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Abstract 

Background:  Heterogeneity among patients’ responses to treatment is prevalent in psychiatric disorders. Personal-
ized medicine approaches—which involve parsing patients into subgroups better indicated for a particular treat-
ment—could therefore improve patient outcomes and serve as a powerful tool in patient selection within clinical 
trials. Machine learning approaches can identify patient subgroups but are often not “explainable” due to the use of 
complex algorithms that do not mirror clinicians’ natural decision-making processes.

Methods:  Here we combine two analytical approaches—Personalized Advantage Index and Bayesian Rule Lists—to 
identify paliperidone-indicated schizophrenia patients in a way that emphasizes model explainability. We apply these 
approaches retrospectively to randomized, placebo-controlled clinical trial data to identify a paliperidone-indicated 
subgroup of schizophrenia patients who demonstrate a larger treatment effect (outcome on treatment superior than 
on placebo) than that of the full randomized sample as assessed with Cohen’s d. For this study, the outcome cor-
responded to a reduction in the Positive and Negative Syndrome Scale (PANSS) total score which measures positive 
(e.g., hallucinations, delusions), negative (e.g., blunted affect, emotional withdrawal), and general psychopathological 
(e.g., disturbance of volition, uncooperativeness) symptoms in schizophrenia.

Results:  Using our combined explainable AI approach to identify a subgroup more responsive to paliperidone than 
placebo, the treatment effect increased significantly over that of the full sample (p < 0.0001 for a one-sample t-test 
comparing the full sample Cohen’s d = 0.82 and a generated distribution of subgroup Cohen’s d’s with mean d = 1.22, 
std d = 0.09). In addition, our modeling approach produces simple logical statements (if–then-else), termed a “rule list”, 
to ease interpretability for clinicians. A majority of the rule lists generated from cross-validation found two general 
psychopathology symptoms, disturbance of volition and uncooperativeness, to predict membership in the paliperi-
done-indicated subgroup.

Conclusions:  These results help to technically validate our explainable AI approach to patient selection for a clinical 
trial by identifying a subgroup with an improved treatment effect. With these data, the explainable rule lists also sug-
gest that paliperidone may provide an improved therapeutic benefit for the treatment of schizophrenia patients with 
either of the symptoms of high disturbance of volition or high uncooperativeness.
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Background
The primary goal in a placebo-controlled clinical trial 
testing the efficacy of an experimental medication is 
to show a treatment effect—that patients randomized 
to receive the medication have improved outcomes 
compared to those receiving placebo. Within psychia-
try, there is heterogeneity in patients’ responses, how-
ever, with some not responding well or at all [e.g., 1, 2] 
which can weaken the overall response of the treatment-
receiving group compared to placebo. Additionally, the 
placebo response is robust in psychiatric disorders [3] 
making assessments of treatment efficacy more diffi-
cult. A method termed Personalized Advantage Index 
(PAI) has been recently developed to uncover subgroups 
of patients, termed “treatment-indicated,” who  may be 
more responsive to a particular treatment than  placebo 
suggesting  that predictive modeling could lead to per-
sonalized medicine approaches for subtyping treatment-
indicated patients [4]. In particular, this could also help 
improve patient selection for clinical trials of that medi-
cation to enrich for patients most likely to show a treat-
ment effect.

One of the limitations in using PAI to improve patient 
selection for clinical trials is insufficient explainability in 
how the model makes its decisions, as explainability is a 
critical attribute for a clinician to consider using an algo-
rithm for patient selection. Prior work in depression has 
used the PAI approach to identify the most predictive var-
iables [5], but interpretability of the models for clinicians 
could be further improved as they would require inter-
pretation of regression coefficients and do not suggest 
clear cutoffs for predictor variables. Here, we additionally 
used an approach inspired by explainable artificial intel-
ligence (XAI), the Bayesian Rule Lists algorithm (BRL) [6, 
7], to both help identify the most predictive variables and 
explain those predictions of treatment-indicated patients 
from PAI with simple if–then-else statements that bet-
ter mirror a clinician’s decision-making process by using 
Boolean criteria with clear cutoffs for predictor variables. 
The combined analytical approach of PAI and BRL was 
previously tested in depression and found to retrospec-
tively identify a subgroup with improved treatment effect 
for the novel antagonist BTRX-246040 [8]. But it has yet 
to be tested in other psychiatric populations.

While improving patient selection of a clinical trial is 
one potential use, it is important to note the constraints 
on this PAI and BRL approach for this goal and some 
additional opportunities. This approach requires both 
baseline and post-treatment (or imputed post-treat-
ment since patients often do not discontinue at ran-
dom) measurements of patients receiving a particular 
treatment in order to learn the baseline characteristics 
of a treatment-indicated subgroup for this treatment 

prior to enrollment, so it may not be appropriate for 
clinical trial patient selection when no similar trial has 
been performed. One opportunity is thus to use it to 
learn the optimal subgroup from a negative clinical trial 
(as in [8]) and re-launch a more targeted clinical trial 
of the same treatment using the algorithm to identify 
a treatment-indicated subgroup. Enrolling this sub-
group could help increase the treatment effect size of 
the more targeted clinical trial. A second opportunity 
is in using this approach to develop a decision-making 
support system for clinicians to prescribe medications 
already on the market to a targeted subgroup likely to 
have increased treatment efficacy. The data require-
ments of the PAI and BRL approach could be satisfied 
in these scenarios.

In this study, we present this combined PAI and BRL 
approach to patient selection for clinical trials using 
XAI and validation in schizophrenia patients through a 
retrospective analysis of a clinical trial. By showing that 
baseline features alone can be used to identify a subgroup 
of patients who demonstrate a larger average treatment 
effect, this approach opens up the possibility of identify-
ing a targeted subgroup of patients prior to randomiza-
tion to an arm and improving the clinical trial outcome 
by using only this patient subgroup.

Methods
Study
We analyzed data from a 6-week randomized, double-
blind, placebo-controlled study evaluating the efficacy 
of extended-release paliperidone in the treatment of 
patients with schizophrenia (clincialtrials.gov identifier: 
NCT 00083668). This trial was a success, and paliperi-
done currently has FDA approval in this population. This 
study makes use of de-identified data made available via 
the YODA Project (https://​yoda.​yale.​edu/; research pro-
posal number 2019–4080) and was exempt from ethical 
oversight.

Patients were assessed for eligibility and phenotyped 
using standard clinical assessments at baseline and ran-
domized to one of several arms. In this analysis, we used 
data from the 15 mg/day paliperidone arm (n = 113) and 
the placebo arm (n = 120). We selected the 15  mg/day 
arm over arms testing lower doses (3 mg or 9 mg per day) 
as it gave the greatest efficacy effect compared to placebo. 
The efficacy endpoint was the Positive and Negative Syn-
drome Scale (PANSS), a set of 30 questions administered 
by a trained clinician and scored on a 1–7 ordinal scale 
(7 is most severe). The PANSS was administered weekly. 
After dropping patients with missing baseline values 
used as features in the modeling (see below), 95 patients 

https://yoda.yale.edu/
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remained in the treatment arm and 102 in the placebo 
arm.

Modeling
Our approach to identify treatment-indicated patients 
and improve the explainability of the machine learn-
ing algorithm output classifying these patients involved 
combining two approaches. First, we used the Personal-
ized Advantage Index (PAI) algorithm [4] to create an 
index or score that is then used to label a patient as treat-
ment-indicated or rest-indicated (the rest of the subjects 
who are not treatment-indicated). This machine learning 
approach relies on multiple linear regression which pro-
vides some level of explainability through the coefficients 
of the predictors but is likely more complex than clini-
cians’ decision making processes which are closer in form 
to decision trees or lists. Thus, in a second step, we used 
the Bayesian Rule Lists classifier [6, 7] along with the pre-
dicted treatment- and rest-indicated labels from PAI to 
create a more explainable classifier using decision lists. 
The overview of the workflow is presented in Fig. 1.

Personalized advantage index modeling and labeling
In our modeling approach, the PAI algorithm was first 
used to identify treatment-indicated patients. For each 
individual patient,  the PAI approach predicts actual 
and counterfactual outcomes (i.e., a patient’s outcome 

for their assigned arm, drug or placebo, and the non-
assigned arm) and calculates the difference between 
these two scores (as previously described in [4, 5]).

Briefly, we used an Elastic Net regressor (implemented 
in the python package scikit-learn), with a grid search 
for hyperparameter optimization across the range of 
alpha = [0.001, 0.01, 0.1, 1, 10] and l1_ratio = [0.1, 0.5, 
0.9]. The input features are listed in Table 1 where “base-
line” refers to week 0 of the trial, which precedes treat-
ment arm randomization. The outcome modeled was 
the 6-week post-treatment total PANSS score. Scores 
from patients missing this 6-week score were replaced 
with their last observation (n = 80 patients) which was 
consistent with the approach used in the original clini-
cal trial analysis. This multiple regression model then 
predicts the actual post-treatment PANSS score (on the 
patient’s randomized arm) and the hypothetical counter-
factual score (by substituting the other arm in the regres-
sion equation). PAI then returns a quantitative score for 
each patient that indicates the difference between these 
predicted drug and placebo outcomes with better perfor-
mance on drug corresponding to a negative PAI score. A 
subsequent threshold on that score then creates the two 
classes of treatment-indicated and rest-indicated with 
possible thresholds examined in descending steps of 0.5 
(0, − 0.5, − 1, − 1.5,…). We selected the threshold that 
allocates ~ 50% of the sample to treatment-indicated 

Fig. 1  Overview of PAI and BRL modeling workflow. a The first step is PAI regression modeling which takes in data listed in Table 1 and trains on 
the whole data set to predict both actual and counterfactual post-treatment scores for individual patients (actual scores can be compared with 
predicted actual scores and resulted in an R2 = 0.58 as shown in Fig. 2). b The PAI Thresholding step thresholds the difference between actual and 
counterfactuals to create indication labels for each patient. A treatment-indicated subgroup had a treatment effect size of Cohen’s d = 1.51 as an 
intermediate assessment, but explainability of model decisions needs improvement, so the BRL step addresses this need. c The BRL modeling uses 
fivefold cross-validation to assess generalization ability to unseen samples. The predictions generated for test samples over all folds had an accuracy 
of 74.1% and an AUC of 0.74 for this classifier. Importantly, it emits an explainable rule list for each fold. d The final step is assessing the treatment 
effect of the treatment-indicated subgroup identified by BRL (Cohen’s d = 1.24 as seen in Fig. 5)
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class to maintain a balanced data set for the BRL classi-
fier. Please note that selecting a PAI score threshold is a 
matter of balancing algorithmic needs (two-class clas-
sifiers work best with balanced data), and clinical needs 
(clinicians may consider a specific percent decrease in 
symptoms, such as at least 30%, a clinically-meaningful 
decrease), and researchers who use this method in the 
future may need to reassess whether the 50% criteria 
used here will work in their scenario. As PAI was respon-
sible for generating the best possible indication labels for 
BRL to train on (i.e., generating “ground truth” labels for 
BRL), the PAI regression model was trained on all the 
data. Please note that these are relative ground-truth 
labels—the best labels we can come up with but not per-
fect since the real ground-truth of counterfactual pre-
dictions will never be known. Thus these labels function 
as ground-truth for training BRL, as true ground-truth 
labels cannot be known with this clinical trial design. The 
grid search of hyperparameters showed that alpha = 0.1, 
l1_ratio = 0.1 minimized the R2.

BRL modeling and labeling for additional explainability
The BRL algorithm was used to create a more explain-
able model from the initial PAI treatment-indicated and 
rest-indicated results. BRL uses sequenced logical rules 
and Bayesian inference to make classifications [6, 7]. 
Here, we took in the same baseline features other than 
the randomized arm and interactions (Table 1) and clas-
sified patients as treatment- or rest-indicated using the 
BRL-generated if–then-else statements. A Bayesian rule 
list is composed of Boolean statements that evaluate if 
features fit certain criteria such as “If depression symp-
tom score > 10” and the subsequent classification if the 
statement is true—“then, patient is treatment-indicated.” 
These statements are closer to a physician’s decision-
making process than are the PAI regression outputs (fea-
ture coefficients without clear cutoffs for feature values). 

Hyperparameters were set at 3 for the max rule length 
(number of Boolean statements combined in an indi-
vidual rule), 2 for the Bayesian prior hyperparameters of 
expected individual rule length and 2 for the expected 
rule list length (excluding the final base case). We used 
a fivefold cross-validation framework that generated a 
model (a rules list) on the 80% of training data and used 
it to classify the patients in the remaining 20% of test 
data as treatment- or rest-indicated. Thus five rules lists 
were generated from the five folds of cross-validation. As 
an additional output of this study, we generated a “final” 
BRL model by training the model on the full data set. 
While we have not tested this final BRL patient selection 
tool here on an external data set, others could use it if 
they have the appropriate data.

Comparing treatment effects
After classifying each patient as treatment- and rest-
indicated labels using BRL, we assessed if treatment-
indicated patients showed an improved treatment effect 
compared with the full sample. It is important to note 
that as the treatment-indicated patients were randomized 
to both drug and placebo arms, we were able to evalu-
ate their actual post-treatment outcomes and to calculate 
their group-level treatment effect. Here, the treatment 
effect was assessed on the actual week 6 PANSS total 
scores of individual patients grouped by their treatment 
arm (using Cohen’s d as a measure of treatment effect 
size). After determining the labels from the BRL outputs, 
the actual week 6 PANSS total scores for the treatment-
indicated patient subgroup were used to calculate the 
treatment effect for that subgroup. Then the treatment 
effect of the treatment-indicated subgroup was compared 
with the treatment effect of the full randomized sam-
ple. Our null hypothesis  was that patient selection with 
BRL would  provide no improvement of the treatment 
effect, while our alternative hypothesis  was  that BRL  

Table 1  Model inputs and outputs

Several sequential outputs are generated during PAI modeling and are listed in order of generation

Model input features PAI model output BRL model output

Demographics
- Age
- Sex
Symptom scales
- 30 Baseline individual item PANSS scores
- Baseline total PANSS score
- Baseline daytime drowsiness and quality of sleep scores 

from the Sleep Visual Analog Scale (VAS)
- Baseline Personal and Social Performance Scale score
- Baseline total Schizophrenia Quality of Life Scale score
Others
- Randomized arm (treatment or placebo; PAI only)
- Interactions of randomized arm with the other features 

(PAI only)

- Predicted actual and counterfactual week 6 PANSS scores
- Numerical PAI score (predicted outcome on treatment— 
predicted outcome on placebo)
- Labels: treatment-indicated, rest-indicated created from 
thresholded PAI score

- Labels: treatment-indi-
cated and rest-indicated
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would improve the treatment effect relative to that of the 
full sample. Thus to test this statistically, we generated a 
distribution of treatment effects by performing BRL 100 
times and calculating the Cohen’s d for each BRL-labeled 
treatment-indicated subgroup. We then compared this 
distribution of 100 Cohen’s d’s with the Cohen’s d of the 
full sample using a two-sided, 1-sample t-test. Addition-
ally, we assessed the consistency of classification for each 
subject across the five rule lists generated from the five 
folds of cross-validation.

Results
Our approach to identify treatment-indicated patients 
and improve the explainability of the machine learn-
ing algorithm output classifying these patients involved 
combining two approaches—PAI and BRL. While the 
final output and results are the treatment-labeled patient 
subgroup and the if–then-else rules list from the BRL 
model, the initial modeling with the PAI algorithm pro-
duced some interim results that we first examined. The 
PAI regression equation modeled actual week 6 PANSS 
scores using actual treatment arm assignment and several 
demographic and baseline symptom severity predictor 
variables (see Table 1). Figure 2 shows the comparison of 
measured week 6 PANSS scores with predicted scores (a 
perfect model would show all samples sitting on the x = y 
line). The R2 of the model shows it explained 58% of the 
variance (adjusted R2 = 0.32). Then, by substituting in the 
counterfactual randomization arm, the regression equa-
tion was used to make predictions of the week 6 PANSS 
scores if patients were receiving the counterfactual treat-
ment. The difference between actual and counterfac-
tual predictions were used to calculate the PAI scores 

(predicted score on treatment—predicted score on pla-
cebo) and determine the indication labels to be used by 
BRL. The distribution of PAI scores are shown in Fig. 3, 
and a threshold of -9.5 generated two balanced classes: 
treatment-indicated (n = 100) and rest-indicated (n = 97). 
For the treatment-indicated subgroup, this PAI threshold 
corresponded to a 30% reduction in average post-treat-
ment PANSS scores for patients in the treatment arm 
relative to the scores of patients in the placebo arm and 
an improved treatment effect size (Cohen’s d = 1.51 rela-
tive to the full sample d = 0.82). Note that this treatment 
effect size is just an intermediate calculation as PAI is not 
the only step in our approach given that it does not pro-
vide the level of explainability that BRL does. An evalu-
ation of only the PAI step’s out of sample generalization 
and cross-validated treatment effect improvement is pro-
vided in the Supplementary Materials under the PAI Vali-
dation section.

After determining the indication labels from the thres-
holded PAI scores, we trained the BRL classifier on these 
labels using five-fold cross-validation. For the training 
data, the BRL classifier had an average accuracy of 77.9% 
(standard deviation = 2.0%), an average Area Under 
the ROC Curve (AUC) of 0.83 (std = 0.02), and an aver-
age F1 score of 0.77 (std = 0.02) across the five folds. For 
the test data, the BRL classifier had an average accu-
racy of 74.1% (standard deviation = 5.1%) an average 
AUC of 0.76 (std = 0.04), and an average F1 score of 0.73 
(std = 0.04) across the five folds. Of the 197 patients from 
the full randomized sample, 87 were labeled treatment-
indicated by the BRL algorithm, and the full confusion 
matrix of cross-validated labels are shown in Fig. 4. On 
the full cross-validated test results, the overall accuracy 
was 74.1%, the AUC score = 0.74, and the F1 score = 0.73.

Fig. 2  Individual PAI prediction results for actual randomized arms. 
The plot shows the measured total PANSS score at week 6 vs. the 
averaged predicted total PANSS score at week 6 from the Elastic Net 
regression model (each dot is an individual patient, n = 197). Patients 
are colored by their actual randomized arm (paliperidone treatment 
in blue, placebo in orange), and as expected the week 6 scores are 
generally higher for patients receiving placebo. The dashed line is 
y = x. Variance explained by the model is 58%. Note that these are not 
the counterfactual predictions

Fig. 3  PAI score thresholded graph. A threshold of -9.5 was chosen 
to create roughly balanced classes and indicates that membership 
in the treatment-indicated subgroup required a predicted treatment 
arm PANSS score that is 9.5 points less than the predicted placebo 
arm PANSS score
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Comparison of the two arms (treatment, placebo) for 
the full sample v. the treatment-indicated group shows an 
increase in the Cohen’s d between arms from 0.82 to 1.24 
(Fig.  5). We also assessed if this large increase in effect 
size was consistent for the BRL-classified treatment-
indicated subgroup and if it was significantly greater 
than the full sample effect size. We generated a distri-
bution of Cohen’s d’s by performing the same BRL pro-
cess 100 times and calculating the treatment effect for 
the treatment-indicated subgroup each time. We found 
that the treatment effects from these 100 iterations of 
subgrouping were statistically greater than the full sam-
ple treatment effect (BRL-classified treatment-indicated 
subgroup Cohen’s d’s mean = 1.22, std = 0.09; two-sided, 
1-sample t-test: t = 43.2, p < 0.0001).

The five rule lists returned by the BRL classifier differ 
slightly across the five folds but did identify high distur-
bance of volition and high uncooperativeness as com-
monly identifying baseline features of patients who were 
more likely to respond on treatment than on placebo. 
Table 2 displays the five rule lists.

Though the rule lists show some differences across 
folds, we found that they still classified patients simi-
larly when applied to the whole data set (not just the 
test set). To quantitatively assess the consistency of 
rule list classification, we classified each patient five 
times with the five rule lists. This gave us five labels 
(either treatment-indicated or rest-indicated) for 
each patient from which we calculated the number of 
times that a patient   was classified as treatment-indi-
cated (max possible is five times). Figure  6 shows a 
histogram of the number of times that patients were 
labeled treatment-indicated. For consistent classifiers, 
most patients should be labeled treatment-indicated 
either five times or zero times (which corresponds to 
a patient labeled rest-indicated five times), and the 
labeling reflects this well according to our histogram. 

Additionally, most patients labeled by the BRL algo-
rithm treatment-indicated four or five times were 
treatment-indicated according to the “ground truth” 
PAI labels. As expected, this was reversed with most 
patients labeled by the BRL algorithm treatment-
indicated zero times were rest-indicated according to 
the “ground truth” PAI labels. Thus, the five rule lists 
mostly subtype patients similarly though their wording 
can differ.

We additionally generated a final BRL model that 
could be validated on external data sets (Fig.  7). This 
model generated a single rule list as it is trained on 
the full data set as opposed to the cross-validation 
approach which generated five rules lists across the five 
folds. High baseline uncooperativeness and high base-
line disturbance of volition each remain predictive of 
treatment-indicated subgroup membership. For train-
ing and testing on the full data set, accuracy was 76%, 
AUC was 0.81, and the F1 score was 0.75.

Discussion
With this retrospective analysis, we have technically-
validated an approach of using a combination of machine 
learning methods to identify clinically-explainable rules 

Fig. 4  Confusion matrix for cross-validated BRL labels. Actual labels 
are PAI-derived labels, and predicted labels are BRL-derived labels

Fig. 5  Comparison of actual post-treatment PANSS scores for the full 
sample and the treatment-indicated subgroup. Bars display treatment 
(TRT) and placebo (PBO) arms for the full randomized sample (left 
graph, TRT n = 95, PBO n = 102) with an illustrative instance of the 
BRL-classified treatment-indicated (TRT-indicated) subgroup (right 
graph, TRT n = 41, PBO n = 46). At a Cohen’s d of 1.24, the effect size 
between arms for the treatment-indicated subgroup is increased 
more than 50% over the effect size of the full sample (d = 0.82). Error 
bars are 95% confidence intervals on the mean
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Table 2  List of the five rule lists created by the BRL model across the five folds
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that effectively subtype paliperidone-indicated schizo-
phrenia patients who show an improved treatment effect 
over the full randomized sample. This extends the prior 

validation that demonstrated the method’s effectiveness 
in a clinical trial of a novel depression treatment [8].

While this validation was performed on a success-
ful trial where the full sample already displayed the suc-
cess of the experimental drug, we demonstrated than the 
treatment effect can be further improved with a patient 
selection approach. Statistically speaking, increasing the 
effect size can help decrease the enrollment numbers for 
patients, thereby possibly decreasing the cost and time 
of a new clinical trial (for example when running a more 
targeted confirmatory target phase two trial after gather-
ing data in a traditional phase two trial). Thus, in addition 
to patient selection that improves the treatment effect for 
unsuccessful trials [5, 8], our results suggest that patient 
selection could help clinical development even for treat-
ments with stronger effects.

While the primary goal in this study was to validate a 
patient selection approach, the methodology also allows 
us to better understand a potential paliperidone-respon-
sive subtype of schizophrenia. A majority of the rule lists 
generated from the cross-validation framework found 
two general psychopathology symptoms, disturbance of 
volition and uncooperativeness, to be predictive of mem-
bership in the paliperidone-indicated subgroup suggest-
ing that paliperidone may be indicated for the treatment 
of patients with either of these symptoms. While subtyp-
ing schizophrenia is an active area of research [e.g., 2, 9], 
the higher severity of uncooperativeness and disturbance 
of volition seen in this paliperidone-indicated subgroup 
has not been previously described and should be exter-
nally validated. For this reason, we have included a single 

Table 2  (continued)
The probability shown in parentheses after each rule is estimated from the percent of patients who satisfy that rule and were labeled with the given label for the rule 
by the PAI “ground-truth” labels, and the confidence intervals were estimated with bootstrapping. The alphanumeric symbol before each symptom (e.g., P02, G08) 
refers to the question number from the PANSS scale. Two individual item scores from the PANSS scale repeatedly were involved in subtyping the treatment-indicated 
patients. Both Disturbance of Volition ≥ 3 and Uncooperativeness ≥ 3 appear in multiple rule lists for the treatment-indicated (TRT-ind) subgroup and are categorized 
as General Psychopathology symptoms

Fig. 6  The treatment-indicated (TRT-ind) labeling consistency is 
seen with a histogram of BRL-labeled treatment-indicated counts. 
It reflects the number of times (count) that a patient was classified 
as treatment-indicated across all five rule lists from the fivefold BRL 
cross-validation. Most patients are either classified five times or 
zero times which indicates a higher level of consistency in patient 
subtyping across the different rule lists. Additionally, most patients in 
the 5-count column were also labeled as TRT-ind by the PAI algorithm 
(orange portion of the bar) while most patients in the zero-count 
column were labeled as Rest-ind by PAI (blue portion of the bar). 
Patient numbers corresponding to the orange and blue portions are 
shown in the table below the histogram

Fig. 7  “Final” rule list created by the BRL model when trained on the full data set. The two individual item scores for Disturbance of Volition and 
Uncooperativeness again appear to classify the treatment-indicated (TRT-ind) subgroup
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BRL rule list as a “final” model which could be tested by 
others interested in a paliperidone-indicated subgroup.

This approach is particularly useful in the context of 
selecting patients for clinical trial enrollment as the clini-
cal trial outcome is dependent on large effects that are 
seen for patients in the treatment arm but not placebo 
arm. However, the proposed approach with the addi-
tional clinician-friendly explainability of BRL could make 
it more broadly useable as a clinical decision support 
system which are not commonly incorporating machine 
learning yet [10, 11]. The framework could be extended 
to accommodate multiple classes for indications of mul-
tiple treatments. With the proper validation, this could 
provide clinicians with a tool to match the best of several 
possible treatments to a particular patient.

Some limitations with this approach remain. The PAI 
model does have some bias in its predictions as shown 
by the greater differences in measured and predicted 
week 6 PANSS scores in the larger and smaller ranges. 
This reflects a model that is underfit and could be due to 
missing predictor variables or due to using a linear rather 
than non-linear model. Future iterations of this approach 
could test using a non-linear approach such as general-
ized random forest [12] to improve predictions in this 
first step. As the shortcomings of the PAI step can affect 
model accuracy of the BRL step, there is additional incen-
tive to improve predictions from the PAI step. Even with 
this weakness, the PAI model still provided adequate 
predictions to allow the BRL model to find a treatment-
indicated subgroup with improved treatment effect size. 
Another limitation is the testing only within a single 
data set. A more robust approach would be to test the 
BRL model in a separate data set to assess generalization 
of the model and the proposed paliperidone-indicated 
schizophrenia phenotype. Some may question using the 
baseline total PANSS score as a predictor variable either 
due to its possible collinearity with other PANSS item 
scores or that the resulting use of lower PANSS scores to 
classify rest-indicated patients (therefore higher PANSS 
score is indirectly predictive of treatment-indicated 
patients) may be reflecting an effect of regression to the 
mean for the treatment-indicated patients. Unpublished 
analyses in our lab did not find major differences in per-
formance or predictive features whether including or not 
including this variable. Additionally, the critical result 
is not that PANSS scores are reduced for the treatment-
indicated patients, but that they are reduced much more 
on treatment than on placebo. Thus selecting patients as 
rest-indicated based on the baseline total PANSS score 
and the implications that has for selecting treatment-
indicated patients does not have any bearing on the 
improved difference seen between arms of the treatment-
indicated patients. And finally, this modeling approach 

cannot currently handle longitudinal independent or 
dependent variables, but extending the framework of this 
method to more data types could expand its useability.

Conclusions
These results help to technically validate our explain-
able AI approach to patient selection for a clinical trial 
by identifying a subgroup of schizophrenia with an 
improved treatment effect. Importantly, this approach 
opens up the possibility of identifying a targeted sub-
group of patients prior to randomization to an arm and 
improving the clinical trial outcome by using this patient 
subgroup in particular.
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