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Abstract 

Background:  Poor balance has been cited as one of the key causal factors of falls. Timely detection of balance 
impairment can help identify the elderly prone to falls and also trigger early interventions to prevent them. The goal 
of this study was to develop a surrogate approach for assessing elderly’s functional balance based on Short Form Berg 
Balance Scale (SFBBS) score.

Methods:  Data were collected from a waist-mounted tri-axial accelerometer while participants performed a timed 
up and go test. Clinically relevant variables were extracted from the segmented accelerometer signals for fitting SFBBS 
predictive models. Regularized regression together with random-shuffle-split cross-validation was used to facilitate 
the development of the predictive models for automatic balance estimation.

Results:  Eighty-five community-dwelling older adults (72.12 ± 6.99 year) participated in our study. Our results 
demonstrated that combined clinical and sensor-based variables, together with regularized regression and cross-
validation, achieved moderate-high predictive accuracy of SFBBS scores (mean MAE = 2.01 and mean RMSE = 2.55). 
Step length, gender, gait speed and linear acceleration variables describe the motor coordination were identified as 
significantly contributed variables of balance estimation. The predictive model also showed moderate-high discrimi‑
nations in classifying the risk levels in the performance of three balance assessment motions in terms of AUC values of 
0.72, 0.79 and 0.76 respectively.

Conclusions:  The study presented a feasible option for quantitatively accurate, objectively measured, and unobtru‑
sively collected functional balance assessment at the point-of-care or home environment. It also provided clinicians 
and elderly with stable and sensitive biomarkers for long-term monitoring of functional balance.
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Background
Falls among elderly have been cited as a serious health 
issue that results in physical and psychological trauma 
and thus increases pressure on healthcare systems. 

Approximately one-third of people over 65 years old fall 
each year, with the fall rate increasing with age [1]. For 
example, 30–60% of the community-dwelling elderly 
in the U.S fall each year, and more than 50% of them 
experience multiple falls [2]. In Hong Kong, the preva-
lence of falls among the community-dwelling elderly is 
around 18–19%, but it is believed that many cases are not 
reported [3]. Approximate 25–35% of elderly residents 
in Taiwan experience fall-related injury more than one 
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time per year [4]. Falls can result in lasting and critical 
consequences, including injury leading to hospitaliza-
tion, reduced activity and mobility level, fear of falling 
and even death. In light of these adverse consequences, 
efforts to prevent the occurrence of falls and their sub-
sequent impacts have been undertaken. An effective fall 
prevention program first identifies those elderly at high-
est risk of falling, and subsequently determines the most 
appropriate interventions, with a goal of first preventing 
a fall and secondly of reducing its severity. There is evi-
dence in the fall prevention literature which suggests that 
more than 50% of potential falls relating to elderly could 
be avoided with systematic implementation of fall pre-
vention interventions [5].

There are various driven factors of falls. Poor balance 
has been validated in the literature as one of the key 
causal factors of falls among elderly, and the continuous 
monitoring of gait and balance is a plausible approach 
to reduce and prevent falls through early warnings and 
appropriate interventions [6]. However, the continu-
ous monitoring of gait and balance requires extensive 
healthcare and clinical resources. Limited professional 
resources (e.g., physical therapists) versus growing aging 
population worldwide are insufficient to detect balance 
deteriorations in a timely fashion and thus could result 
in many falls that could have been avoided through con-
tinuous monitoring and early interventions. In order to 
fill in such a gap between resources and care needs, it is 
urgently needed an approach for timely assessing balance 
among the community-dwelling elderly without health-
care professionals’ involvement. We therefore propose to 
supplement professional assessment by developing a sur-
rogate assessment approach of balance that uses sensor 
technology and statistical data mining.

In this paper, we investigated the effectiveness of the 
3-m Timed Up and Go (3MTUG) walking test via a 
waist-mounted tri-axial accelerometer in estimating the 
Short Form Berg Balance Scale (SFBBS) for assessing a 
community-dwelling elderly’s functional balance. We 
believe this approach functions well in three domains; 
it is quantitatively accurate, objectively measured, and 
unobtrusively collected. Figure  1 illustrates the clini-
cal perspective of our study. This combination of the 
research setting, study population, and clinical con-
text represents a novel application of wearable-sensor 
based fall risk assessment. The automatic estimation 
of functional balance using computerized system and 
wearable-sensor can bring more sensitive, specific and 
responsive balance testing to clinical practice.

This paper advances the application of wearable sen-
sor in the field of elderly fall risk assessment. In our 
literature review in the next section, we note that the 
existing literatures on sensor-based fall risk assess-
ment presents over-optimistic results mainly due to 
the curse of dimensionality, improper model selec-
tion and lack of validation [7]. While accounting for 
our problem formulation and limitations in existing 
literature, in this work, we focus on developing a clini-
cally relevant, effective and robust approach to assess-
ing the functional balance of the elderly in terms of 
SFBBS. The major scientific contributions of this paper 
are threefold. Firstly, there are infinitely multiple ways 
to extract features from accelerometer signals and no 
consensus achieved in existing literature regarding 
the optimal accelerometer-based variables for mod-
eling. In this work, we adopt significant variables that 
have previously been associated with fall-risk in elderly 
with an emphasis on the selection of clinically relevant 

Fig. 1  The novel clinical perspectives of our study
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variables. We strive to derive meaningful variables by 
incorporating prior information.

Furthermore, we propose a new approach to extract 
these significant variables by separate considering pos-
tural transitions and walking phases during the 3MTUG 
walking test. Our proposed adoption of these clinically 
accelerometer-based variables will allow the findings of 
this study to both consolidate previous research find-
ings and build upon these findings with original and 
clinically focused contribution. Secondly, using proposed 
accelerometer-based variables as input and consider-
ing SFBBS score as the reference measure of an elderly’s 
functional balance, elastic net regression together with 
random-shuffle-split cross-validation strategy is devel-
oped to avoid model overfitting and enhance generali-
zation. Thirdly, we provide an in-depth identification of 
frequent selected and relatively important variables that 
relate to the functional balance of an elderly using our 
proposed model. This identification is helpful to deter-
mine the underlying motor mechanisms contributing to 
balance disorders. We also investigate an elderly’s bal-
ance risk level in the performance of three selected clini-
cal assessment tasks, which may facilitate the diagnostics 
and treatment procedures of balance disorder in clinical 
practice.

The remainder of this paper is organized as follows. 
Section 2 illustrates an extensive literature review about 
falls and sensor technologies. Section 3 shows the experi-
mental design for data collection. Section 4 describes the 
methodology for data analysis. Section  5 presents our 
results and discussion of key findings. Finally, Sect. 6 pre-
sents conclusions and implications.

Literature review
Falls can be caused by a complex interaction among 
intrinsic and extrinsic risk factors. Intrinsic, or patient-
related, risk factors related to natural aging changes that 
affect elderly’s physical ability, vision, muscle strength 
and changes in their cognition. For example, it includes 
increasing age, gait and mobility disorder, balance 
impairment, muscle weakness, history of falls, medical 
conditions, and cognitive impairment [8]. Extrinsic fac-
tors include factors that are external to an elderly’s func-
tional ability, physical health, and cognition. For example, 
these factors include inadequate lighting, wet floor sur-
faces, loose carpets, slippery handrails, and inappropriate 
footwear and clothing [9]. Poor balance has been vali-
dated in the literature as one of the key causal factors of 
falls among elderly [6]. In this paper, we limit our scope 
primarily to the balance, which is important for a stable 
body position and thus prevention of falls.

Balance refers to an ability to control the center of grav-
ity over the base of support [10]. It is also described as 

an individual’s ability to respond to a sudden perturba-
tion caused by extrinsic or intrinsic factors. The control 
of balance is complex, with strong integration and coor-
dination of multiple body elements including visual, 
vestibular and somatosensory system. Deterioration of 
functional capacities associated with age leads to balance 
impairment. Physiological deficits secondary to aging, 
such as impaired balance, decreased muscle function and 
limited joint mobility, may perturb the locomotor system 
of elderly to bring about gait instability [11]. Gait instabil-
ity is well identified as a significant risk factor leading to 
falls and has been recognized as a measure for identifying 
potential fallers [12]. The assessment of balance is, there-
fore, one of the primary measures for the prevention of 
falls, together with subsequent multifactorial assessment 
and intervention programs.

To assess balance, clinicians rely mostly on comprehen-
sive medical and functional mobility assessment tools in 
the form of physical test, gait analysis and physical activ-
ity measurement [13]. A number of validated assessment 
tests in a clinical setting have been developed, such as 
SFBBS [14] and Timed Up and Go (TUG) walking test 
[15]. SFBBS is a tool used to assess static and dynamic 
balance abilities. It is a simplified version of the well-
known Berg Balance Scale (BBS) [16], which was adopted 
as the ‘gold standard’ of balance performance. It is used 
to classify fallers and non-fallers with a sensitivity and 
specificity of 82.5% and 93% respectively [17]. The TUG 
test has been extensively researched and is being widely 
used in clinics to assess balance and mobility for over 
20 years. It quantifies several different mobility elements 
and has been utilized in the fall risk assessment fre-
quently [18]. Although these kinds of assessments allow 
for comprehensive quantitative comparisons of perfor-
mance on diverse tasks, the majority of these assessments 
are restricted to use in a clinical environment, as their 
correct execution often requires supervision. Thereby, 
these tests are usually inappropriate for long-term moni-
toring of large patient cohorts under real-life conditions.

Recent advances have seen technology being increas-
ingly used to assess functional balance. Researchers have 
investigated the potential use of sensors for objectively 
evaluating functional balance, as it could be less expen-
sively, less time-consuming, more user-friendly and more 
feasible to use [19]. Despite this, the use of sensor-based 
assessment has far been limited. Firstly, most of current 
studies focused on the inpatients in a hospital or geriatric 
clinic while less attention was given to the community-
dwelling elderly. Secondly, instead of classifying elderly 
using their fall history, few studies focused on regression 
problem and tried to replicate the score of validated clini-
cal assessment tool. Under this category, previous stud-
ies used accelerometer signals acquired from Directed 
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Routine (DR) to estimate the clinical assessment scores, 
such as BBS or Physiological Profile Assessment (PPA) 
[20–22]. However, in these studies, a very large pool 
of variables was constructed and it was hard to explain 
selected variables’ clinical relevance. In addition, the 
reported models were over-fitted and were not validated 
properly. Their variable selections were done either using 
the whole data set outside the cross-validation loop or 
using repeated cross-validation with the same data. The 
repeated cross-validation suffers the issue of inter-fold 
dependence of data and the negative bias introduced by 
only training on K − 1 folds, especially if the model is 
unstable [7].

Motivated by these research gaps, in this study, we 
focus on exploring the use of clinically relevant accel-
erometer-based variables in effective estimation of the 
SFBBS score for assessing a community-dwelling elderly’s 
functional balance quantitatively, objectively and unob-
trusively during the performance of the 3MTUG walking 
test.

Experimental design
Participant recruitment
Community-dwelling people aged > 65  years or older 
were recruited from the central area of Taiwan between 
April 2014 and May 2015. The inclusion criteria of the 
participants were as follows: no history of lesions of the 
central nervous system, no injuries in the musculoskel-
etal system, able to walk independently with or with-
out any assistive devices within the last three months. 
A total of 85 participants (18 men and 67 women) aged 
65–109  years (72.12 ± 6.99  year) were recruited. The 
study was approved by the Institutional Review Board of 
Tsaotun Psychiatric Center, Ministry of Health and Wel-
fare, and written informed consent was obtained from 
participants prior to their participation.

SFBBS
BBS is a widely used tool to assess the balance ability of 
geriatric people and geriatric patients [16]. Although this 
scale is highly reliable and valid, it takes time to com-
plete, consists of five-level items with scoring criteria 
varying from item to item, and exists item redundancy. 
To simplify and improve its utility, the SFBBS was devel-
oped to include 7 main items from the original BBS, see 
Table 1 for details. Compared to BBS, only half the time 
(about 10 min) is required to complete all items. Studies 
had provided strong evidence suggesting that the SFBBS 
featured psychometric properties similar to those of the 
original BBS, and there was a good test–retest reliability 
(ICC = 0.95) of the SFBSS in elderly [14, 23]. The SFBBS 
has 3 categories for each 7 item, scored 0, 2, or 4 for a 
maximum total score of 28, with higher scores indicating 

better balance. The SFBBS is considered as the reference 
measure of an elderly’s balance in this paper.

3‑m timed up and go test
TUG test is one of the most widely used and accepted 
clinical tests for assessing functional mobility [15]. This 
is a simple test and easy to administer anywhere and any-
time. It is made up of a set of basic mobility skills key to 
independent living and has been suggested as a useful 
screening tool for identifying elderly with balance or gait 
deficits. Figure 2 demonstrates the typical phases of the 
3MTUG walking test. It is performed by standing from 
a seated position (phase 1), walking to a marker on the 
floor three meters away (phase 2), turning around 180° 
(phase 3), returning to the chair (phase 4), and returning 
to a seated position (phase 5).

Procedure
The participants first self-reported their demographical 
information (e.g., age and sex) and were evaluated for 
their functional balance by a registered physiotherapist 
using the SFBBS. Before they performed the 3MTUG 
test, our research assistants helped to attach a wireless 
tri-axial accelerometer (Freescale RD3152MMA7260Q, 
Freescale Semiconductor-NXP, Austin, TX, USA) on 
the participants’ lower back in the area between the L3 
to L5 vertebrae. This location was chosen for the sake of 
simplicity and it approximates the center-of-mass (CoM) 

Table 1  Item descriptions of the short form berg balance scale

Item Description

1 Sitting to standing

2 Standing unsupported with eye closed

3 Reaching forward with an outstretched arm while standing

4 Pick up the object from the floor from a standing position

5 Turning to look behind over left and right shoulders while 
standing

6 Standing unsupported one foot in front

7 Standing on one leg

Fig. 2  The illustration of the 3MTUG test
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[19]. Accelerometers were aligned with the vertical (V) 
(downward: positive), medial–lateral (ML) (right: posi-
tive), and anterior–posterior (AP) axes (anterior: posi-
tive). Accelerometer data were collected with a nominal 
sampling rate of 45  Hz. The data was steamed over a 
Bluetooth radio to a nearby laptop where a self-devel-
oped tailor-made application was used for data logging.

For the 3MTUG test, each participant began seated 
in an armchair with their back against the chair and was 
instructed to complete the test at a safe and comfortable 
pace. A research physical therapist also measured the 
time to completion of the TUG using a stopwatch. The 
time was measured from the moment the participants 
start to lean to the moment the participants sit back on 
the chair. No physical assistance was provided, but the 
participants could use their own walking aid if needed.

Analytical methodology
TUG task segmentation
We considered the overall TUG performance into two 
major phases: postural transition and walking. The pos-
tural transition refers to the tasks of sit-to-stand (SiSt) 
and stand-to-sit (StSi) transitions. Indeed, rising to a 
stand and controlling the descent to sitting are regarded 
as fundamental activities of daily activities [24], and are 
prerequisites for walking and standing [25]. These activi-
ties are not simply movements but have been widely rec-
ognized as the most mechanically and muscle demanding 
body movement tasks [26]. In particular, the elderly expe-
rience notable difficulties when performing these transi-
tions due to their generally reduced balance and mobility.

To achieve the segmentation, the collected acceler-
ometer signal was first calibrated using Moe-Nilssen’s 
calibration algorithm, which transforms the data to the 
horizontal-vertical coordinate system [27]. Figure  3 
shows an illustrated example of the following segmented 
task. In a typical accelerometer signal during the TUG 
task, key features of each separate phases can be seen. A 
clear “M”-shaped signal is identified in the AP axis except 
for the walking portion in between the SiSt and StSi 
components [28]. The first hill of the “M” shape reflects 
the SiSt component, while the second hill reflects the 
StSi component. These postural transitions are shaded 
in grey. The period of SiSt (interval 1–2) was defined as 
the time interval between point 1, the time of the signal 
started to rise from steady state, and point 2, the time of 
the first M-like maximum peak. The period of StSi (inter-
val 3–4) was defined as the time interval between point 
3, the time of second M-like maximum peak, and point 
4, the time of the signal reached steady state. The walk-
ing phase is regarded as the interval between maximum 
peaks, i.e., points 2 and 3. These definition was elected 

because they were the easiest to derive reliably and con-
sistent among subjects. A detail discussion can be found 
in [29].

Our identified two major TUG phases are similar to 
those adopted in previous studies of instrumented TUG 
performance where five phases were considered [28, 30]. 
The segmentation aims to capture the different charac-
teristics of different body movements. The primary con-
sideration for the postural transition is related to muscle 
power, lower limb strengths, and joint range while that 
for the walking is related to stability, symmetry, and 
regularity. The clinical relevance of analyzing the perfor-
mance of each phase of the TUG is that it may be used to 
highlight specific areas of difficulty in task performance 
on an individual basis, and thus to inform subsequent 
intervention [31].

Features extraction and construction
Current literature has identified a wide range of acceler-
ometer-based features, but with no consensus regarding 
the optimal variables to examine from the data obtained. 
The chosen features, or the extraction manner, often 
differ among studies. In this work, we aimed to extract 
a combination of features which have previously been 
associated with fall-risk in the elderly, with an emphasis 
on the selection of clinically relevant variables. Accord-
ing to the recent review study [32], the frequency of fea-
tures reported from different combinations of functional 
task, sensor placement, and feature category vary greatly. 
The number of studies on walking task is approximately 
eight times than that on postural transition task. Thereby, 
to select significant features in our study, different inclu-
sion criteria were applied to each segmented TUG phases 
based on our data availability. Features were selected 
for the postural transition if they were reported signifi-
cantly (p < 0.05) regardless of participants’ pathological 

Fig. 3  An illustrated example of segmented TUG tasks using 
accelerometer data
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condition and accelerometer sensor placement. Features 
were selected for the walking if: [feature was reported sig-
nificantly in at least two studies (p < 0.05)] AND [feature 
was computed for walking task] AND [accelerometer was 
used, and it was worn on the lower back/trunk] OR fea-
ture was independent of sensor placement and type (e.g., 
number of steps). Our selection of features was mainly 
based on the papers [19, 28, 32–36]. These features were 
further categorized similarly to [19]: linear acceleration, 
spatial, temporal, frequency and other. Subsequently, 
redundant features were removed. The selected linear 
acceleration features were considered for all three axes 
respectively (V, ML, AP). Table 2 summaries the selected 
features extracted from different segmented TUG tasks 
in our study.

1.	 TUG​: The temporal feature includes the duration of 
the overall TUG performance {1} [28].

2.	 SiSt: The first part of the linear acceleration features 
is the amplitude descriptive statistics: maximum 
{2–4}, minimum {5–7}, range {8–10}, root-mean-
square (RMS) {11–13} for each three axes respec-
tively. The others are jerk-related features. The jerk 
indicates the rate of change in acceleration. All slope 
are calculated after making a linear fit in the relevant 
intervals. In the case of SiSt, the jerk is divided into 
two parts where the first part represents the leaning 
forward of the trunk when preparing to rise from the 
chair and the second part represents the beginning of 
the active rise (while stilling is leaning forward) [29]. 
The maximum {14–16} and mean {17–19} of jerk are 
calculated from those two parts. Δjerk {20–22} is 
defined as the difference between two part jerks. The 
temporal feature includes the SiSt duration {23}.

3.	 Walking: The linear acceleration features are the RMS 
amplitudes {24–26}. To provide an indication of the 
repeatability of acceleration pattern from step to step, 
signals were divided into individual steps by identi-
fying peak detection in the vertical axis. The average 
step length {27} is calculated by dividing the total 
number of steps with total length (6 m). Cadence {28} 
can be calculated as 60 times the number of steps 
taken divided by the walking phase duration. Gait 
speed {29} is calculated by dividing the total length 
by the walking duration. The coefficient of variation 
(CV) for step-time {32} and the CV of stride time {33} 
are calculated to provide a measure of gait variability 
as the ratio of the standard deviation to the mean of 
step time {30} and stride time {31}. Three common 
frequency features are also included for each of the 
three axes. Dominant Fourier transform frequency 
{34–36} is the dominant frequency on a Fast Fourier 
Transformation (FFT) frequency plot. The first quar-

tile of FFT is a percentage of acceleration frequen-
cies within the first quartile of an FFT frequency plot 
{37–39}. A lower value has been linked to instability 
[37]. The ratio of even to odd harmonics (REOH) 
{40–42} reflects the proportion of the acceleration 
signal that is in phase with the participant’s stride fre-
quency.

4.	 StSi: Same interpretation apply to features {43–54} 
as those {2–13} from SiSt section. For jerk related 
features {55–63}, in the case of StSi, the first part of 
the jerk represents the lowering of the center of mass 
backward when leaning the trunk backward to sit 

Table 2  Summary of the 67 features by task and feature 
category

Accelerometer-based features

TUG​

Temporal

1 Duration

Sit-to-stand (SiSt)

Linear acceleration features (in the order of V, ML, AP)

2–4 Maximum 5–7 Minimum

8–10 Range 11–13 RMS

14–16 Maximum jerk 17–19 Mean jerk

20–22 Δjerk

Temporal

23 Duration

Walking

Linear acceleration features (in the order of V, ML, AP)

24–26 RMS

Spatial features

27 Step Length

Temporal

28 Cadence 29 Gait speed

30 Step time 31 Stride time

32 CV of step time 33 CV of stride time

Frequency features (in the order of V, ML, AP)

34–36 Dominant FFT peak 37–39 1st FFT

40–42 REOH

Stand-to-sit (StSi)

Linear acceleration features (in the order of V, ML, AP)

43–45 Maximum 46–48 Minimum

49–51 Range 52–54 RMS

55–57 Maximum jerk 58–60 Mean jerk

61–63 Δjerk

Temporal

64 Duration 65 SD (SiSt, StSi)

Demographic features

Other

66 Age 67 Gender
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on the chair and the second part represents the free 
fall. The temporal feature is the StSi duration {64}. 
To measure the temporal variation between SiSt and 
StSi postural transitions, the standard deviation of 
durations of these two phases is also considered {65}.

5.	 Other: Two available demographic features age {66} 
and gender {67} are considered.

Prediction models
Predictive modeling is a data-mining tool used to corre-
late a response variable with a set of predictor variables. 
Depending on whether the response variable is categori-
cal or not, the prediction task can be formulated as a clas-
sification or regression problem. Regularized regression 
models and decision tree were selected to use for their 
effectiveness of prediction in the literature. Besides, the 
parameters of the fitted model can be interpreted easily 
to provide significance of each feature.

Regularized regression

The elastic net regression is a powerful and versatile 
model [38]. It is a regularization method for fitting a 
generalized linear model (GLM). The standard ordinary 
least squares (OLS) regression performs poorly on high 
dimensional data sets, where there is a large multivariate 
dataset containing a relatively large number of variables 
to the number of samples. Regularized regression tech-
niques have been created the last few ten years to reduce 
the flaws of OLS regression with regard to prediction 
accuracy. It is known that the ridge penalty [39] shrinks 
the coefficients of correlated predictors towards each 
other while the lasso [40] tends to pick one of them and 
discard the others. The elastic net penalty mixes these 
two.

The objective function of the elastic net regression 
takes the form of ‘loss + penalty’:

where α is the elastic net penalty which controls 
the balance between the ridge and lasso regression, 
β2
2 =

∑p
j=1 β

2
j  is the L2-norm of the β , β1 =

∑p
j=1

∣

∣βj
∣

∣ is 
the L1-norm of β and t is a tuning parameter. The elastic 
net regression clarifies to simple ridge regression when 
α = 0 and to the lasso regression when α = 1 . In this 
paper, we applied three regularized regressions, including 
ridge, lasso and elastic net regression for predicting the 
SFBBS score.

Decision tree

argmin
β

y − Xβ2
2

(1)s.t. (1− α)/2β2
2 + αβ1 ≤ t,

Decision Tree is a popular method that is simple and 
easy to implement [41]. It requires no domain knowledge 
or parameter setting. It constructs hierarchical decision 
trees by splitting data among classes of the criterion at a 
given node accordingly to an “if–then” rule applied to a 
set of predictors, into two child nodes repeatedly, from 
a root node that contains the whole sample. It selects the 
input variable that has the strongest association with the 
dependent variable according to a specific criterion. For a 
regression problem, the splitting criteria is to maximize

where SSA =
∑

(

yi − y
)2 is the sum of squares for the 

node A , and SSAR , SSAL are the sums of squares for the 
right and left sub-nodes, respectively. This is equivalent 
to choosing the split to maximize the between-groups 
sum-of-squares in a simple analysis of variance. The built 
decision tree produces a model that represents interpret-
able rules or logic statements.

SFBBS prediction
Our SFBBS score estimation was a typical prediction 
problem. We defined the input of the predictive model 
was the features (Table 2) extracted from the accelerom-
eter signal during the TUG performance. The output of 
the model was the numerical value of the SFBBS score.

Evaluation metrics

Two metrics were employed to measure the predic-
tion accuracy: mean absolute error (MAE) and root mean 
square error (RMSE). MAE measures the average magni-
tude of the errors without considering their directions. 
On the other hand, RMSE is a quadratic scoring rule that 
also measures the average magnitude of the error, and it 
is sensitive to large errors. For a set of predicted values 
( ̂y1, ŷ1, . . . , ŷn ) and the corresponding observed values 
( y1, y2, . . . , yn),

where smaller MAE and RMSE values indicate better 
prediction performance.

SFBBS subtask prediction
The control of body equilibrium is complex and cannot 
be evaluated fully with any global measurement of “bal-
ance” [42]. Based on the availability of the scores on each 
SFBBS subtasks, we plot the score distribution of the 

(2)SSA −
(

SSAL + SSAR

)

,

(3)MAE =
1

n

n
∑

j=1

|yj − ŷj|

(4)RMSE =

√

1

n

∑n

j=1

(

yj − ŷj
)2
,
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participants’ SFBBS each subtask as shown in Fig. 4. As 
per expectation, variations in the distribution of score are 
observed across different SFBBS subtasks. For example, 
every participant get score 4 in task #2 while one third 
get score 0 in task #7. It is interesting to explore what 
affecting the difference scoring in each task. We thus 
investigate the key features that are related to different 
assessment tasks. Three tasks with large variation in scor-
ing are selected for subsequent analysis: task #3 (reaching 
forward with an outstretched arm while standing), task 
#6 (standing unsupported one foot in front), and task 
#7 (standing on one leg). The selected three tasks cover 
the evaluation of the restriction of joint range of motion, 
muscle strength and postural stability that can affect the 
maintenance of equilibrium positions. Our selection of 
these three tasks is consistent with previous literature 
[43], where these tasks have been identified as the most 
difficult items for elderly to perform successfully.

Decomposition of SFBBS subtasks score

We first grouped the scores of selected three tasks into 
easily defined, clinically relevant subgroups. Score 0 and 
2 were regarded as “High-risk”, and score 4 was regarded 
as “Low-risk”. Thereby, we turned the prediction prob-
lems into a typical binary classification problem. This cat-
egorization can lead to less biased and more informative 
response variable for identifying the high-risk elderly on 
performing certain movement tasks.

Evaluation metrics

To measure the classification performance, we con-
structed a confusion matrix as illustrated in Table  3. 
The overall classification accuracy, precision, sensitiv-
ity, specificity, and F-score were used as performance 
metrics, as shown in Eqs.  (6)–(10). Accuracy measures 

the proportion of observations classified correctly, both 
“High-risk” and “Low-risk”. The precision measures the 
proportion of true “High-risk” observations among clas-
sified “High-risk” observations. Sensitivity measures the 
proportion of “High-risk” that are correctly classified 
while specificity measures the proportion of “Low-risk” 
that are correctly classified. There is usually an inverse 
relationship between precision and sensitivity. F-score 
represents a harmonic mean between precision and 
sensitivity.

In addition, the Receiver Operating Characteristic 
(ROC) curve and the area under the ROC curve (AUC) 
were employed to measure the quality of the model’s per-
formance. The ROC explicates the relation between true 
positive rate (i.e., sensitivity) and false positive rate (i.e., 
100%-specificity) for various cut-offs of a continuous 
diagnostic test. The AUC reports an overall quantitative 
estimate of classification performance, with higher value 
indicates better performance ( 0 ≤ AUC ≤ 1).

Model implementation and cross‑validation
The aforementioned predictive models considered were 
directly applied to 85 elderly’s datasets for estimat-
ing their balance. To avoid over-fitting problems as well 
as minimize the bias, we used 100-iteration random-
shuffle-split cross-validation (100-RSSCV). To do this, 
a single random-shuffle-split was configured to select 
a random subset of 80% of the data for training the 
model with the remaining 20% of the data as a random 
subset for model testing. This process was repeated for 
100 iterations. Within each iteration, a new model was 
trained and validated from the training data using 10-fold 
cross-validation and tested on the testing data. The per-
formance evaluation metrics were calculated from the 
100 iterations. Our selected cross validation aimed to 
promote generalizability and reliability and avoided 
methodological problems associated with validation and 

(5)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(6)Precision =
TP

TP+ FP

(7)Sensitivity =
TP

TP+ FN

(8)Specificity =
TN

FP+ TN

(9)F - score = 2 ·
Precision · Sensitivity

Precision+ Sensitivity

Fig. 4  The score distribution of the participants’ SFBBS subtasks

Table 3  Confusion matrix

Reference (high-risk) Reference (low-risk)

Predicted (high-risk) True positive (TP) False positive (FP)

Predicted (low-risk) False negative (FN) True negative (TN)
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training–testing protocols seen in the fall-risk assess-
ment literature [7]. The chosen number of iterations 
was based on the coverage of the performance metrics 
and the selection of significant variables in our prelimi-
nary studies. All statistical analysis was implemented in 
R v3.4.1 (64 bit) using the “glmnet”, “rpart”, “caret” and 
“e1071” packages [44].

Results and discussion
SFBBS prediction
In this section, we provide a comparison of the four 
methods’ performance on the task of SFBBS score esti-
mation. Figure 5 shows the box-whisker plots of the per-
formance achieved by the four models based on MAE 
and RMSE. In each plot, the central box represents the 
values from the lower to upper quartile (25–75 percen-
tile). The middle line represents the median. The hori-
zontal line extends from the minimum to the maximum 
value. Besides, we use a red dot to indicate the mean 
value. It is clear that the regularized regressions perform 
better than the decision tree. The elastic net regression 
(mean (std.) values of MAE and RMSE are 2.12(0.26) 
and 2.68(0.40) respectively) is superior with the small-
est mean and variance in terms of both MAE and RMSE. 
The ridge and lasso regression show competitive results. 
We can see that while the ridge regression generally per-
forms stable in the random-shuffle-split iterations, the 
lasso regression performs well in most of the iterations 
but perform poorly in some cases. Thereby, the perfor-
mance of selected models in descending order is elastic 
net regression, ridge regression, lasso regression, and 
decision tree. This result is unsurprising since the elastic 
net regression considers both L1 and L2 norm penalty, 
where ridge or lasso regression is a special case of it. It 
means that if the ridge or lasso regression is indeed the 

best in one iteration, then the elastic net model selection 
routine will also identify that as the best model.

Significant features

Additionally, we report the features which are sig-
nificant to the balance using the results of elastic net 
regression. As described above, one set of features was 
selected for a new predictive model in each iteration of 
100-RSSCV. Hence, the number of times each feature 
was selected during the 100-RSSCV can be calculated 
straightforward. Histograms of top ten selected features 
(out of 100 iterations) are shown in Fig.  6a. As can be 
seen from the figure, the most frequently occurring fea-
tures in descending order of frequency are {67, 34, 39, 
27, 29, 1, 37, 65, 64, 32}. Besides, we study the relative 
importance of features to get an insight of which features 
are most sensitive in terms of predicting the SFBBS. It is 
measured as the sum of regression coefficients of each 
feature during the 100-RSSCV. The top ten most relative 
features {27, 67, 25, 29, 11, 6, 54, 7, 24, 2} with respect to 
their accumulated regression coefficients are presented 
in Fig. 6b. For a better visual comparison, the histograms 
are scaled so that the value of the top related feature is 
fixed at 100.

In this following, we comprehensively discuss the sig-
nificant features related to functional balance in terms of 
variable importance. A higher relative importance value 
indicates the more importance of this feature to the bal-
ance estimation. All of our findings are supported by the 
scientific and clinical evidences provided in existing lit-
eratures. The in-depth identification of these variables 
is helpful to determine the underlying causes of balance 
deficit. Step length is a useful clinical indicator of mobil-
ity, balance, and fall risk in elderly [45]. It has excellent 
discriminative power to differentiate subjects when 

Fig. 5  Box-whisker plots of the performance of four models by MAE and RMSE
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assessing mobility dysfunction in elderly [46]. Elderly 
gender is another significant risk factor related to falls 
[47] and the frequency of falls [48]. Gait speed has been 
repeatedly reported to reflect functional status and has 
been recommended as a potentially useful clinical pre-
dictor of falls [49]. Differences in step length and gait 
speed suggest that elderly adopt a conservative and cau-
tious gait pattern, possibly in an attempt to minimize the 
displacement of the upper body related to their balance 
impairments. The remaining features are linear accel-
eration features describe the shape and pattern of liner 
movements over time. Those measurements are directly 
related to the motor coordination deficits as a large com-
pensatory hip and trunk motions are required to correct 
dis-equilibrium. The findings support that acceleration 
variation can be a good indicator of balance estimation. 
As for the walking, the root mean square of linear accel-
eration has been reported to measure gait smoothness, 
with larger values linked to increased fall risk [50, 51]. 
For the SiSt and StSi transitions, these linear acceleration 
features are directly related to the forces needed to per-
form the postural transitions thus explain certain impair-
ments. This finding is consistent with previous literatures 
[34, 52, 53] on the study of postural transition.

SFBBS subtask prediction
Table 4 shows the performance of the classifications in 
a combination of SFBBS subtask numbers and evalu-
ation metrics. To compare our method performance 
with existing ones as much as possible, here we con-
sider a closely related problem, the fall detection. In 
[54], the authors benchmarked the performance of 
published accelerometer-based fall-detection methods 

when they were applied to identifying real-world falls. 
It was found that the sensitivity average of the thirteen 
studied algorithms, was (mean ± std) 83.0% ± 30.3% 
(maximum value = 98%), and the specificity was consid-
erably lower (57.0% ± 27.3%, maximum value = 82.8%). 
This supports the effectiveness of our approach. Our 
study shows the average of sensitivity and specificity 
are 74% and 79% respectively among 3 classification 
tasks, which lies between the boundaries. Figure 7 fur-
ther shows the ROC curves for each of the classification 
tasks. From a clinical perspective, it is more meaning-
ful to use ROC curves to identify optimally sensitive 
and specific cut-off values which can be used to classify 
the elderly as being at high or low-risk groups [55]. A 
highly sensitive and specificity test for measuring bal-
ance is a necessity in practice since an assessment that 
incorrectly overlooks elderly who are actually at risk or 
identify elderly who are at low risk being classified at 
high risk would be undesirable for both clinician and 
elderly, considering the potential consequences of falls. 
The AUC values for SFBBS-3, SFBBS-6, and SFBBS-7 
are 0.72, 0.79, and 0.76 respectively, which represents 
moderate-high discriminations.

Fig. 6  Histogram of selected features by elastic net regression using 100-RSSCV on SFBBS score estimation: a the top ten most selected features; b 
the top ten most significant features with respect to their accumulated regression coefficients

Table 4  Classification results regarding SFBBS subtasks using 
elastic net regression

SFBBS subtask Accuracy Sensitivity Precision Specificity F-score

SFBBS-3 0.75 0.65 0.47 0.79 0.52

SFBBS-6 0.84 0.85 0.43 0.83 0.53

SFBBS-7 0.71 0.72 0.83 0.75 0.76
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Significant features for SFBBS subtasks prediction
Herein we report and discuss the significant features in 
terms of their selection frequency and relative impor-
tance for each classification task.
SFBBS-3: Reaching forward task measures the maximal 

distance a subject could reach forward horizontally with 
outstretched arms when maintaining stable standing. 
The maximal distance of reached forward is considered 
as a reliable parameter for evaluating dynamic balance 
capacity [56]. Elderly showed dynamic balance control 
problem influenced by the weakened muscle strength in 
lower limbs, the tibialis anterior, soleus and gastrocne-
mius included. The top ten most frequently occurring 
features in descending order of frequency are {27, 34, 13, 
67, 1, 41, 48, 3, 25, 24}, whereas the top ten most relative 
features are {27, 67, 41, 24, 13,52, 52, 25, 42, 65, 3}, shown 
in Fig. 8.
SFBBS-6: Standing unsupported measures a subject’s 

muscle strength, joint range-of-motion, and body coor-
dination to maintain equilibrium. Unlike younger people 
who are usually able to counteract imbalance preferably 
with an ankle strategy, elderly tend to do so with a hip 

strategy [57]. The top ten most frequently occurring fea-
tures in descending order of frequency are {37, 32, 2, 42, 
6, 65, 64, 29, 30, 11}, whereas the top ten most relative 
features are {42, 11, 27, 29, 65, 6, 2, 40, 64, 67}, shown in 
Fig. 9.
SFBBS-7: One-leg standing test measures a subject’s 

ability to stand on one lower limb without support. It 
accesses postural steadiness in a static stance. The previ-
ous research has revealed one-leg standing time depends 
on the ability of somatosensory and vision functions [58]. 
Lack of accurate feedback and diminished ankle strategy 
can result in postural instability, especially in ML direc-
tion [59]. The top ten most frequently occurring features 
in descending order of frequency are {29, 27, 2, 37, 47, 1, 
39, 9, 38, 31}, whereas the top ten most relative features 
are {27, 29, 67, 2, 41, 47, 24, 9, 53, 7}, shown in Fig. 10.

Similar to the contributed variables to the SFBBS score 
prediction, step length, gender, gait speed, and linear 
acceleration variables play a significant role at differ-
ent extent in the classifications of balance risk level of 
three selected clinical assessment task. We also find that 
REOH is another significant variable. REOH reflects the 

Fig. 7  The ROC curves of classifications: a SFBBS-3, b SFBBS-6, and c SFBBS-7

Fig. 8  Histogram of selected features by elastic net regression using 100-RSSCV on SFBBS-3 classification: a top ten most selected features; b top 
ten most significant features with respect to their accumulated regression coefficients
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proportion of the acceleration signal that is in phase with 
an elderly’s stride frequency, where a small REOH indi-
cates step-to-step asymmetry within strides and possibly 
gait instability [29].

Conclusion
Poor balance is one of the major intrinsic factors contrib-
uting to falls, and the continuous monitoring of balance 
and gait is a plausible approach, through early warnings 
and appropriate interventions, to reduce and prevent 
falls. However, the continuous monitoring of gait and bal-
ance requires extensive healthcare and clinical resources. 
In this paper, we investigated the effectiveness of 3MTUG 
test via accelerometers and present a clinically relevant 
approach to assessing functional balance and mobility of 
community-dwelling elderly in terms of SFBBS. The clini-
cal perspective of our study advances the application of 
wearable-sensors in the field of fall risk assessment. We 
summarize the main contributions of this paper as fol-
lows. This work is the first to extract variables which 

have previously been associated with fall-risk in elderly 
with an emphasis on their clinical relevance by separate 
consideration of postural transitions and walking phases 
during the TUG test. Our results demonstrate that use of 
the proposed clinically relevant variables, together with 
utilization of proper modeling and cross-validation strat-
egies, is able to achieve a moderate-high predictive accu-
racy of SFBBS scores. The investigation of three clinical 
balance assessment tasks for identifying the balance risk 
level of elderly further demonstrates the efficiency and 
robustness of the proposed method. Our in-depth iden-
tifications of a range of significant variables enable the 
diagnosis and early treatment of balance impairment. 
The research setting, as well as the proposed method, 
presents a feasible option for objective, unsupervised, 
unobtrusive balance assessment at the point-of-care or 
home environment. The proposed automatic estimation 
for quantifying balance during prescribed task provides 
clinicians and elderly with accurate, stable, and sensi-
tive biomarkers for long-term monitoring of functional 

Fig. 9  Histogram of selected features by elastic net regression using 100-RSSCV on SFBBS-6 classification: a top ten most selected features; b top 
ten most significant features with respect to their accumulated regression coefficients

Fig. 10  Histogram of selected features by elastic net regression using 100-RSSCV on SFBBS-7 classification: a top ten most selected features; b top 
ten most significant features with respect to their accumulated regression coefficients
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balance. The diagnostics of balance deficit will facili-
tate timely intervention before a fall occurs and, hence 
improve quality of life and avert the need for a higher-
level intervention in the future.

While this study clearly demonstrates the utility of a 
3MTUG walking test for accessing an elderly’s functional 
balance and mobility, future work will focus on develop-
ing a more effective and robust surrogate assessment of 
functional balance. Many anthropometric factors have 
been previously studied to have effect on balance, the 
inclusion of these variables need to be investigated for 
the enriched automatic assessment. Besides, future work 
could examine the effectiveness of the integrated use of 
other sensing modalities (such as gyroscope) in adopt-
ing our surrogate assessment of functional balance. This 
additional information provides a more comprehensive 
characterization of movement adaptation, which may, 
in turn, further improve the robustness of the surrogate 
assessment.
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