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Abstract 

Background:  The electronic health record (EHR) holds the prospect of providing more complete and timely access 
to clinical information for biomedical research, quality assessments, and quality improvement compared to other 
data sources, such as administrative claims. In this study, we sought to assess the completeness and timeliness of 
structured diagnoses in the EHR compared to computed diagnoses for hypertension (HTN), hyperlipidemia (HLD), and 
diabetes mellitus (DM).

Methods:  We determined the amount of time for a structured diagnosis to be recorded in the EHR from when an 
equivalent diagnosis could be computed from other structured data elements, such as vital signs and laboratory 
results. We used EHR data for encounters from January 1, 2012 through February 10, 2019 from an academic health 
system. Diagnoses for HTN, HLD, and DM were computed for patients with at least two observations above threshold 
separated by at least 30 days, where the thresholds were outpatient blood pressure of ≥ 140/90 mmHg, any low-
density lipoprotein ≥ 130 mg/dl, or any hemoglobin A1c ≥ 6.5%, respectively. The primary measure was the length of 
time between the computed diagnosis and the time at which a structured diagnosis could be identified within the 
EHR history or problem list.

Results:  We found that 39.8% of those with HTN, 21.6% with HLD, and 5.2% with DM did not receive a correspond-
ing structured diagnosis recorded in the EHR. For those who received a structured diagnosis, a mean of 389, 198, and 
166 days elapsed before the patient had the corresponding diagnosis of HTN, HLD, or DM, respectively, recorded in 
the EHR.

Conclusions:  We found a marked temporal delay between when a diagnosis can be computed or inferred and when 
an equivalent structured diagnosis is recorded within the EHR. These findings demonstrate the continued need for 
additional study of the EHR to avoid bias when using observational data and reinforce the need for computational 
approaches to identify clinical phenotypes.
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Background
Despite the rapid digitization of healthcare, the current 
research enterprise remains inefficient. Randomized con-
trol trials (RCTs), which remain the gold standard, are 
costly, time-consuming, and capture only a small cross-
section of patients, which limits their generalizability [1, 
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2]. To accelerate the pace of discovery, investigators and 
regulatory agencies have increasingly focused on real-
world data (RWD), defined as data collected outside of 
a traditional research environment, as a source of infor-
mation [3–5]. Real-world data sources include adminis-
trative claims and discharge databases, clinical registries, 
and electronic health records (EHRs), among others. 
Despite increased access to these digital data, it remains 
important for investigators to be aware of and account 
for limitations in these observational data sets during 
study design and analysis [6–9].

The creation of patient cohorts and study endpoints 
often requires the identification of clinical diagno-
ses. These populations and endpoints are frequently 
characterized by diagnostic codes, such as Interna-
tional Statistical Classification of Diseases and Related 
Health Problems 10th Revision Clinical Modification 
(ICD-10-CM) codes [10]. Observational and outcomes 
research have long used administrative claims and reg-
istries as a source of this information [11–18]. However, 
these repositories come with the known limitations 
of significant time delays in availability and a lack of 
detailed clinical records [19, 20]. In addition, significant 
costs are associated with manual abstraction for disease-
specific registries [21]. Because of these limitations and 
the increased access to detailed EHR data, investigators 
have increasingly focused on the EHR to provide the data 
needed to support a wide range of studies.

Information obtained from the EHR has the poten-
tial to provide near real-time access to a more complete 
data set than can be provided from other RWD sources 
[19, 20]. The EHR is the primary repository of a patient’s 
clinical history, but the data elements needed to repre-
sent a patient’s history can be found in many locations, 
from structured fields in the history and problem list to 
unstructured clinical notes [9]. Prior work has shown 
that patient history and problem lists within the EHR 
can be incomplete and contain frequent errors [22–25]. 
Even for a relatively straightforward diagnosis such as 
hypertension, researchers from the OneFlorida clini-
cal data research network found that as many as 30% of 
those they identified with hypertension by means of clini-
cal measurements recorded in the EHR were missing the 
associated structured diagnostic code [26], similar to 
results found by an earlier study from Stanford [27].

Yet studies based on EHR data frequently use, some-
times solely, structured diagnostic codes to create 
cohorts and identify outcomes [28, 29]. Since adminis-
trative claims are ultimately derived from these struc-
tured fields, the EHR is likely not significantly worse 
than claims-based sources. Investigators have also dem-
onstrated that structured diagnostic codes can provide 
valuable information when analyzed in the appropriate 

context [30, 31]. Therefore, while limitations to the use 
of structured diagnoses from the EHR exist, they remain 
frequently used and ongoing study can increase the value 
of results generated from these sources.

A primary goal of EHR-based studies is access to 
near real-time information [32, 33], but it remains an 
indirect assessment of a patient’s status due to how the 
EHR is used in clinical workflows [34]. While data may 
be extracted immediately, clinical workflows and deci-
sion making may impact the timeliness of data entry into 
the EHR, particularly within structured data elements. 
Hence, the extent to which structured diagnoses may be 
missing at the time of analysis may be greatly underes-
timated. Therefore, computed diagnoses may be needed 
in order provide more accurate and timely information. 
While no single approach to creating a computed pheno-
type is necessarily best, understanding the limitations of 
EHR and other RWD sources is crucial for appropriate 
study design and interpretation of results.

In this study, we determine how structured diagnostic 
codes in the patient history and problem list compare to 
computed diagnoses for hypertension (HTN), hyperlipi-
demia (HLD), and diabetes mellitus (DM). We selected 
these three diagnoses with because they can be efficiently 
computed from structured clinical and laboratory data. 
We extend on prior work in the field to identify not only 
the completeness of structured diagnostic codes, but also 
the temporal association between the computed diag-
nosis and manual recording of an equivalent diagnostic 
code within the clinical record.

Methods
Data sources
We created our data set from a complete extract of the 
Yale New Haven Health clinical data warehouse (Epic 
Caboodle) that was transformed into the PCORnet Com-
mon Data Model v3.1 (CDM) on February 11, 2019 using 
our local data analytics platform [35]. The Caboodle 
source tables and supporting terminology tables were 
transformed into the demographic, encounter, diagno-
sis, condition, lab_result_cm, and vital PCORnet CDM 
tables, which were used for analysis. Diagnosis and con-
dition source were categorized as defined in the PCOR-
net CDM [36] for OD, BI, and CL which we label as 
provider, billing, and claims. As a data quality study based 
on existing and deidentified data, this work was not clas-
sified as human subjects research and did not require 
Institutional Review Board approval.

Phenotype definitions
We collected information to assess HTN, HLD, and 
DM. We excluded data with dates earlier than Janu-
ary 1, 2012 as these represented a sparse fraction of 



Page 3 of 9Schulz et al. BMC Med Inform Decis Mak           (2021) 21:61 	

the raw data with unreliable dates of onset due to their 
transfer between prior EHR systems. The most recent 
date of measurement or sample collection included in 
the analysis was restricted to on or before August 11, 
2018, whereas diagnosis events were current up to Feb-
ruary 10, 2019, allowing a period of at least 26  weeks 
(approximately six months) between the most recent 
measurement or result and the final date available. If 
multiple measurements were performed on the same 
day, then the minimum value of the measurement was 
selected to provide the most restrictive threshold and, 
consequently, a conservative assessment of the possi-
ble disease condition. Only outpatient blood pressure 
readings, as annotated within the PCORnet CDM, were 
used, but laboratory results were extracted from all 
encounter settings. Relevant laboratory results for LDL 
and A1c were identified by LOINC codes (LDL: ‘13457-
7’, ‘18262-6’; A1c: ‘4548-4’) code or internal EHR codes 
(various and specific to our institution).

We flagged measurements as a ’signal of disease’ 
whenever they exceed a specific threshold. For HTN, 
a measurement was flagged as a ’signal of disease’ if 
either the minimum systolic reading was ≥ 140 mmHg 
or the minimum diastolic reading was ≥ 90 mmHg. For 
HLD, the threshold was an LDL ≥ 130  mg/dL and for 
DM the threshold was an A1c ≥ 6.5%. For all three con-
ditions, if any two measurements taken at least 30 days 
apart were found above the threshold (abnormal is high 
in all three cases), the patient was considered to have a 
computed diagnosis of disease on the date of the sec-
ond signal.

For each condition and diagnosis code system, the first 
3 or 5 characters of the code string were matched against 
ICD-10-CM and ICD-9-CM parent codes (Table  1). 
Patients with a diagnosis present prior to the first signal 
were flagged as having an existing diagnosis. For patients 
without a prior diagnosis or computed diagnosis as 
defined above, the first date a matching diagnosis code 
(Table 1) was recorded in the EHR, if present, was logged 
along with its origin (provider-entered billing diagno-
sis; provider-entered encounter diagnosis or problem 
list entry; or diagnosis code from returned claims) and 
the date of the patient’s most recent encounter with the 
health system. A final data set consisting of the computed 
signal dates, computed and structured diagnosis dates, 
date of most recent encounter, and diagnosis origin was 
used for analysis.

Data analysis and statistical approaches
Data extraction was done with custom PySpark scripts 
using Spark (v2.1.0). Preprocessing and summary sta-
tistics were performed using the pandas (v0.24.1) and 
NumPy (v1.16.2) Python libraries. Visualizations were 
produced with the Matplotlib (v3.0.3) and seaborn 
(v0.9.0) Python libraries. To model the time to diagno-
sis, we employed the Kaplan–Meier estimation method 
for survival analysis using the lifelines (v0.20.0) Python 
library. All study-specific scripts were reviewed by an 
independent analyst.

Patients with an existing (prior to first signal) or early 
(recorded between the first and second signal) diagnosis 

Table 1  Diagnosis criteria and ICD-9-CM and ICD-10-CM codes used to determine computed and recorded diagnoses

ICD-9-CM International Classification of Diseases, Ninth Revision, Clinical Modification, ICD-10-CM International Classification of Diseases, Tenth Revision, Clinical 
Modification, LDL Low-density lipoprotein cholesterol

Condition Signal and diagnosis criteria

Hypertension Denominator: Outpatient systolic ≥ 140 or diastolic ≥ 90 (mmHg)

 2 readings ≥ 30 days apart and no prior diagnosis

Numerator: New diagnosis of any of the following

 ICD-9 groups: 401, 402, 403, 404, 405, 642

 ICD-10 groups: I10, I11, I12, I13, I15, I16, I27, O13

Diabetes Denominator: A1c ≥ 6.5 (%)

 2 readings ≥ 30 days apart and no prior diagnosis

Numerator: New diagnosis of any of the following

 ICD-9 groups: 249, 250

 ICD-10 groups: E08, E09, E10, E11, E13

Hyperlipidemia Denominator: LDL ≥ 130 (mg/dL)

 2 readings ≥30 days apart and no prior diagnosis

Numerator: New diagnosis of any of the following

 ICD-9: 272.0, 272.2, 272.3, 272.4, 272.9

 ICD-10: E78.0, E78.2, E78.3, E78.4, E78.5, E78.7, E78.8, E78.9
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were excluded from the time to diagnosis analysis. The 
duration for the survival analysis (equivalent to “survival 
time”) was the number of days between the date of the 
second signal and the date of diagnosis. For those who 
were never diagnosed, it was defined as the number of 
days between the date of the second signal and the date 
of the most recent encounter, at which point they were 
censored due to lack of additional follow-up.

Results
Frequency of clinical and computed diagnoses
We defined a signal of disease as an observation above 
the threshold. In our cohort, we computed a diagnosis 
of HTN in 245,711 patients, HLD in 45,098 patients, and 
DM in 45,460 patients who met our criteria for two sig-
nals separated by at least thirty days. Of these patients, a 
pre-existing, structured diagnosis of HTN, HLD, or DM, 
was present in the EHR for 42.0%, 37.4%, and 54.8% of 
patients, respectively, before the first signal was identi-
fied (Fig. 1). For patients with a new diagnosis, there was 
a large degree of variability in the presence of structured 
diagnostic codes among the conditions we assessed. 
For DM, 76.5% of patients received an early structured 
diagnosis, meaning a structured diagnosis was recorded 
in the EHR in the window between the first and sec-
ond signal. However, for those with HTN or HLD, only 
36.4% and 51.3%, respectively, received an early clini-
cal diagnosis. Similarly, 39.8% of those with computed 
HTN and 21.6% of those with a computed HLD diagnosis 
never received a structured diagnosis in the EHR, while 

only 5.2% of those with DM lacked a structured, clinical 
diagnosis.

Origin of first clinical diagnosis
We also assessed the source of the first structured diag-
nosis to determine whether it came from a provider-
entered, billing, or claims-based diagnosis. For structured 
diagnoses of different sources that were recorded on the 
same date, the provider-entered entry took priority, with 
billing second and claims third in order of precedence. 
We found that the first source was similar among all 
three conditions, with most diagnoses being provider-
entered within the medical history or problem list, fol-
lowed by billing-related diagnoses (Fig.  2). Only a small 
proportion of diagnoses were first identified via returned 
claims within our local data set.

Temporality of clinical and computed diagnoses
Since the timing of diagnosis is relevant to cohort crea-
tion, we determined the delay in availability of the first 
structured diagnosis compared with when a diagno-
sis could be computed from other data available in the 
EHR. To define a consistent starting time, patients with 
a pre-existing diagnosis (present prior to first signal) or 
early diagnosis (occurring between the first and second 
signal) were excluded. Within this cohort, the mean time 
for a structured diagnosis to be recorded ranged from a 
minimum of 166  days for DM to a maximum of nearly 
600  days for HTN (Fig.  3a) from the time of the com-
puted diagnosis. The temporal delay varied by the source 
of diagnosis, with provider-entered diagnoses having the 

Fig. 1  Frequency and temporality of recording a structured diagnosis. For patients with a structured EHR diagnosis, the number of patients who 
had a pre-existing (preceded the first signal), early (recorded between the first and second signal), or eventual (recorded after the computed 
diagnosis, or second signal) structured diagnosis recorded and the number of patients who never had a structured diagnosis recorded in the EHR
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shortest interval in all conditions and claims-based diag-
noses having the longest. It should be noted that very few 
patients had a claim as the first occurrence of a struc-
tured diagnosis (n = 633, 128, and 33 for HTN, HLD, and 
DM, respectively).

To assess the timeliness of structured diagnoses, we 
estimated the likelihood of having a structured diagnosis 
present in the EHR using the Kaplan–Meier estimation 
method, where the last encounter was used as the cen-
sor date if a discrete diagnosis was not found. The likeli-
hood of not having a structured diagnosis also varied by 
condition (Fig. 3b). While those with DM had nearly an 
80% chance of having a structured diagnosis recorded 
at 2  years, those with HLD had less than a 60% chance 
and those with HTN had less than a 40% chance of hav-
ing a structured diagnosis present at the same time-
point. The mean time from the second signal of disease 
to censoring for those who did not receive a diagnosis 
was 726 days, 600 days, and 575 days for HTN, HLD, and 
DM, respectively.

Discussion
The primary finding of this study was that structured 
diagnoses within the EHR for HTN, HLD, and DM 
can have a marked delay in being recorded compared 
with the time a diagnosis can be computed from other 
EHR data. For three common diseases, the average 
time from which a diagnosis could be computed from 
laboratory values preceded the manual recording of a 

structured diagnosis by as much as 389  days. In addi-
tion, even one year after a diagnosis can be computed, 
a large percentage of patients do not have an equivalent 
structured diagnosis recorded in the EHR. Therefore, 
while the EHR has several potential advantages to other 
sources of RWD and can be accessed in near real-time 
from a technical perspective, the recording of clinical 
information within the structured history and prob-
lem list may be less sensitive and delayed compared to 
identifying computed diagnoses for certain conditions. 
Thus, studies based on RWD, the approach to extract-
ing information from the EHR may affect its quality.

The EHR contains a detailed record of a patient’s 
clinical history but extracting this history from the 
structured and unstructured fields that data can reside 
in remains a challenge. Our work extends the prior lit-
erature, which have focused on the completeness and 
accuracy of the problem list compared to manual adju-
dication or next generation phenotyping approaches 
[22, 23, 25, 30, 37, 38]. The delay in recording a struc-
tured diagnosis has the potential to impact the devel-
opment of cohorts and outcome ascertainment from 
RWD because analyses based on structured diagnos-
tic codes could preferentially identify patients with a 
longer history of disease. In addition, analyses limited 
to patients with more recent data are likely to have a 
lower prevalence of disease than cohorts with a longer 
history, which may bias historic comparisons with 
synthetic or external control arms. Finally, if data are 

Fig. 2  Source of initial diagnosis. The frequency of diagnosis source (provider-entered history or problem list, provider-entered billing, or returned 
claims) of the first structured diagnosis for patients with a new diagnosis of hypertension (HTN, n = 85,712), diabetes mellitus (DM, n = 19,472), or 
hyperlipidemia (HLD, n = 22,116)
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obtained from multiple institutions with varying local 
diagnostic patterns, additional biases may be intro-
duced to multi-site studies.

While concerns of EHR data completeness are 
often described as data collection and quality issues, 
this is, in many cases, primarily a concern when the 
data are used for secondary research purposes [6, 39, 
40]. When assessed from a clinical perspective, infor-
mation related to a disorder, such as blood pressure 

measurements or documentation within an unstruc-
tured clinical note, can be used by a healthcare pro-
vider to draw equivalent conclusions, despite the high 
potential to be missed during automated digital extrac-
tion. Therefore, EHR data may not be missing or of low 
quality, but are rather collected for clinical, rather than 
research, purposes. Even with these limitations, EHR 
data can add significant value when analyzed appropri-
ately. For example, others have demonstrated that what 
may often be described as noise within EHR data, such 

Fig. 3  Temporal delay between computed and recorded diagnoses. a The mean time in days to receive a structured diagnosis from the time of the 
second signal. Means were calculated using the number of days to initial diagnosis. b Kaplan–Meier estimated probability that a patient is missing 
a structured diagnosis after a computed diagnosis is made (presence of two signals) for patients with hypertension (HTN, n = 90,614), diabetes 
mellitus (DM, n = 4836), or hyperlipidemia (HLD, n = 13,754)
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as frequency of measurements or presence of repeat 
diagnoses, can actually be used to predict patient out-
come and the temporality of clinical conditions [31, 34, 
41].

Despite the potential concerns related to the use of 
EHR described here, it is important to acknowledge that 
similar issues can also be found in clinical research and 
manually adjudicated data sets, such as disease regis-
tries. Several studies have shown significant variability 
in the accuracy and inter-rater reliability of manual data 
abstraction. One case study by the Office of the Inspec-
tor General for the Department of Health and Human 
Services found that manual nurse review identified 78% 
(93 of 120) of adverse events in the study population [42]. 
Similarly, patient report, a common source for clinical 
research studies, has been found to over- or under-rep-
resent even major healthcare events, such as readmis-
sion, in nearly 30% of cases [43]. Therefore, strategies to 
better understand and use RWD to augment data col-
lected through traditional methods have the potential to 
increase the accuracy and completeness of patient his-
tory, clinical events, and healthcare outcomes.

This study has several limitations. First, data were col-
lected from a single site within a healthcare system. We 
did not assess the possible impact of data quality issues in 
the EHR and its mapping to the PCORnet Common Data 
Model, a complex issue we consider to be beyond the 
scope of this study. However, our findings for the number 
of missing diagnoses for those with HTN were consist-
ent with previously published studies [26, 27]. This work 
also focused on only three phenotypes which could be 
reliably identified from clinical measurements and labo-
ratory testing, all of which were chronic diseases, and 
did not assess for more complex diagnoses or variations 
in thresholds for diagnosis. Finally, we did not assess the 
cause or clinical impact of delayed or missing structured 
diagnoses.

While strategies to assess data quality and account for 
variations in data collection for clinical research data 
have been developed, access to and use of RWD remains 
a new and rapidly evolving field. Like diagnostic labo-
ratory tests, methods to extract data from the EHR can 
be viewed as assays with varying sensitivity, specificity, 
and window periods. Work by the Electronic Medical 
Records and Genomics (eMERGE) [44] and OHDSI [38, 
45] networks, among others, to create standardized next 
generation phenotypes will continue to improve our abil-
ity to identify clinical cohorts and outcomes. While no 
single approach may be effective for every study, stand-
ardized strategies to assess whether RWD and specific 
computed phenotypes are fit-for-purpose will need ongo-
ing, and likely use case-specific, assessment.

Conclusions
We found that the recording of structured diagnoses 
within the EHR had a marked time delay compared to 
when a computed diagnosis could be extracted from clin-
ical findings and laboratory results within the EHR. The 
delay and presence of a structured diagnosis varied by 
disease. These findings highlight the need for continued 
assessment of RWD analysis and the validation of EHR 
data when used for biomedical research.
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