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Abstract 

Background:  Sepsis is a highly lethal and heterogeneous disease. Utilization of an unsupervised method may iden-
tify novel clinical phenotypes that lead to targeted therapies and improved care.

Methods:  Our objective was to derive clinically relevant sepsis phenotypes from a multivariate panel of physiologi-
cal data using subgraph-augmented nonnegative matrix factorization. We utilized data from the Medical Information 
Mart for Intensive Care III database of patients who were admitted to the intensive care unit with sepsis. The extracted 
data contained patient demographics, physiological records, sequential organ failure assessment scores, and comor-
bidities. We applied frequent subgraph mining to extract subgraphs from physiological time series and performed 
nonnegative matrix factorization over the subgraphs to derive patient clusters as phenotypes. Finally, we profiled 
these phenotypes based on demographics, physiological patterns, disease trajectories, comorbidities and outcomes, 
and performed functional validation of their clinical implications.

Results:  We analyzed a cohort of 5782 patients, derived three novel phenotypes of distinct clinical characteristics 
and demonstrated their prognostic implications on patient outcome. Subgroup 1 included relatively less severe/
deadly patients (30-day mortality, 17%) and was the smallest-in-size group (n = 1218, 21%). It was characterized by old 
age (mean age, 73 years), a male majority (male-to-female ratio, 59-to-41), and complex chronic conditions. Subgroup 
2 included the most severe/deadliest patients (30-day mortality, 28%) and was the second-in-size group (n = 2036, 
35%). It was characterized by a male majority (male-to-female ratio, 60-to-40), severe organ dysfunction or failure 
compounded by a wide range of comorbidities, and uniquely high incidences of coagulopathy and liver disease. Sub-
group 3 included the least severe/deadly patients (30-day mortality, 10%) and was the largest group (n = 2528, 44%). 
It was characterized by low age (mean age, 60 years), a balanced gender ratio (male-to-female ratio, 50-to-50), the 
least complicated conditions, and a uniquely high incidence of neurologic disease. These phenotypes were validated 
to be prognostic factors of mortality for sepsis patients.
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Background
Sepsis is a major public health challenge, both in the 
United States and worldwide [1]. It is one of the major 
diagnoses in Intensive care unit (ICU) patients and a 
leading cause of death and cost overruns [2–4].

Recent studies have estimated that approximately 1.7 
million adults suffer from sepsis, and sepsis incidence 
has been steadily rising each year in the United States. 
Sepsis accounts for 30–50% of deaths among all hospi-
talizations, with an average cost of care over $50,000 per 
patient [5–8]. Although significant resources have been 
devoted to sepsis management, these allocations have 
not resulted in therapies that effectively lower the inci-
dence or mortality of the disease [5]. Existing therapies, 
such as early goal-directed therapy (EGDT), focus on 
treating patients with severe sepsis or septic shock, who 
make up approximately 10% of all sepsis cases, but stand-
ardized and validated therapies are underdeveloped for 
the remaining majority of patients with less severe sepsis 
[8–10]. Sepsis is a complex heterogeneous syndrome that 
manifests in patients with diverse demographic profiles, 
correlated clinical variables, and underlying medical con-
ditions, increasing the difficulty of developing targeted 
therapies.

The new Sepsis-3 definition developed at the Third 
International Consensus Conference in 2016 empha-
sizes the heterogeneity of sepsis. Sepsis-3 adopts the 
Sequential organ failure assessment score (SOFA) score 
in the diagnostic criteria, which consists of a panel of 
physiological variables. It deviates from the concept of 
staging in sepsis progression from systemic inflamma-
tory response syndrome (SIRS) to severe sepsis to septic 
shock that was developed based on outcome stratifica-
tion of mortality and severity. It removes the term severe 
sepsis and identifies septic shock as a subset of sepsis 
rather than the end stage [11]. A recent study also dem-
onstrated that the updated Sepsis-3 definition identifies a 
17–40% larger cohort compared to previous sepsis defi-
nitions [12]. Hence, previously undiscovered phenotypes 
may be derived from Sepsis-3 cohort that characterize 
on different combinations of heterogeneous features, and 
therefore provide implications for effective targeted ther-
apies and improved patient management in the setting of 
real-time monitoring and timely interventions [13].

In this study, we aimed to identify and characterize 
novel phenotypes of sepsis for therapeutic and prognos-
tic use based on temporal trends derived from a multi-
variate panel of physiological variables. We first collected 
records of physiological measurements within the first 
3 days after the ICU admission, from which we derived 
frequent subgraphs to describe each ICU stay. We then 
applied nonnegative matrix factorization using frequent 
subgraphs as features and extracted trends of physiologi-
cal measurements. As a result, patients were clustered 
into three subgroups based on their representative trend 
group. Finally, we demonstrated the clinical relevance 
of the identified patient clusters by characterizing them 
based on patient demographics and outcomes, distin-
guishing physiological trend groups, SOFA score trends 
and comorbidities, and that these patient clusters were 
prognostic factors of patient mortality.

Methods
Data
The data for this study was collected from the Medi-
cal information mart for intensive care III (MIMIC-III) 
database, an openly available dataset developed by the 
MIT Lab for Computational Physiology. It contains dei-
dentified electronic health records (EHRs) from + 60,000 
ICU stays at the Beth Israel Deaconess Medical Center 
(BIDMC, Boston, MA) between 2001 and 2012 [14].

We retrospectively defined the cohort for this study as 
patients whose sepsis onset was approximately aligned 
with their ICU admission using the new Sepsis-3 crite-
ria from the MIMIC-III database. Since the MIMIC III 
database contains only data of the completed ICU stay 
and within 24  h after ICU discharge and the measure-
ment period for physiological variables in our study 
was defined as the first 3  days after ICU admission, we 
chose to focus on patients suspected of developing sepsis 
within ± 24 h of their ICU admission to ensure that the 
physiological records extracted coincided with and par-
ticularly captured the early-to-mid phase of the sepsis 
trajectory. We referenced a recent study of a compara-
tive analysis of sepsis identification algorithms including 
Sepsis-3 criteria using the MIMIC-III database [12]. We 
obtained their codes and adapted them for our use of 
identifying Sepsis-3 patients, and calculating Elixhauser 

Conclusions:  Our results suggest that these phenotypes can be used to develop targeted therapies based on phe-
notypic heterogeneity and algorithms designed for monitoring, validating and intervening clinical decisions for sepsis 
patients.
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Comorbidity Index and maximum daily SOFA scores 
over the first 7 days after ICU admission.

A total of 5782 patients were selected based on inclu-
sion criteria. We then examined the value distribu-
tion of the physiological variables by visualizing them 
through histograms and referencing reference ranges, 
and removed records with values outside the measurable 
range as outliers (e.g., a respiratory rate value of 2,355,555 
breaths per minute). The clean dataset after outlier han-
dling exhibited distributions that were clinically justified.

Candidate physiological variables
We selected 34 candidate physiological variables based 
on their association with sepsis onset and outcome and 
their common inclusion in predictive models for sepsis 
and overall mortalities in the ICU [15–18]. These 34 can-
didate physiological variables are described in Table 1.

Time series graphs
Existing studies that involve a panel of physiological vari-
ables often use numerical measurements collected from a 
single time point to define or interpret a clinical event. In 
reality, a clinical event is captured in and described by a 
series of fluctuating vital signs and laboratory test results 
with covariations over time. Therefore, we used time 
series graphs to represent the panel of physiological data 
in our study, as graphs are more expressive and informa-
tive in representing the trends and variations in data over 
time.

Time series of physiological data were extracted from 
the data describing the first 3  days after ICU admis-
sion. Since physiological variables are often irregularly 
and sparsely recorded, discretization of a physiologi-
cal time series is important to obtain error-mitigated 
and uniformly paced time series graphs [18]. We used 
Pandas linear interpolation implementation to dis-
cretize the time series along the time axis across uni-
form time intervals with imputation for time intervals 
that had no physiological values recorded based on the 
rest populated time intervals for the same patient. We 
performed time series discretization for two different 
time intervals (6- and 24-h intervals) and determined 
the optimal length of the time interval to be 6 h in the 
hyperparameter tuning step for nonnegative matrix 
factorization, based on the stability of the clustering 
results and the distinctiveness of the frequent subgraph 
distributions within each cluster. We also standard-
ized the interpolated values for each physiological vari-
able into z-scores with rounding to discretize the time 
series along the measurement axis. After discretiza-
tion, we generated time series graphs by concatenating 
physiological z-scores in the sequence of time intervals 
into a tuple in python, a collection that is ordered and 
unchangeable. The set of time series graphs encom-
passing all patients’ ICU stays formed a corpus, and 34 
corpora corresponding to 34 candidate physiological 
variables were formed.

Table 1  Candidate physiological variables with mean and standard deviation

SD standard deviation

Physiological variable Mean SD Physiological variable Mean SD

Heart rate (bpm) 88.4 19.0 Platelet count (K/uL) 215.3 147.6

Respiration rate (insp/min) 20.4 6.2 Partial prothrombin time (sec) 40.4 17.1

Glasgow coma scale motor 5.1 1.5 International normalized ratio 1.5 0.6

Mean arterial blood pressure (mmHg) 79.2 18.2 Blood urea nitrogen (mg/dL) 32.8 25.8

Diastolic blood pressure (mmHg) 61.7 14.7 Blood serum creatinine (mg/dL) 1.5 1.3

Systolic blood pressure (mmHg) 121.6 23.7 Blood total bilirubin (mg/dL) 3.0 4.3

Urine output (mL) 120.7 114.6 Blood direct bilirubin (mg/dL) 4.4 5.4

Temperature (Celsius) 37.1 0.9 Aspartate aminotransferase (IU/L) 61.7 43.1

Blood oxygen saturation (%) 97.0 3.2 Base excess (mEq/L) − 0.1 5.6

Fraction of inspired O2 (%) 47.5 14.8 Glucose (mg/dL) 136.7 51.2

Partial pressure of oxygen (mmHg) 99.4 34.0 Chloride (mEq/L) 105.2 6.9

Pao2/FiO2 ratio 208.2 110.5 Bicarbonate (mEq/L) 24.7 5.4

White blood cell count (K/uL) 12.1 6.9 Lactate (mmol/L) 2.3 1.6

Hemoglobin (g/dl) 10.0 1.8 Blood albumin (g/dL) 2.8 0.6

Hematocrit (%) 29.6 5.2 Carbon dioxide (mEq/L) 26.0 6.3

Ph (unit) 7.4 0.1 Blood serum potassium (mEq/L) 4.1 0.7

Magnesium (mg/dL) 2.1 0.4 Blood sodium (mEq/L) 139.3 5.8
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Frequent subgraph mining
Frequent subgraph mining is a pattern mining technique 
used to discover patterns as subgraphs in a graph corpus 
(a set of graphs) based on a certain frequency threshold 
(minimum support threshold). This technique effectively 
identifies frequent patterns (also referred to as temporal 
trends) in time series graphs, removes noise in the data 
for modeling and interpretation, and has been success-
fully applied to studies for phenotyping and predicting 
outcomes in multiple diseases [18, 19].

We performed frequent subgraph mining on the cor-
pora of 34 physiological variables over 5 different choices 
of the minimum support threshold (5, 15, 25, 50, and 100) 
and determined the optimal minimum support threshold 
to be 5 in the hyperparameter tuning step for nonnega-
tive matrix factorization, again based on the stability of 
the clustering results and the distinctiveness of the fre-
quent subgraph distributions within each cluster. We lim-
ited the size of a subgraph to a minimum of  2 nodes and 
a maximum of 6 nodes to ensure that the subgraphs were 
interpretable and that distinctive patterns were easy to 
identify. A total of 27,971 frequent subgraphs were iden-
tified at this step. A simple example of the application of 
the aforementioned frequent subgraph mining algorithm 
to mine subgraphs from the graph corpus of one patient 
and one physiological variable is presented in “Appen-
dix 1”. We then applied subgraph isomorphism removal 
at the patient level such that when a larger subgraph was 
presented, counts of smaller subgraphs would be set to 
0 for that particular patient’s case [18]. 5600 subgraphs 
were thus removed. The final matrix of patient-subgraph 
counts contained 22,371 subgraphs.

Subgraph augmented NMF
Unsupervised clustering methods capture the inherent struc-
ture and correlation within a population and identify natu-
ral clusters with significant within-cluster similarities and 
between-cluster differences. Nonnegative matrix factoriza-
tion is one of the unsupervised clustering methods that has 
been applied to effectively derive patient subgroups in multi-
ple diseases, particularly because of the good interpretability 
in its result due to nonnegativity constraints [19–21]. In our 
study, we applied non-negative matrix factorization (NMF) 
over a patient-subgraph count matrix to derive temporal 
trend groups of covariations and patient subgroups such that 
the physiological progression of each patient subgroup was 
described by the corresponding temporal trend group.

The patient-subgraph count matrix was split into 
training and testing sets at an 80:20 ratio stratified by 
mortality. We profiled both sets with clinical variable dis-
tributions to confirm that the testing set was representa-
tive of the training set. We then fit the NMF model by 

performing hyperparameter tuning on the training set 
over the hyperparameters, including time interval, mini-
mum support threshold, and number of components. 
We determined the optimal combination of hyperparam-
eters to be a time interval equal to 6 h, a minimum sup-
port threshold equal to 5, and the number of components 
equal to 3, using cophenetic correlation and distinctive-
ness of frequent subgraph distributions within each clus-
ter [22]. We validated our choice of optimal NMF model 
configuration by refitting the optimal model configu-
ration on the testing set and comparing the cophenetic 
correlation pattern and subgraphs’ weight distribution 
between the training set and the testing set, confirming 
that the model performance of the training set was reca-
pitulated in the testing set. We used cophenetic correla-
tion implemented in Nimfa and projected gradient NMF 
implemented in Scikit-learn [23–25].

Identifying Sepsis‑3 subgroups
We next applied subgraph-augmented nonnegative 
matrix factorization with the optimal configuration 
determined in the hyperparameter tuning step over the 
entire Sepsis-3 cohort and separated the cohort into 3 
distinct subgroups based on the model output.

The NMF model outputs were two lower ranked matrices, 
the patient group coefficient matrix (5782 × 3) and the trend 
group coefficient matrix (3 × 22,371), both with nonnegative 
values decomposed from the input matrix of patient-sub-
graph counts. The trend group coefficient matrix served to 
form three trend groups that were weighted composites of 
the 22,371 frequent subgraphs such that each trend group 
encompassed frequent physiological trends observed in a 
corresponding patient subgroup. The patient group coef-
ficient matrix then served to assign patient membership 
to the corresponding trend group where patients had the 
highest group coefficient. This successfully separated the 
Sepsis-3 patients into three subgroups, each associated with 
and described by its corresponding trend group.

To further summarize each trend group with domi-
nant subgraphs from the 22,371 subgraphs extracted, 
subgraphs that were either ranked in the top 100 or 
had a value greater than 1 in terms of group coefficients 
were selected as representative subgraphs to summa-
rize each trend group. Three sets of representative sub-
graphs were thus selected to summarize and represent 
their corresponding trend group and the associated 
patient subgroup. To validate the three sets of selected 
subgraphs’ representativeness of their correspond-
ing patient subgroups, we trained a gradient boosting 
machine for multiclass classification of patient group 
membership over the three sets of selected subgraphs 
combined and achieved overall 91.7% accuracy in the 
testing set from a refreshed train-test split.
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We then analyzed outcome distributions and under-
lying clinical patterns in the three patient subgroups 
identified above and performed functional validations 
to assess the prognostic implications of patient group 
membership on mortality. To provide more clarity 
into the process of NMF model construction, Sepsis-3 
subgroup identification, and the associated functional 
validations, we included a flow diagram that demon-
strates these processes in “Appendix 2”.

Results
The Sepsis-3 patients were separated into 3 distinct 
subgroups based on their physiological trends within 
the first 72  h after ICU admission. These three sub-
groups exhibited distinct clinical characteristics in 
terms of patient demographics and outcomes, physio-
logical patterns, disease trajectories and comorbidities 
and were prognostic factors of patient mortality.

Demographics and outcomes
Patients in the Sepsis-3 subgroups had variable demo-
graphic characteristics and distinct outcomes, which are 
described in Table 2 and below:

Subgroup 1 oldest (73.1  years), most overweight 
or obese (84.3  kg); high in male (59.0%), Elixhauser 
index (3.5), 30-day mortality (17.0%) and in-hospital 
mortality (12.0%)
Subgroup 2 younger (67.9 years), less overweight or 
obese (83.0 kg); highest in male (60.3%), Elixhauser 
index (5.7), day-1 SOFA score (8.7), length of stay 
(6.2 days), 30-day mortality (28.4%) and in-hospital 
mortality (24.8%)
Subgroup 3 youngest (59.9 years), least overweight or 
obese (79.4 kg), balanced sex (50-to-50); low in

Elixhauser index (2.4), 30-day mortality (10.1%) and in-
hospital mortality (7.3%).

Statements made above for significant (or non-signif-
icant) subgroup characteristics were consistent with the 
results of the hypothesis tests performed to determine dif-
ferences in the means between subgroups for these char-
acteristics at the 0.05 significance level (“Appendix 3”).

The Sepsis-3 cohort consisted of older (65.5  years), 
overweight or obese (67.4%), male (55.5%) and white 
(72.6%) patients in majority, with an overall 30-day mor-
tality rate of 18%. Our study essentially separated the 

Table 2  Demographics and outcome

SD standard deviation

Subgroup 1 Subgroup 2 Subgroup 3 Sepsis-3 cohort

Group size 1218 2036 2528 5782

Age, mean (year) ± SD 73.12 ± 14.56 67.91 ± 16.27 59.92 ± 18.24 65.52 ± 17.64

Gender (%)

 Male 59.03% 60.27% 50.44% 55.50%

 Female 40.97% 39.73% 49.56% 44.30%

Weight, mean (kg) ± SD 84.25 ± 35.08 83.01 ± 24.32 79.37 ± 25.54 81.68 ± 27.56

BMI, mean (kg/m2) ± SD 29.36 ±  29.48 ±  28.36 ±  29.01 ± 8.73

BMI, Strata

 Overweight 32.50% 32.00% 33.14% 32.56%

 Underweight 1.88% 2.72% 3.78% 2.96%

 Obese 37.50% 37.61% 30.67% 34.81%

 Healthy weight 28.12% 27.67% 32.40% 29.66%

ICU LOS, mean (day) ± SD 3.14 ± 4.67 6.23 ± 7.10 4.21 ± 5.52 4.69 ± 6.09

Elixhauser index, Mean ± SD 3.53 ± 6.90 5.65 ± 7.12 2.37 ± 6.59 3.77 ± 6.99

Ethnicity (%)

 Asian 2.38% 2.95% 3.56% 3.10%

 Black 9.61% 8.64% 8.23% 8.66%

 White 76.68% 72.15% 71.08% 72.64%

 Hispanic 1.40% 3.09% 4.27% 3.25%

 Other 9.93% 13.16% 12.86% 12.35%

Day-1 SOFA score, Mean ± SD 6.51 ± 2.60 8.65 ± 3.38 6.50 ± 2.53 7.29 ± 3.07

30-Day mortality (%) 17.00% 28.39% 10.13% 18.00%

In-hospital mortality (%) 11.99% 24.80% 7.32% 14.46%
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cohort into three distinct subgroups such that subgroup 
3 consisted of the least sick and fewest elderly patients 
marked by the lowest mortality, while subgroup 2 and 
subgroup 1 further separated the sicker patients into the 
sickest group with most severe conditions marked by the 
highest mortality, and an older but less sick group with 
more chronic conditions marked by lower mortality.

Representative subgraphs
Utilizing nonnegative matrix factorization, we identified 
three distinct trend groups from physiological time series 
graphs that were subsequently used to cluster patients 
and describe patient subgroups. We characterized each 
trend group with representative subgraphs that were 
either ranked in the top 100 or had a value greater than 1 
in terms of group coefficients. A total of 166 unique sub-
graphs were chosen, out of which 67 exclusively described 
one subgroup, indicating that the identified subgroups 
were distinctively characterized by these subgraphs. To 
validate that the three sets of selected subgraphs were 

sufficiently representative of the three correspond-
ing patient subgroups, we trained a gradient boosting 
machine classifying patient group membership using 
the three sets of representative subgraphs combined and 
achieved overall 91.7% accuracy in the testing set from a 
refreshed train-test split. Additionally, the subgroup-wise 
precision, recall, f-score and area under the curve (AUC) 
are shown in Table 3, and the ROC curves from the test-
ing set are included in Appendices 4, 5, and 6.

Distinct clinical patterns that indicate underlying medi-
cal conditions in each patient subgroup were observed 
in the representative subgraphs. Subgroup 1 (Fig. 1) was 
subjected to high cardiovascular and respiratory dysfunc-
tion marked by low to decreasing heart rate, blood pres-
sure and temperature and a high fraction of inspired O2 
(FiO2), while incurring low organ dysfunction, inflamma-
tion and coagulopathy, as indicted by high platelet counts, 
hematocrit and hemoglobin levels, and a low international 
normalized ratio (INR) and partial prothrombin time 
(PTT). Subgroup 2 (Fig.  2) exhibited patterns of severe 
renal, hepatic and respiratory dysfunction marked by low 
platelet counts and high administration of aspartate ami-
notransferase (AST), high blood serum creatinine, blood 
urea nitrogen and chloride, low blood albumin, and a high 
fraction of inspired O2, coupled with high inflammation 
marked by low to decreasing hemoglobin and hemato-
crit levels. Subgroup 3 (Fig. 3) was described primarily by 
improving or stabilizing physiological patterns that indi-
cated a comparatively better and quickly improving medi-
cal condition. The referenced subgraphs are marked with 
■ in the figures. These patterns also manifested in corre-
sponding SOFA score trends and comorbidity distribu-
tions of the three subgroups.

Patient subgroups containing trends that indicated 
a general progression to the better and stabilized states 

Table 3  Gradient boosting machine error metrics for patient 
group membership classification on frequent subgraphs

Measure Split Subgroup

1 2 3

Precision Train 0.987 0.981 0.988

Test 0.917 0.889 0.939

Recall Train 0.978 0.984 0.990

Test 0.835 0.921 0.951

F-score Train 0.982 0.983 0.989

Test 0.874 0.905 0.945

AUC​ Train 0.954 0.964 0.977

Test 0.891 0.914 0.944

Fig. 1  Subgroup 1 trend group selected from representative frequent subgraphs of standardized physiological variable values over measurement 
period of six time windows
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(e.g., Subgroup 1 in Fig.  1, Subgroup 3 in Fig.  3) were 
often associated with positive patient outcome. Patient 
subgroups containing trends that indicated a general 
progression to the worse state were often associated with 
negative patient outcome (e.g., Subgroup 2 in Fig. 2). To 
validate this association, we trained a gradient boost-
ing machine modeling mortality using the three sets of 
selected subgraphs combined, representing the three 
patient subgroups, and achieved 86.3% accuracy and 
68.1% AUC in the testing set, again from a refreshed 
train-test split. Additional details and evaluation metrics 
are discussed and shown under “Implications on patient 
outcome” section.

7‑Day SOFA score trend
Patients in the Sepsis-3 subgroups had variable disease 
trajectories over their ICU stays. We captured disease 
trajectories of the subgroups by calculating and plotting 
the average daily SOFA scores for the first 7 days (Fig. 4).

Subgroup 1 had the second highest SOFA score on 
day 1 of ICU admission, which was similar to subgroup 

3 but was differentiated by slow improvement from day 
2 to day 7. Its SOFA score trajectory was largely driven 
by a high renal subscore followed by a high cardiovascu-
lar subscore. Subgroup 2 had the highest SOFA score on 
both day 1 and day 7, indicating the severity of organ dys-
function and underlying medical conditions in this group. 
Its SOFA score trajectory was also dominantly driven by 
high renal and cardiovascular subscores with a uniquely 
high hepatic subscore. Subgroup 3 exhibited the lowest 
SOFA scores and fastest improvement from day 1 to day 
7, distinguished by a disproportionately high neurologic 
subscore. These patterns also manifested in the comor-
bidity distributions of the three subgroups.

Comorbidities
Patients in the Sepsis-3 subgroups had variable under-
lying medical conditions characterized by their comor-
bidity distributions. We utilized the method developed 
in the Elixhauser Comorbidity Index and calculated 
the incidences of 30 categories of comorbidities for the 
three subgroups identified. We ranked the 30 categories 

Fig. 2  Subgroup 2 trend group selected from representative frequent subgraphs of standardized physiological variable values over measurement 
period of six time windows

Fig. 3  Subgroup 3 trend group selected from representative frequent subgraphs of standardized physiological variable values over measurement 
period of six time windows
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by their cohort incidence in descending order and 
focused our analysis on 17 categories that had a mini-
mal subgroup incidence of 10%, as shown in Table 4 [12, 
26].

Cardiovascular, renal, and pulmonary diseases were 
the dominant categories in the Sepsis-3 cohort, accord-
ing to their combined incidence across subgroups. 
Specifically, cardiovascular diseases were dominant in 
subgroups 1 and 2, with incidence rates ranging from 
22.9 to 69.9% (hypertension, fluid electrolyte imbal-
ance, cardiac arrhythmias, congestive heart failure, 
anemia, and diabetes), followed by renal failure dis-
eases, with incidence rates ranging from 28.1 to 28.9%. 
Chronic pulmonary diseases were a common category 
of high incidence across all three subgroups, with 

incidence rates ranging from 20.5 to 23.4%. Subgroups 
were also characterized by distinct underlying condi-
tions on the following absolute or comparative bases:

Subgroup 1 low in coagulopathy (9.9%), liver dis-
ease (6.2%), and alcohol abuse (6.1%)
Subgroup 2 high in coagulopathy (29.6%), defi-
ciency anemias (29.0%), liver disease (17.4%), and 
pulmonary circulation disease (11.1%)
Subgroup 3 low in all dominant categories, except 
for chronic pulmonary disease, deficiency anemias, 
and depression; high in neurologic disease (21.8%) 
and alcohol abuse (12.9%)

Statements made above for significant (or non-signif-
icant) subgroup characteristics were consistent with the 
results of the hypothesis tests performed to determine dif-
ferences in the means between subgroups for these char-
acteristics at the 0.05 significance level (“Appendix 3”).

Therefore, we further characterized these subgroups 
based on the heterogeneity observed in their comorbid-
ity distributions. Subgroup 2, the sickest group with the 
highest mortality, was comprised of patients with severe 
organ dysfunction or failure multiplied by a wide range 
of comorbidities, whereas Subgroup 1, the less sick group 
with reduced mortality, consisted of patients with chronic 
conditions in cardiovascular and pulmonary categories. 

Fig. 4  7-Day sofa score charts

Table 4  Within-subgroup incidences of the top 17 
comorbidities with a minimal 10% incidence by subgroup

Comorbidity categories are sorted in descending order of their combined 
incidence in the sepsis cohort

Comorbidity category Comorbidity incidence (%)

Subgroup 1 Subgroup 2 Subgroup 3

Hypertension 69.87 65.18 48.58

Fluid electrolyte imbalance 42.12 61.94 35.36

Cardiac arrhythmias 38.59 37.13 22.47

Congestive heart failure 32.35 30.60 14.95

Deficiency anemias 22.91 28.98 21.36

Diabetes uncomplicated 28.08 25.74 16.57

Chronic pulmonary 23.40 21.02 20.49

Renal failure 28.08 28.88 6.80

Coagulopathy 9.93 29.57 11.95

Neurologic disease 15.11 13.21 21.76

Hypothyroidism 15.35 13.26 10.72

Depression 11.66 12.97 14.04

Liver disease 6.16 17.44 9.49

Valvular disease 11.82 13.02 7.24

Alcohol abuse 6.08 10.61 12.86

Peripheral vascular 11.33 12.03 5.42

Pulmonary circulation 9.85 11.10 6.29
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Subgroup 3 was our least sick group with the lowest 
mortality, distinguished by low comorbidities in general, 
except for a high incidence of neurologic diseases.

Implications on patient outcome
The Sepsis-3 subgroups identified in this study had prog-
nostic implication on clinical outcome. As was validated 
previously that the selected subgraphs were sufficiently 
representative of the three patient subgroups, we trained a 
gradient boosting machine to model patient mortality using 
the three sets of selected subgraphs combined to assess this 
implication. The model achieved 86.3% accuracy and 68.1% 
AUC in the testing set from a refreshed train-test split. 
Additional evaluation metrics, including precision, recall, 
and f-scores, are shown in Table  5, and the ROC curve 
from the testing set are included in “Appendix 7”.

We then trained two other gradient boosting machines 
to model patient mortality using mean 7-day SOFA 
scores and the Elixhauser Comorbidity Index as bench-
marks. The two preliminary models both underper-
formed the subgraph-based model with 83.7% accuracy 
and 56.0% AUC for the SOFA score-based model and 
81.1% accuracy and 50.7% AUC for the comorbidity 
score-based model. Both sets of statistics were based on 
the testing sets of the refreshed train-test splits. Addi-
tional evaluation metrics, including precision, recall, and 
f-scores, are shown in Tables 6 and 7. These results vali-
dated that these patient subgroups were prognostic fac-
tors of patient mortality.

Discussion
Several studies have been conducted by fellow research-
ers to identify subgroups in sepsis patients. Utilizing gene 
expression data, Sweeney et al. [27] performed two cluster-
ing analyses, K-means clustering and partitioning around 
medoids (PAM) clustering, of sepsis patients with bacte-
rial infections. Three phenotypes were identified using 
combined results from both K-means and PAM clusters. 
Although Sweeney et  al. applied additional limits to the 
cohort to include only bacteria-induced sepsis patients 
and exclude virus-induced sepsis patients and utilized a 
different type of dataset on gene expression rather than 

physiological measurements, our phenotyping results, 
upon comparison, had significant similarities to theirs. 
Our subgroup 2 was similar to their “coagulopathic” clus-
ter, both characterized by old age, high mortality and 
clinical coagulopathy. Our subgroup 3 was similar to their 
“adaptive” cluster, both consisting of younger and less-
sick patients with low mortality. More recently, Seymour 
et  al. [28] conducted a K-means clustering analysis utiliz-
ing clinical data and derived four phenotypes from a robust 
cohort of 20,189 sepsis patients. We found similarities 
between our subgroup 3 and their α phenotype in terms of 
low age and mortality. In particular, low administration of 
vasopressors in the α phenotype agreed with the low car-
diovascular diseases observed in subgroup 3. Our subgroup 
2 was also similar to their δ, both exhibiting high mortal-
ity, male majority, and distinguished by liver dysfunction. 
Both of these previous studies essentially collected a single 
data point per time series to describe sepsis phenotypes, 
whereas our phenotypes were described using a set of 
physiological trends spanning the first 3 days at a minimal 
resolution of one data point for every 6 h.

We recognize a number of limitations in our study. 
First, our data were from only the ICU of one hospital in 
Boston, MA. Second, the data points used in our study 
were often irregularly and sparsely recorded. Missing 
values were imputed using linear approximation, which 
may have altered, obscured, or artificially boosted tempo-
ral trends that may have been, in fact, less significant. As 
future work, we plan to investigate more advanced impu-
tation methods designed for multi-variable clinical time 
series. [29, 30] We also plan to validate this physiological 

Table 5  Gradient boosting machine error metrics for patient 
30-day mortality model on frequent subgraphs representing 
patient subgroups

Measure Train Test

Accuracy 0.892 0.863

Precision 0.885 0.802

Recall 0.726 0.681

F-score 0.773 0.716

AUC​ 0.726 0.681

Table 6  Gradient boosting machine error metrics for patient 
30-day mortality model on mean 7-day SOFA scores

Measure Train Test

Accuracy 0.846 0.837

Precision 0.809 0.759

Recall 0.583 0.560

F-score 0.602 0.566

AUC​ 0.583 0.560

Table 7  Gradient boosting machine error metrics for patient 
30-day mortality model on Elixhauser comorbidity index

Measure Train Test

Accuracy 0.829 0.811

Precision 0.914 0.629

Recall 0.520 0.507

F-score 0.491 0.466

AUC​ 0.520 0.507
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subgraph-augmented NMF model with a robust cohort 
constructed from a geographically diverse set of locations 
to further assess the reproducibility and relevance of this 
novel phenotyping. Finally, our data source contains only 
records generated during the ICU stay and within 24  h 
after the ICU discharge, rather than the entire hospi-
talization or patient encounter. Data that capture early 
signs and development prior to disease onset tend to be 
missing or incomplete. Therefore, we designed our study 
to aim at deriving phenotypes that would characterize 
the disease trajectories of sepsis and provide prognostic 
implications for clinical outcomes rather than predictive 
implications for sepsis onset.

In this study, we demonstrated that the identified sep-
sis phenotypes displayed distinctive and clinically relevant 
characteristics and were decent prognostic factors of mor-
tality. These phenotypes and associated findings could be 
useful with respect to developing targeted therapies and 
clinical interventions for sepsis. Efficiency in clinical trials 
to develop targeted therapies, which is often obfuscated 
by the inter-patient variability, could be improved by 
designing trials that selectively enroll patients with pheno-
types as subgroups in the cohort, test different treatment 
approaches on these patient subgroups, and compare the 
results to identify specific treatments to which a given 
subgroup is more responsive [31]. The phenotypes identi-
fied in our study could serve as baseline phenotypes for 
designing clinical trials such that (1) patients are selec-
tively enrolled into phenotypic subgroups in the sepsis 
cohort, (2) different therapies are tested, and responses 
are compared between patient subgroups, and (3) tar-
geted therapies to which each of the subgroups is most 
responsive are identified. Intelligent alerts and valida-
tors in clinical decision support systems could be devel-
oped based on the representative subgraph groups, which 
describe the sepsis phenotypes, to effectively monitor 
sepsis patients. For example, alarms triggered by multi-
ple physiological variables that trend toward a worsened 
state (e.g., subgroup 2 in Fig. 2) may provide more accu-
rate information for physician and nurse to act on. Clini-
cal decisions, such as discharging a patient from ICU, may 
be validated across multiple key physiological trends to 
mitigate the risk of premature discharge. Methods in our 
study may also be adapted to extract physiological trend 
groups as features to model patient outcomes and, given a 
more robust and complete data source, to predict disease 
onset to identify opportunities for early intervention.

Conclusions
We identified three distinct phenotypes from patients 
with sepsis utilizing the novel algorithm subgraph-aug-
mented nonnegative matrix factorization (SANMF) on 

temporal trends from a multivariate panel of physiologi-
cal variables. These phenotypes were characterized by 
distinct demographics, physiological patterns, disease 
trajectories, and underlying comorbidities and were 
demonstrated to be prognostically relevant to clinical 
outcome. These findings could be leveraged to under-
stand the heterogeneity in the progression and treatment 
effects of sepsis, and to develop targeted therapies to 
alternately address the impact of heterogeneity. Further 
research is needed to determine the feasibility of these 
initiatives.

Appendix 1: Demonstration of key components 
in frequent subgraph mining implementation
We added a simple example of applying the frequent 
subgraph mining algorithm to mine subgraphs from the 
graph corpus of one patient and one physiological vari-
able in “Appendix 1” to demonstrate the two key com-
ponents “Subgraph Extraction from Time Series Graph” 
and “Frequent Subgraph Mining from Subgraph Corpus” 
in our python implementation of the frequent subgraph 
mining algorithm.

The component “Subgraph Extraction from Time Series 
Graph” is demonstrated in Fig.  5, where we included a 
simplified function called get_all_subgraphs(), which 
takes a graph corpus, the minimum length of subgraph 
as minlen, the maximum length of subgraph as maxlen 
as inputs and returns a list of subgraphs extracted from 
the input graph corpus. An example output is presented 
for the case in which the function is applied to a sample 
graph corpus of (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) extracted 
from one patient and one physiological variable to extract 
all subgraphs with lengths between 2 and 6.

Fig. 5  Subgraph extraction from time series graph
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The component “Frequent Subgraph Mining from 
Subgraph Corpus” is demonstrated in Fig.  6, where we 
included a simplified function called frequent_sub-
graph_mining(), which takes a list of subgraphs and the 
minimum support threshold as inputs and returns a dic-
tionary of all frequent subgraphs as keys and counts of 
occurrence as values. An example output is presented 
for the case in which the function was applied to the list 
of subgraphs extracted, as shown in Fig. 5, to obtain fre-
quent subgraphs with a count of occurrence greater than 
or equal to 2.

Appendix 2
See Fig. 7.

Fig. 6  Frequent subgraph mining from subgraph corpus

Fig. 7  Flow diagram for NMF model construction, Sepsis-3 subgroup identification, and associated functional validations
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Appendix 3
See Table 8.

Table 8  Two sample T Test results for distinguishing clinical characteristics by subgroup

P value smaller than 0.0001 are shown in scientific notation; Missing values in clinical characteristics were dropped in T Test

Clinical characteristic Mean (SD) within subgroup Two-sample T Test t-statistic (significance level) for 
difference in means between subgroups

1 2 3 1 and 2 1 and 3 2 and 3

Gender (is male) 0.59
(0.49)

0.60
(0.49)

0.50
(0.50)

− 0.695
(P = 0.487)

4.954
(P < 1e−3)

6.664
(P < 1e−3)

Age 73.12
(14.56)

67.91
(16.27)

59.92
(18.24)

9.194
(P < 1e−3)

22.094
(P < 1e−3)

15.429
(P < 1e−3)

Weight (kg) 84.25
(35.08)

83.01
(24.32)

79.37
(25.54)

1.144
(P = 0.253)

4.659
(P < 1e−3)

4.661
(P < 1e−3)

Elixhauser index 3.53
(6.90)

5.65
(7.12)

2.37
(6.59)

− 8.334
(P < 1e−3)

4.957
(P < 1e−3)

16.136
(P < 1e−3)

Day-1 sofa score 6.51
(2.60)

8.65
(3.38)

6.50
(2.53)

− 17.575
(P < 1e−3)

0.104
(P = 0.917)

23.652
(P < 1e−3)

ICU LOS (day) 3.14
(4.67)

6.23
(7.10)

4.21
(5.52)

− 13.561
(P < 1e−3)

− 5.846
(P < 1e−3)

10.83
(P < 1e−3)

30-Day mortality 0.17
(0.38)

0.28
(0.45)

0.10
(0.30)

− 7.411
(P < 1e−3)

6.01
(P < 1e−3)

16.323
(P < 1e−3)

In-hospital mortality 0.12
(0.32)

0.26
(0.43)

0.07
(0.26)

− 8.95
(P < 1e−3)

4.729
(P < 1e−3)

16.893
(P < 1e−3)

Coagulopathy 0.10
(0.30)

0.30
(0.46)

0.12
(0.32)

− 13.388
(P < 1e−3)

− 1.823
(P = 0.068)

15.217
(P < 1e−3)

Liver disease 0.06
(0.24)

0.17
(0.38)

0.09
(0.29)

− 9.313
(P < 1e−3)

− 3.451
(P = 0.001)

7.975
(P < 1e−3)

Alcohol abuse 0.06
(0.24)

0.11
(0.31)

0.13
(0.33)

− 4.404
(P < 1e−3)

− 6.333
(P < 1e−3)

− 2.335
(P = 0.020)

Pulmonary circulation 0.10
(0.30)

0.11
(0.31)

0.06
(0.24)

− 1.117
(P = 0.264)

3.897
(P < 1e−3)

5.833
(P < 1e−3)

Neurological disease 0.15
(0.36)

0.13
(0.34)

0.22
(0.41)

1.511
(P = 0.131)

− 4.817
(P < 1e−3)

− 7.522
(P < 1e−3)

Chronic pulmonary 0.06
(0.24)

0.11
(0.31)

0.13
(0.33)

1.587
(P = 0.113)

2.033
(P = 0.042)

0.440
(P = 0.660)

Hypertension 0.70
(0.46)

0.65
(0.48)

0.49
(0.50)

2.756
(P = 0.006)

12.536
(P < 1e−3)

11.386
(P < 1e−3)

Fluid electrolyte imbalance 0.42
(0.49)

0.62
(0.49)

0.35
(0.48)

− 11.192
(P < 1e−3)

4.006
(P < 1e−3)

18.530
(P < 1e−3)

Cardiac arrhythmias 0.39
(0.49)

0.37
(0.48)

0.22
(0.42)

0.829
(P = 0.407)

10.473
(P < 1e−3)

10.991
(P < 1e−3)

Congestive heart failure 0.32
(0.47)

0.31
(0.46)

0.15
(0.36)

1.041
(P = 0.298)

12.585
(P < 1e−3)

12.926
(P < 1e−3)

Deficiency anemias 0.23
(0.42)

0.29
(0.45)

0.21
(0.41)

− 3.796
(P = 0.000)

1.072
(P = 0.284)

5.949
(P < 1e−3)

Diabetes uncomplicated 0.28
(0.45)

0.26
(0.44)

0.17
(0.37)

1.463
(P = 0.144)

8.270
(P < 1e−3)

7.646
(P < 1e−3)

Renal failure 0.28
(0.45)

0.29
(0.45)

0.07
(0.25)

− 0.490
(P = 0.625)

18.517
(P < 1e−3)

20.819
(P < 1e−3)

Hypothyroidism 0.15
(0.36)

0.13
(0.34)

0.11
(0.31)

1.662
(P = 0.097)

4.063
(P < 1e−3)

2.642
(P = 0.008)

Depression 0.12
(0.32)

0.13
(0.34)

0.14
(0.35)

− 1.093
(P = 0.275)

− 2.016
(P = 0.0439)

1.055
(P = 0.291)

Valvular disease 0.12
(0.32)

0.13
(0.34)

0.07
(0.26)

− 0.993
(P = 0.321)

4.668
(P < 1e−3)

6.549
(P < 1e−3)

Peripheral vascular 0.11
(0.32)

0.12
(0.33)

0.05
(0.23)

− 0.602
(P = 0.547)

6.533
(P < 1e−3)

8.076
(P < 1e−3)
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Appendix 4
See Fig. 8.

Appendix 5
See Fig. 9.

Appendix 6
See Fig. 10.

Appendix 7
See Fig. 11.

Fig. 8  Gradient boosting machine ROC curve for patient group 
membership classification on frequent subgraphs—subgroup 1

Fig. 9  Gradient boosting machine ROC curve for patient group 
membership classification on frequent subgraphs—subgroup 2

Fig. 10  Gradient boosting machine ROC curve for patient group 
membership classification on frequent subgraphs—subgroup 3

Fig. 11  Gradient boosting machine ROC curve for patient mortality 
model on frequent subgraphs



Page 14 of 15Ding and Luo ﻿BMC Med Inform Decis Mak  2021, 21(Suppl 5):95

Abbreviations
SANMF: Subgraph-augmented non-negative matrix factorization; MIMIC-III: 
Medical information mart for intensive care III; ICU: Intensive care unit; SOFA: 
Sequential organ failure assessment score; EGDT: Early goal-directed therapy; 
SIRS: Systemic inflammatory response syndrome; NMF: Non-negative matrix 
factorization; EHRs: Electronic health records; Diastolic BP: Diastolic blood 
pressure; Systolic BP: Systolic blood pressure; Ph: Potential of hydrogen; GCS: 
Glasgow coma scale; SaO2: Blood oxygen saturation; FiO2: Fraction of inspired 
O2; PaO2: Partial pressure of arterial oxygen; PTT: Partial prothrombin time; INR: 
International normalized ratio; AST: Aspartate aminotransferase; CO2: Carbon 
dioxide; PAM: Partitioning around medoids.

Acknowledgements
Not applicable.

About this supplement
This article has been published as part of BMC Medical Informatics and Deci-
sion Making Volume 21 Supplement 5 2021: Informatics and machine learning 
methods for health applications (part 2). The full contents of the supplement 
are available at https​://bmcme​dinfo​rmdec​ismak​.biome​dcent​ral.com/artic​les/
suppl​ement​s/volum​e-21-suppl​ement​-5.

Authors’ contributions
MD collected, analyzed and interpreted the data and was a major contributor 
in writing the manuscript. YL originated the study, guided the data analysis 
and interpretation, and revised the manuscript. All authors read and approved 
the final manuscript.

Funding
This study was supported in part by NIH/NLM Grant R01LM013337.

Availability of data and materials
The datasets generated and/or analyzed during the current study are available 
on the MIMIC-III critical care database at https​://mimic​.physi​onet.org/.

Declarations

Ethics approval and consent to participate
Not applicable since the MIMIC dataset is publicly available de-identified 
dataset.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 18 February 2021   Accepted: 1 March 2021
Published: 9 April 2021

References
	1.	 Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 

2013;369(9):840–51.
	2.	 Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. 

The natural history of the systemic inflammatory response syndrome 
(SIRS). A prospective study. JAMA. 1995;273(2):117–23.

	3.	 Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. 
Epidemiology of severe sepsis in the United States: analysis of incidence, 
outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.

	4.	 Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, 
Ognibene FP. Septic shock in humans. Advances in the understanding of 
pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med. 
1990;113(3):227–42.

	5.	 Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW. Incidence and 
trends of sepsis in US hospitals using clinical vs claims data, 2009–2014. 
JAMA. 2017;318(13):1241–9.

	6.	 Paoli CJ, Reynolds MA, Sinha M, Gitlin M, Crouser E. Epidemiology and 
costs of sepsis in the United States-an analysis based on timing of diag-
nosis and severity level. Crit Care Med. 2018;46(12):1889–97.

	7.	 Chalfin DB, Holbein ME, Fein AM, Carlon GC. Cost-effectiveness of 
monoclonal antibodies to gram-negative endotoxin in the treatment of 
gram-negative sepsis in ICU patients. JAMA. 1993;269(2):249–54.

	8.	 Liu V, Escobar GJ, Greene JD, Soule J, Whippy A, Angus DC, Iwashyna 
TJ. Hospital deaths in patients with sepsis from 2 independent cohorts. 
JAMA. 2014;312(1):90–2.

	9.	 Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson 
E, Tomlanovich M, et al. Early goal-directed therapy in the treatment of 
severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

	10.	 Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related 
to severe sepsis and septic shock among critically ill patients in Australia 
and New Zealand, 2000–2012. JAMA. 2014;311(13):1308–16.

	11.	 Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, et al. 
The third international consensus definitions for sepsis and septic shock 
(Sepsis-3). JAMA. 2016;315(8):801–10.

	12.	 Johnson AEW, Aboab J, Raffa JD, Pollard TJ, Deliberato RO, Celi LA, Stone 
DJ. A comparative analysis of sepsis identification methods in an elec-
tronic database. Crit Care Med. 2018;46(4):494–9.

	13.	 Davenport EE, Burnham KL, Radhakrishnan J, Humburg P, Hutton P, et al. 
Genomic landscape of the individual host response and outcomes in 
sepsis: a prospective cohort study. Lancet Respir Med. 2016;4(4):259–71.

	14.	 Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, et al. MIMIC-III, a 
freely accessible critical care database. Sci Data. 2016;3:160035.

	15.	 Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, et al. prediction 
of in-hospital mortality in emergency department patients with sepsis: 
a local big data-driven, machine learning approach. Acad Emerg Med. 
2016;23(3):269–78.

	16.	 Pirracchio R, Petersen ML, Carone M, Rigon MR, Chevret S, van der Laan 
MJ. Mortality prediction in intensive care units with the super ICU learner 
algorithm (SICULA): a population-based study. Lancet Respir Med. 
2015;3(1):42–52.

	17.	 Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An 
interpretable machine learning model for accurate prediction of sepsis in 
the ICU. Crit Care Med. 2018;46(4):547–53.

	18.	 Luo Y, Xin Y, Joshi R, Celi LA, Szolovits P. Predicting ICU mortality risk by 
grouping temporal trends from a multivariate panel of physiologic meas-
urements. In: AAAI; 2016.

	19.	 Stroup EK, Luo Y, Sanchez-Pinto LN. Phenotyping multiple organ dysfunc-
tion syndrome using temporal trends in critically ill children. In: IEEE inter-
national conference on bioinformatics and biomedicine (BIBM); 2019.

	20.	 Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification 
of tumor mutations. Nat Methods. 2013;10(11):1108–15.

	21.	 Zeng Z, Vo AH, Mao C, Clare SE, Khan SA, Luo Y. Cancer classification and 
pathway discovery using non-negative matrix factorization. J Biomed 
Inform. 2019;96:103247.

	22.	 Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular 
pattern discovery using matrix factorization. Proc Natl Acad Sci U S A. 
2004;101(12):4164–9.

	23.	 Zitnik M, Zupan B. NIMFA: a python library for nonnegative matrix factori-
zation. J Mach Learn Res. 2012;13:849–53.

	24.	 Lin CJ. Projected gradient methods for nonnegative matrix factorization. 
Neural Comput. 2007;19(10):2756–79.

	25.	 Pedregosa F, et al. Scikit-learn: machine learning in Python. J Mach Learn 
Res. 2011;12:2825–30.

	26.	 Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for 
use with administrative data. Med Care. 1998;36(1):8–27.

	27.	 Sweeney TE, Azad TD, Donato M, Haynes WA, Perumal TM, Henao 
R, et al. Unsupervised analysis of transcriptomics in bacterial sepsis 
across multiple datasets reveals three robust clusters. Crit Care Med. 
2018;46(6):915–25.

	28.	 Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z. Derivation, 
validation, and potential treatment implications of novel clinical pheno-
types for sepsis. JAMA. 2019;321(20):2003–17.

	29.	 Luo Y, Szolovits P, Dighe AS, Baron JM. Using machine learning to predict 
laboratory test results. Am J Clin Pathol. 2016;145(6):778–88.

https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-21-supplement-5
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-21-supplement-5
https://mimic.physionet.org/


Page 15 of 15Ding and Luo ﻿BMC Med Inform Decis Mak  2021, 21(Suppl 5):95	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	30.	 Luo Y, Szolovits P, Dighe AS, Baron JM. 3D-MICE: integration of cross-sec-
tional and longitudinal imputation for multi-analyte longitudinal clinical 
data. J Am Med Inform Assoc. 2018;25(6):645–53.

	31.	 Edwardsa RR, Dworkinb RH, Turkc DC, Angstd MS, Dionnee R, Freemana 
R. Patient phenotyping in clinical trials of chronic pain treatments: 
IMMPACT recommendations. Pain. 2016;157(9):1851–71.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Unsupervised phenotyping of sepsis using nonnegative matrix factorization of temporal trends from a multivariate panel of physiological measurements
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Data
	Candidate physiological variables
	Time series graphs
	Frequent subgraph mining
	Subgraph augmented NMF
	Identifying Sepsis-3 subgroups

	Results
	Demographics and outcomes
	Representative subgraphs
	7-Day SOFA score trend
	Comorbidities
	Implications on patient outcome

	Discussion
	Conclusions
	Acknowledgements
	References


