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Abstract 

Background:  Analgesia and sedation therapy are commonly used for critically ill patients, especially mechanically 
ventilated patients. From the initial nonsedation programs to deep sedation and then to on-demand sedation, the 
understanding of sedation therapy continues to deepen. However, according to different patient’s condition, under-
standing the individual patient’s depth of sedation needs remains unclear.

Methods:  The public open source critical illness database Medical Information Mart for Intensive Care III was used in 
this study. Latent profile analysis was used as a clustering method to classify mechanically ventilated patients based 
on 36 variables. Principal component analysis dimensionality reduction was used to select the most influential vari-
ables. The ROC curve was used to evaluate the classification accuracy of the model.

Results:  Based on 36 characteristic variables, we divided patients undergoing mechanical ventilation and sedation 
and analgesia into two categories with different mortality rates, then further reduced the dimensionality of the data 
and obtained the 9 variables that had the greatest impact on classification, most of which were ventilator parameters. 
According to the Richmond-ASS scores, the two phenotypes of patients had different degrees of sedation and anal-
gesia, and the corresponding ventilator parameters were also significantly different. We divided the validation cohort 
into three different levels of sedation, revealing that patients with high ventilator conditions needed a deeper level of 
sedation, while patients with low ventilator conditions required reduction in the depth of sedation as soon as possible 
to promote recovery and avoid reinjury.

Conclusion:  Through latent profile analysis and dimensionality reduction, we divided patients treated with mechani-
cal ventilation and sedation and analgesia into two categories with different mortalities and obtained 9 variables that 
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Background
The use and development of critical care medicine aims 
to provide comprehensive and effective life support for 
nonterminal critical patients with multiple organ dys-
function to save the patients’ lives and recover their qual-
ity of life to the greatest extent. After entering the ICU, 
the patients suffer obvious discomfort and pain due to 
the disease itself, such as hypoxia, shock, high fever, and 
surgery. In addition, since they lack a complete under-
standing of the disease status, treatment plan and prog-
nosis, coupled with the various examinations, treatment 
measures and noisy medical environments, patients in 
the ICU can easily become anxious, irritable, painful and 
even delirious. This state not only causes tremendous 
pressure on the patient’s mental state but also leads to 
changes in the patient’s physiological state, even increas-
ing the burden of related organ functions and worsening 
the condition in severe cases.

Analgesia and sedation therapy refer specifically to 
the application of medications to eliminate pain, relieve 
anxiety and restlessness, hypnotize and induce ante-
grade amnesia. Timely and dynamic assessments of the 
patients’ anxiety, pain, and delirium, the provision of 
appropriate treatment based on disease state and diagno-
sis, and the delivery of appropriate analgesic and sedative 
medications have become the cornerstone for the smooth 
implementation of all other treatments in the ICU [1–3].

Currently recognized sedation treatment plans are 
based on analgesia; that is, the pain is evaluated first, and 
after appropriate treatment, a decision is made regarding 
the use of sedative drugs according to the patient’s needs.

However, Shehabi et  al. found that many patients 
were deeply sedated within 48 h after entering the ICU, 
which constitutes an independent risk factor for pro-
longed mechanical ventilation and increased mortality 
in mechanically ventilated patients [4, 5]. Therefore, pro-
viding deep sedation to mechanically ventilated patients 
without evaluation and analysis, whether or not it is early 
in the patient’s care, may worsen the patient’s condition, 
which of course we cannot see clearly.

For patients with severe lung disease, such as acute 
respiratory distress syndrome (ARDS), or spontaneously 
deep breathing, which leads to an increase in transpul-
monary pressure, leading to lung injury, it is also unrea-
sonable to administer light sedation. Instead, deeper 
sedation may be required to control the drastic changes 
in transpulmonary pressure to better protect the lungs.

Judging from the historical evolution of analgesia and 
sedation, the general consensus is to give on-demand 
sedation treatment to patients on mechanical ventilation 
in the ICU. From the initial plan involving no sedation 
to deep sedation and then to on-demand sedation, the 
understanding of sedation therapy continues to deepen. 
However, according to different patient’s condition, 
understanding the individual patient’s depth of sedation 
needs remains unclear. In this study, we used machine 
learning methods to identify patients who had received 
mechanical ventilation and undergone analgesia and 
sedation treatment into clinical subtypes and analyzed 
clinical features that affect the classification in an attempt 
to find a standard that determines the depth of sedation 
treatment needs for the patients.

Methods
An overview of the primary analysis plan is outlined in 
Fig. 1. Briefly, latent profile analysis (LPA) was conducted 
on the Medical Information Mart for Intensive Care III 
(MIMIC III) dataset, and the resultant phenotypes based 
on 36 variables served as the standard for developing 
stepwise logistic regression variable selection. The data-
set was split into a training dataset (80%) and a verifica-
tion dataset (20%). To reduce the number of variables 
and simplify the model, principal component analysis 
(PCA) dimensionality reduction was used for select-
ing important variables. The most important variables 
were, in turn, used to develop stepwise logistic regres-
sion classifier models. The models were compared with 
other machine-learning models in terms of comprehen-
sive model performance to verify the optimal model. The 
model-derived phenotypes were generated and analyzed.

Dataset
The MIMIC-III dataset is a large, freely available data-
base comprising deidentified health-related data associ-
ated with over forty thousand patients who stayed in the 
critical care units of the Beth Israel Deaconess Medical 
Center between 2001 and 2012. The database includes 
information such as demographics, vital sign measure-
ments made at the bedside, laboratory test results, proce-
dures, medications, caregiver notes, imaging reports, and 
mortality [6, 7].

This study used the data from a total of 5935 adults from 
the MIMIC III database who had received mechanical ven-
tilation and were administered sedative analgesics during 

had the greatest impact on classification, which revealed that the depth of sedation was limited by the condition of 
the respiratory system.
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their ICU stay. The enrolled patients’ data were extracted 
from the MIMIC-III database according to the following 
criteria:

1.	 Mechanically ventilated patients: patients with a 
non-null value for the positive expiratory end pres-
sure (PEEP) were included.

2.	 Use of sedative and analgesic drugs: Considering the 
real data available in the database and clinical expe-
riences, we selected five sedative or analgesic drugs, 
fentanyl, midazolam, morphine, propofol, and dex-
medetomidine. Patients who had used one of them 
(that is, the corresponding dose value was not empty) 
were included in the study cohort.

Statistical methods
In total of 36 candidate feature variables associated with 
mechanical ventilation were selected for statistical analy-
sis, as shown in Table 1.

For each variable, the average value over the first 24 h 
after analgesia and sedation administration was calcu-
lated and used; the exceptions were total calcium, fluid 
balance and sedative and analgesic drugs, for which the 
total amount during the first day was used. To explore the 
subphenotypes of patients given analgesia and sedation, 
we first evaluated the distributions, absence and correla-
tions of candidate feature variables.

For the preprocessing of missing values and outliers, 
given the scarcity of samples, we did not simply adopt 

Fig. 1  Overview of the primary analysis plan
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variable removal and mean replacement. Instead, we 
used chain equations for multiple imputation for missing 
data [8] and logarithmic transformation. For the sedative 
and analgesic drugs, we filled null values with 0 accord-
ing to the actual situation. In the correlation evaluation, 
we used the ranking statistics from sensitivity analysis to 
exclude highly correlated variables.

Latent profile analysis (LPA)
We used the unsupervised clustering method commonly 
used in medical research in our study. Consensus cluster-
ing [9] and latent profile analysis (LPA) were used within 
a Gaussian mixture model. Latent profile analysis is a 
probabilistic or model-based technique that is a variant 
of traditional cluster analysis [10, 11].

To better visualize the results, multiple types of graphs 
were used for analysis and display: (1) Box plots were 
used to show the difference in phenotypes through the 
means and standard deviations of the variables; (2) T-dis-
tributed stochastic neighbor embedding (t-SNE) was 
used to reduce multidimensional variables to two dimen-
sions to visualize the subphenotypes; and (3) survival 
analysis curves were used to demonstrate the 28-day sur-
vival curve of each phenotype.

To describe the potential relationship between the 
analgesia and sedation phenotypes and the 36 features, 
we also compared the means, standard deviations and 
proportion of each phenotype for these characteristics. 
At the same time, we performed the χ2 test on the cumu-
lative mortality of each phenotype at 28  days to deter-
mine whether there were significant differences.

Variable selection based on principal component analysis 
(PCA)
Principal component analysis (PCA) is a common data 
analysis method that is often used for dimensional-
ity reduction of high-dimensional data and can be used 
to extract the main feature components of the data. In 
this study, we applied the PCA dimensionality reduc-
tion method to find and verify the variables that had 

the greatest impact on the effect of model classification, 
which may guide clinical application in the future. First, 
the original feature set was transformed by PCA, and 
then the weights of the original features in the transfor-
mation were obtained by analyzing the transformation 
matrix. The final feature subset was selected according to 
the order of the weights from high to low. To limit the 
complexity of our model, the ten most important vari-
ables were chosen for the next step in the model analysis.

Logistic regression model
The top ten variables identified by PCA were used in 
forward stepwise regression using the dataset. Logistic 
regression models of increasing complexity were gen-
erated by sequential addition of variables. The order 
in which the variables were entered into the model was 
determined by the findings of the stepwise regression 
analysis. Model performance was assessed by generating 
receiver operating characteristic (ROC) curves and cal-
culating the area under the ROC curve (AUROC).

To confirm the advancement of our model, we com-
pared the performance of the logistic regression model 
and other classifiers, such as XGBoost, random forest, 
and decision tree. Accuracy, precision, recall, F1-score 
and AUC (area under curve) were used to evaluate the 
performance of the classifiers.

Analysis of analgesia and sedation and the effect 
of mechanical ventilation
The Richmond-ASS [12] reflects the degree of sedation 
of the patient. The lower the score, the better the seda-
tion effect is. Based on previous clinical studies and 
experiences, we divided patients into three categories 
with different degrees of sedation according to the Rich-
mond-ASS: [− 5, − 3], (− 3, 0], and (0, 3]. It is generally 
considered that patients with 0 points and below have 
higher levels of sedation. In Richmond-ASS table, 4 is the 
highest score which stands for combative. Among our 
patients included in the cohort, the highest score was 3, 

Table 1  Thirty-six feature variables and classifications related to mechanical ventilation

Demographic characteristics and scores Age, SAPS II, SOFA scores, Richmond-ASS scores

Laboratory values White blood cell (WBC), Hemoglobin (Hb), Hematocrit, Platelet, Urea Nitrogen (BUN), pH, 
pO2, pCO2, Bicarbonate (HCO3−), Lactate (Lac), Potassium (K), Sodium (Na), Chlorine (Cl), 
Total calcium (TotalCa), Partial thromboplastin time (PTT)

Persistent variables Fluid balance

Life support equipment variables Positive expiratory end pressure (PEEP), Oxygen concentration in the inhalation gas (FiO2), 
Tidal volume (VT), Peak airway pressure (Ppeak), Mean airway pressure (Pmean), Platform 
pressure (Pplat), Respiratory rate (RR)

Monitoring data Heart rate (HR), Mean arterial pressure (MAP), Temperature, Pulse oxygen saturation (SpO2%)

Sedative and analgesic drugs Dexmedetomidine, Fentanyl, Midazolam, Morphine, Propofol
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so the patients who were unsuccessfully sedated are clas-
sified as (0, 3].

Results
Statistical description of patient information
We included data from a total of 5,935 patients who had 
received mechanical ventilation during their ICU stay 
and extracted their feature data from within 24  h after 
admission to the ICU. Data from 4747 patients were 
selected as the training set, and data from 1188 patients 

were selected as the validation set. Table 2 shows the sta-
tistical description of the two data sets.

Clustering for clinical phenotypes
After data preprocessing, we used consensus clustering 
to classify 2–10 phenotypes to confirm the optimal num-
ber of phenotypes. According to Fig.  2, we found that 
dividing the data into two phenotypes was the best fit.

Considering that the data types of the candidate fea-
ture variables were all numerical, we then used the 
Gaussian mixture model to perform potential profile 

Table 2  Statistical description of the training set and validation set in the study

Features (mean ± SD) Training set (n = 4747) Validation set (n = 1188)

Age 63.83 ± 16.37 63.22 ± 16.29

SAPS II 40.21 ± 15.04 39.56 ± 14.85

SOFA scores 5.49 ± 3.53 5.36 ± 3.48

White blood cell (WBC) 12.52 ± 8.98 12.44 ± 6.27

Hemoglobin (Hb) 10.67 ± 1.90 10.74 ± 1.93

Hematocrit 31.91 ± 5.51 32.07 ± 5.48

Platelet 210.77 ± 109.94 210.00 ± 108.69

Urea nitrogen (BUN) 25.31 ± 20.39 24.95 ± 20.04

pH 7.37 ± 0.07 7.37 ± 0.07

pO2 189.14 ± 85.98 191.54 ± 89.92

pCO2 41.91 ± 8.66 41.53 ± 8.06

Bicarbonate (HCO3−) 23.62 ± 4.21 23.57 ± 4.01

Lactate (Lac) 2.23 ± 1.45 2.26 ± 1.52

Potassium (K) 4.22 ± 0.54 4.22 ± 0.57

Sodium (Na) 138.17 ± 4.04 138.17 ± 4.16

Chlorine (Cl) 105.33 ± 5.29 105.28 ± 5.37

Total calcium (TotalCa) 8.24 ± 0.74 8.23 ± 0.73

Partial thromboplastin time (PTT) 35.81 ± 15.29 36.14 ± 15.82

Fluid balance 4580.69 ± 9379.25 4687.70 ± 4268.08

Positive expiratory end pressure (PEEP) 5.99 ± 2.01 5.87 ± 1.90

Oxygen concentration in the inhalation gas (FiO2) 56.06 ± 13.29 55.37 ± 12.74

Tidal volume (VT) 520.06 ± 178.15 517.18 ± 159.60

Peak airway pressure (Ppeak) 20.28 ± 5.62 20.36 ± 5.50

Mean airway pressure (Pmean) 9.45 ± 2.85 9.40 ± 2.77

Platform pressure (Pplat) 18.29 ± 4.18 18.23 ± 3.97

Heart rate (HR) 86.06 ± 15.41 86.05 ± 15.63

Mean arterial pressure (MAP) 78.35 ± 11.68 78.42 ± 11.28

Respiratory rate (RR) 18.76 ± 3.71 18.62 ± 3.85

Temperature 36.83 ± 0.68 36.84 ± 0.67

Pulse oxygen saturation (SpO2%) 97.55 ± 2.26 97.61 ± 2.19

Richmond-ASS scores − 1.59 ± 1.49 − 1.59 ± 1.55

Dexmedetomidine 0.12 ± 0.77 0.12 ± 0.64

Fentanyl 3.52 ± 11.43 3.12 ± 9.97

Midazolam 65.45 ± 296.75 55.62 ± 208.40

Morphine 15.23 ± 84.53 13.07 ± 38.04

Propofol 3929.18 ± 8581.78 4066.48 ± 9464.44
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analysis [13] to cluster the data into two phenotypes. 
Figure  3 shows the two-dimensional clustering status 
shown by the t-SNE diagram.

As shown in Fig.  4a and Table  3, the variables were 
scaled for each phenotype. Broad differences were 
observed in the distributions of the scaled variables 
across phenotypes. Of the 36 variables measured, 29 
were significantly different across phenotypes in the 
training set with P < 0.05. Figure  4b shows the 28-day 

survival curves of the two phenotypes in the training 
set. The validation set shows the same trend (Fig. 5).

The most influential variables according to PCA
The 10 most important variables obtained from PCA are 
presented in Fig.  6. They include Pmean, Pplat, PEEP, 
Ppeak, SOFA score, SAPS II, pH, respiratory rate (RR), 
FiO2, pO2.

Forward stepwise regression did not eliminate any of 
the ten variables. Increasing the model complexity via the 
sequential addition of variables led to improved model 
performance. From Table 4, we can see that there was a 
relative plateauing by the time the 9-variable and 10-vari-
able models were created. Considering the best balance 
between classification accuracy and model simplicity, the 
9-variable model was defined as the best classifier model 
in our research. Figure  7 shows the receiver operating 
characteristic (ROC) curve of the 9-variable model, and 
the area under the curve (AUC) reached 0.77.

Fig. 2  Matrix heatmap (k = 2) shows that clustering into 2 categories 
is the best fit

Fig. 3  t-SNE plot of phenotype assignments

Fig. 4  The box plot (a) and 28-day survival curve (b) of the two 
phenotypes obtained with the 36 variables in the training set
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To confirm the advancement of our model, we com-
pared its performance with that of XGBoost, random 
forest and decision tree in terms of several parameters, 
such as accuracy, precision, recall, F1-score and AUC. 
As Table  5 shows, random forest has the highest pre-
cision with 0.7947, and XGBoost has the highest recall 
with 0.6574, but our logistic regression model has 
the highest accuracy, F1-score, and AUC with 0.7997, 
0.6771, and 0.7725, respectively. Thus, we believe the 
logistic regression model performed better than other 
classifiers.

Based on the 9 most influential variables obtained by 
PCA, we also obtained two phenotypes, and the corre-
sponding box plot and the 28-day survival curve of the 
validation set are shown in Fig.  8. The 9 variables were 
significantly different between the two phenotypes.

To further explore the relationship between different 
phenotypes and the degree of sedation and analgesia, 
the data of the two phenotypes from the validation set 
were then divided into three different levels of sedation 
according to the Richmond-ASS score, where [− 5, − 3] 
stands for deep sedation, (− 3, 0] stands for light sedation 

Table 3  Statistical description of the two phenotypes of the training set

Features (mean ± SD) Profile1 (n = 3500) Profile2 (n = 1247) P value

Age 64.57 ± 16.19 61.77 ± 16.70 < 0.001

SAPS II 37.92 ± 13.47 46.63 ± 17.22 < 0.001

SOFA scores 4.88 ± 3.00 7.20 ± 4.28 < 0.001

White blood cell (WBC) 11.78 ± 4.64 14.59 ± 15.52 < 0.001

Hemoglobin (Hb) 10.65 ± 1.81 10.75 ± 2.13 0.122

Hematocrit 31.77 ± 5.18 32.28 ± 6.33 0.005

Platelet 207.19 ± 101.90 220.82 ± 129.40 < 0.001

Urea Nitrogen (BUN) 22.49 ± 15.99 33.20 ± 27.95 < 0.001

pH 7.38 ± 0.06 7.34 ± 0.09 < 0.001

pO2 203.65 ± 85.69 148.41 ± 72.72 < 0.001

pCO2 41.49 ± 7.34 43.08 ± 11.52 < 0.001

Bicarbonate (HCO3−) 23.95 ± 3.64 22.67 ± 5.41 < 0.001

Lactate (Lac) 2.01 ± 0.93 2.85 ± 2.25 < 0.001

Potassium (K) 4.21 ± 0.51 4.26 ± 0.62 0.003

Sodium (Na) 138.13 ± 3.65 138.28 ± 4.96 0.245

Chlorine (Cl) 105.49 ± 4.88 104.88 ± 6.29 0.001

Total calcium (TotalCa) 8.27 ± 0.63 8.18 ± 0.99 < 0.001

Partial thromboplastin time (PTT) 34.06 ± 12.31 40.74 ± 20.78 < 0.001

Fluid balance 4023.84 ± 3505.98 6143.63 ± 17,240.77 < 0.001

Positive expiratory end pressure (PEEP) 5.56 ± 1.24 7.20 ± 3.01 < 0.001

Oxygen concentration in the inhalation gas (FiO2) 54.52 ± 11.58 60.39 ± 16.45 < 0.001

Tidal volume (VT) 504.45 ± 91.65 563.87 ± 307.72 < 0.001

Peak airway pressure (Ppeak) 19.21 ± 4.72 23.29 ± 6.73 < 0.001

Mean airway pressure (Pmean) 8.76 ± 1.88 11.40 ± 3.99 < 0.001

Platform pressure (Pplat) 17.53 ± 3.43 20.44 ± 5.22 < 0.001

Heart rate (HR) 84.46 ± 13.91 90.54 ± 18.27 < 0.001

Mean arterial pressure (MAP) 78.46 78.05 ± 17.84 0.288

Respiratory rate (RR) 18.04 ± 3.13 20.79 ± 4.40  < 0.001

Temperature 36.84 ± 0.58 36.79 ± 0.92 0.037

Pulse oxygen saturation (SpO2%) 97.84 ± 1.54 96.72 ± 3.43 < 0.001

Richmond-ASS scores − 1.39 ± 1.34 − 2.15 ± 1.74 < 0.001

Dexmedetomidine 0.01 ± 0.05 0.42 ± 1.47 < 0.001

Fentanyl 0.57 ± 1.26 11.82 ± 19.99 < 0.001

Midazolam 8.29 ± 23.13 225.89 ± 546.80 < 0.001

Morphine 7.27 ± 12.10 37.56 ± 161.65 < 0.001

Propofol 2219.76 ± 3271.76 8727.05 ± 14,805.89 < 0.001
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and (0, 3] stands for unsuccessful sedation treatment, 
as shown in Fig. 9. From this figure, Profile 1 accounted 
for 66.42% (n = 182) in the deep sedation [− 5, − 3] 
group, which indicated that these patients maybe reduce 
the depth of sedation. Profile 2 accounted for 25.47% 
(n = 215) in the light sedation (− 3, 0], which indicated 
that these patients need deeper sedation to meet their 
breathing needs. The proportion of unsuccessful sedation 
treatment (0, 3] patients is relatively small.

Discussion
This study divided mechanically ventilated patients who 
were administered analgesia and sedation into two cat-
egories. By reducing the dimensionality of the PCA, 
we can see that the obvious difference between the two 
types lies in the ventilator-based parameters. This shows 
that sedation is necessary for mechanically ventilated 
patients, who need to be administered sedation therapy 
to assist in lung self-treatment. By dividing the valida-
tion cohort into three categories, the result showed that 
patients with higher ventilator conditions require deeper 
levels of sedation. If the patient’s respiratory system dis-
ease is improving, the patient can be identified in time 
according to the model. Patients with profile1 require 
reduction in the level of sedation earlier or transition to 
the awake state in time, and patients with profile2 may 
need to continue with a deeper sedation mode to con-
tinue treatment.

Mechanical ventilation remains the main indication 
for continuous sedation in the ICU. For example, given 
the severity of ARDS, the needs of patients with regard 
to analgesia and sedation will be substantially differ-
ent. Yoshida et  al. [14] conducted a controlled study of 
spontaneous breathing and muscle relaxation therapy 

Fig. 5  The box plot (a) and 28-day survival curve (b) of two 
phenotypes obtained with the 36 variables in the validation set

Fig. 6  The 9 most important variables identified by PCA
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by making animal models of acute experimental lung 
injury of different severities. The results showed that 
with mild lung injury, spontaneous respiration can main-
tain a lower peak airway pressure and lead to more obvi-
ous histological improvement, while with severe lung 
injury, a lower peak airway pressure can be maintained 
when there is no spontaneous respiration; that is, under 

Table 4  Logistic regression model composition and accuracy with the dataset

Pmean Pplat PEEP Ppeak SOFA scores SAPS II pH RR pO2 FiO2 AUC​

Model1 Yes 0.70

Model2 Yes Yes 0.70

Model3 Yes Yes Yes 0.70

Model4 Yes Yes Yes Yes 0.70

Model5 Yes Yes Yes Yes Yes 0.72

Model6 Yes Yes Yes Yes Yes Yes 0.73

Model7 Yes Yes Yes Yes Yes Yes Yes 0.74

Model8 Yes Yes Yes Yes Yes Yes Yes Yes 0.75

Model9 Yes Yes Yes Yes Yes Yes Yes Yes Yes 0.77

Model10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 0.77

Fig. 7  ROC curve of the 9-variable model

Table 5  Performance of different classifiers

Classifier Accuracy Precision Recall F1-score AUC​

Logistic regression 0.7997 0.7625 0.6550 0.6771 0.7725

XGBoost 0.7870 0.7245 0.6574 0.6753 0.7464

Random forest 0.7921 0.7947 0.6130 0.6265 0.7684

Decision tree 0.7012 0.6168 0.6247 0.6200 0.6247
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muscle relaxation, lower peak pressure and better histo-
logical improvement can be achieved. Papazian et al. [15] 
also confirmed that for patients with severe ARDS, deep 
analgesia and sedation combined with muscle relaxants 
can improve their 90-day survival rate and shorten the 
time of mechanical ventilation and do not increase the 
incidence of muscle weakness. That is, for patients with 
severe ARDS, retaining spontaneous breathing and main-
taining mild sedation may be harmful. The mechanism is 
related to the deep analgesia, sedation and muscle relaxa-
tion used to improve human–machine synchronization, 
reduce transpulmonary pressure, and reduce ventilator-
related lung damage. However, as the condition of the 
ARDS patient improves, the continuous implementation 
of deep sedation strategies for patients with mild ARDS 
becomes more harmful. Shehabi et al. [16] suggested that 
the proportion of patients with excessive sedation within 
48  h of mechanical ventilation in the ICU is as high as 
68%. The disadvantages of long-term deep sedation are as 
follows: the patient’s consciousness cannot be judged in 

time; it increases complications (such as muscle atrophy 
and weakness), ventilator dependence, venous thrombo-
embolism, pressure ulcers and delirium; it inhibits circu-
lation and gastrointestinal motility; it prolongs weaning 
time and length of ICU hospital stay; and it increases 
the risk of acquired ventilator-associated pneumonia 
(VAP). [17]. In particular, coma caused by sedative drugs 
may increase the mortality rate of ICU patients, prolong 
intubation time and ICU hospitalization time, and cause 
long-term neuropsychological dysfunction [18]. For ICU 
patients, shallow sedation can effectively prevent exces-
sive sedation, ensure that the patient is comfortable, 
safe and sufficiently awake and responsive, make it easy 
to determine whether to wean and extubate, and assess 
pain, delirium, and the ability to carry out early activities 
[19]. By establishing this model, the dose ranges of seda-
tive drugs can be determined according to the param-
eters of the ventilator used during treatment. In other 
words, for the patient, what kind of ventilator param-
eters require deep sedation or light sedation? In this way, 
mechanically ventilated patients with serious pulmonary 
disease were found to need appropriate sedation therapy, 
while for recovery after treatment, the degree of sedation 
can be reduced, in turn reducing the secondary harm of 
mechanical ventilation to the patients.

There are some limitations in this study. First, MIMIC 
III was built in 2012, and there was insufficient knowl-
edge about analgesia and sedation at that time. Second, 
respiratory waveforms and other information were not 
available; thus, although the score reached the standard, 
it was not clear whether the ventilator still allowed spon-
taneous breathing after sedation (this would aggravate 
the injuries related to mechanical ventilation). Third, the 
effects of muscle relaxation on mechanical ventilation 
patients were not analyzed in this study. In the future, it 
may be necessary to conduct related research by incorpo-
rating other databases, such as MIMIC IV.

Conclusion
The patients in the MIMIC III database who underwent 
mechanical ventilation therapy and took sedative and 
analgesic drugs during their ICU stay were selected as 
the research sample. Based on 36 variables, we applied 
latent profile analysis to divide these patients into two 
categories with different mortalities. To further iden-
tify the key variables that affected the classification, we 
applied dimensionality reduction to select the 9 most 
critical variables, most of which were parameters associ-
ated with mechanical ventilation. After that, we divided 
the patients into three subphenotypes, deep sedation, 
light sedation and unsuccessful sedation, according to 
the degree of sedation and analgesia and correlated them 
with the critical parameters of mechanical ventilation. 

Fig. 8  The box plot (a) and 28-day survival curve (b) of the two 
phenotypes obtained with the 9 most important variables in the 
validation set
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That is, patients with profile1 were more suitable for 
reduced sedation, and patients with profile2 were more 
suitable for maintaining deeper sedation. We look for-
ward to adjusting the parameters of mechanical ventila-
tion according to the degree of sedation in the future to 
achieve fine individualized treatment in the ICU.
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