but with less 
demand of repetitive access to the real data. This problem 
is solved by generating databases with synthetic patients. 
In solving this problem, we used a small random but rep-
resentative dataset of anonymized representative patients 
to model their individual clinical data with characteristic 
distribution patterns to generate completely synthetic 
patients. We have also developed our methodology and 
workflow, based solely on this synthetic database. Natu-
rally, after training models on synthetic data, models 
can be further trained on real patient data with consent 
inside closed repositories.

The other two aspects are critical since it concerns the 
rights that patients do not have to be subject to deci-
sions based solely on automated processing [23]. For this 
purpose, patients reserve the right to be informed about 
the existence of automated decision-making, including 
profiling, and their right to receive meaningful informa-
tion about the logic involved and the significance and the 
envisaged consequences of such processing. However, 
whatever is recommended to a physician, it needs to be 
seen as a recommendation. The final decision on how a 
patient receives treatment will always be the physician’s 
call.

The behavioral features involved in the decision-mak-
ing process, i.e. how a recommender system may influ-
ence physician’s decision making [24], and how this 
technology could have a positive impact on patient’s care 
and better economic management is a problem that not 
only depends on the technical implementation and the 
AI component but also on the final user’s interface. For 
instance, in a recent investigation, it has been shown that, 
when designed well, recommender systems that incorpo-
rate treatment costs can result in significant cost savings, 
while providing similar or better health outcomes. Scenar-
ios, where practitioners do not feel time pressure and have 
access to accurate cost information, are most conducive 
for adopting recommendations and creating change [3].

A deeper analysis of this aspect lies beyond the scope 
of the present POC implementation and has to be ana-
lyzed in the future once the recommender system and its 
corresponding user interface run in real conditions.9

9  All products which offer decision support must be built under the design 
and software development process for medical devices.
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Conclusion
We have implemented a recommender system based 
only on the statistical analysis of data stored in HER and 
working as collaborative filtering. The implemented sys-
tem estimates the therapy time and treatment keys, TKs 
(in this case the use of ACE, Aspirin, or Beta Blocker), 
and implements deep learning to predict TKs depend-
ing on the patient’s diagnoses and essential phenotypic 
information.

We can demonstrate that our methodology reaches 
a training accuracy of 72%. This accuracy is lower than 
the one obtained using conventional NN implemented 
with dense layers and ReLU activation functions and 
more dense layers. However, in this kind of implemen-
tation, the interpretability (architecture and emulation 
of rational decision processes) and safety (parameters 
of internal layers are frozen) are two characteristics that 
are perhaps much more valuable than the accuracy of the 
model.

Observe that we are reporting a proof of concept for 
the application of this algorithm for recommender sys-
tems and that the current report is based on publicly 
available data that has a lower quality than the data 
stored on real EHRs. In planned application and trial on 
an electronic health record (EHR), we will first re-evalu-
ate the accuracy and precision of the algorithm and then 
compare the outcome of the model with the outcome of 
Physicians without using the Model. We expect a similar 
accuracy and precision between the model and the physi-
cian’s performance.

In the next step plan to use this methodology with data 
from electronic health records. This first Trial will require 
special techniques to query and ingest large amounts of 
data. Furthermore, this implementation will allow us to 
implement a feedback loop including not only new data 
to retrain our models, but also feedbacks from custom-
ers informing whether they accept the recommendations 
and if they are satisfied with the system. This last infor-
mation is relevant for an eventual better categorization of 
the input parameters. Thus, it is relevant to point out that 
the recommender system coevolves with the whole sys-
tem, i.e. the recommender system can eventually influ-
ence physicians’ decisions, while such decisions, stored 
in the databases, can influence the recommender system 
when it is periodically re-trained. Such coupled dynam-
ics between model re-training and model used by physi-
cians is fundamental since such models are not static and 
dependent on how they are used. Such evolution has to 
be the focus of future analysis, considering behavioral 
aspects related to the use of recommender systems by 
physicians.

Finally, recent advances in neural networks allow the vis-
ualization and recording of the learning process to leverage 

the safety and transparency in the use of deep learning 
methods [25]. Such methods have to be implemented in 
the future to increase the safety in the validation and use of 
these methods in the medical field.
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