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Abstract

Background: Electronic medical records contain a variety of valuable medical information for patients. So, when we
are able to recognize and extract risk factors for disease from EMRs of patients with cardiovascular disease (CVD), and
are able to use them to predict CVD, we have the ability to automatically process clinical texts, resulting in an
improved accuracy of supporting doctors for the clinical diagnosis of CVD. In the case where CVD is becoming more
worldwide, predictive CVD based on EMRs has been studied by many researchers to address this important aspect of
improving diagnostic efficiency.

Methods: This paper proposes an Enhanced Character-level Deep Convolutional Neural Networks (EnDCNN) model
for cardiovascular disease prediction.

Results: On the manually annotated Chinese EMRs corpus, our risk factor identification extraction model achieved
0.9073 of F-score, our prediction model achieved 0.9516 of F-score, and the prediction result is better than the most
previous methods.

Conclusions: The character-level model based on text region embedding can well map risk factors and their labels
as a unit into a vector, and downsampling plays a crucial role in improving the training efficiency of deep CNN. What’s
more, the shortcut connections with pre-activation used in our model architecture implements dimension-matching
free in training.
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Background
CVD is becoming more common worldwide and is
becoming younger. According to data released by the
World Health Organization, CVD is the number one
cause of death worldwide, with more deaths from car-
diovascular disease each year than any other cause of
death. In 2016, an estimated 17.9 million people died of
cardiovascular disease, accounting for 31% of all deaths
worldwide. In its 2018 report, China’s National Center
for Cardiovascular Disease noted that CVD mortality
remained at the top of 2016, higher than cancer and other
diseases, and the number of patients was as high as 290
million.

As CVD risk increases in China, interest in strategies
to mitigate it is growing. However, information on the
prevalence and treatment of CVD in daily life is lim-
ited. But in the medical field, many hospitals have been
able to systematically accumulate medical records for a
large number of patients by introducing an EMR system.
Deep learning has been successfully applied to medical
field based on accumulated EMR data [1, 2]. In partic-
ular, many studies have been conducted to predict the
risk of cardiovascular disease in order to prevent cardio-
vascular diseases with a high mortality rate globally [3].
Because EMR data is recorded based on patients visiting
the hospital, and it contains information on the patho-
genesis of cardiovascular disease. Therefore, we intend to
extract key information using Convolutional Neural Net-
works (CNN). Table 1 is the key information we consider,
including twelve risk factors. However, we found that
there was a large amount of irrelevant information in most
EMRs. For example, a record of a complete medical record
contains only 10 records of information that is effective
in causing disease. These excessively irrelevant informa-
tion not only reduces CNN’s emphasis on effective disease
information, but also greatly delays the training time of
neural networks. In this regard, we propose to extract the
risk factors that cause disease in EMRs and bring along
the Time Attribute of these risk factors. In fact, although
the training time has decreased, the experimental results
are not optimistic. After experimental analysis, we believe
that the main reason is the lack of certain context infor-
mation. In response to this situation, we proposed the
EnDCNN. The region embedding method used by EnD-
CNN can enhance the correlation between risk factors.
For example, an increased correlation between the risk of
hypertension and the risk of controlling blood pressure
can better predict whether the patient has heart disease.
At the same time, our inspiration from the ResNet net-
work proposed by He et al. [4] has deepened our own
neural network to better extract key information. And for
our deep CNN model features, we also have the down-
sampling method to further reduce training time. This
makes it not only speed up the training time through our

method, but also the experimental result F-score reaches
0.9516, which fully demonstrates the method we proposed
and the efficiency of the network architecture we took out.
In summary, our contribution is two-fold, which can be
concluded as follows:

Our innovation proposes to extract the risk factor iden-
tification and bring along its corresponding label as the
basis for CVD prediction. Recurrent Neural Networks
(RNNs) generally read the whole text from beginning to
end or vice versa sometimes, which makes it inefficient to
process long texts [5]. In this regard, Huang et al. deal with
Long Short-Term Memory (LSTM) in English text. In view
of this, we propose to extract the risk factors and their cor-
responding labels recognition for the characteristics of the
CNN network we use. This method not only avoids a large
amount of non-critical information, but also reduces the
time spent on model architecture training to some extent.

We propose the EnDCNN model architecture. Inspired
by the application of region embedding by Johnson et al.
[6] and the ResNet for image model architecture [4] pro-
posed by He et al. We first convert the risk factors and
their corresponding tags into corresponding vectors in
characters by our character embedding trained in a spe-
cific field. Then, we built deep CNN to better extract key
information. Finally, for our deep model architecture, we
used the downsampling method to further speed up the
training, and the final effect of the model is optimistic.

Methods
The main idea of this paper is to predict whether a patient
has CVD by focusing on the risk factors in EMRs. First
of all, we need to prepare the data we need. The user
enters the appropriate input values from his/her EMR
report. After this, the historical dataset is uploaded. The
fact that most medical dataset may contain missing val-
ues makes this accurate prediction difficult. So, for this
missing data, we have to transform the missing data into
structured data with the help of a data cleaning and data
imputation process. After preparing the data, we mainly
perform the following two steps. Firstly, the risk factors
in the EMRs and their corresponding labels identification
are then extracted using the relatively mature entity recog-
nition technology that has been developed. In addition to
Age and Gender, the labels for other risk factors include
the type of the risk factor and its temporal attributes.
We only use the Conditional Random Field (CRF) layer
to identify the F-score of the extraction result to reach
0.8994. When we use bidirectional LSTM with a CRF
layer (BiLSTM-CRF), the F-score identifying the extrac-
tion results reached 0.9073. We did a lot of experiments
and summarized why there is such a high F-score based
on experimental and EMRs data analysis. Because there
are 12 risk factors in the entire data, these risk factors are
largely repeated in EMRs. This is great for the system we
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Table 1 Attributes of CVD

No. Attributes Description

1. Overweight/Obesity (O2) A diagnosis of patient overweight or obesity

2. Hypertension A diagnosis or history of hypertension

3. Diabetes A diagnosis or a history of diabetes

4. Dyslipidemia A diagnosis of dyslipidemia, hyperlipidemia or

a history of hyperlipidemia

5. Chronic Kidney Disease (CKD) A diagnosis of CKD

6. Atherosis A diagnosis of atherosclerosis or atherosclerotic plaque

7. Obstructive Sleep Apnea Syndrome (OSAS) A diagnosis of OSAS

8. Smoking Smoking or a patient history of smoking

9. Alcohol Abuse (A2) Alcohol abuse

10. Family History of CVD (FHCVD) Patient has a family history of CVD or has a first-degree relative

(parents,siblings, or children) who has a history of CVD

11. Age The age of the patient

12. Gender The gender of patient

have proposed. In contrast, the BiLSTM-CRF model has
better recognition performance, so we consider using it to
extract the risk factors and corresponding labels in EMRs.
These extracted risk factors that carry the corresponding
labels serve as the basis for input and predict CVD. In the
end, by using the EnDCNN model architecture, we can
predict whether a patient has CVD. Figure 1 shows our
entire model architecture.

BiLSTM-CRF
The architectures of BiLSTM-CRF model illustrated in
Fig. 2. In the model, the BIO (Begin, Inside, Outside)
tagging scheme is used.The Q = (

q1, ..., qk−3, ..., qk
)

rep-
resents the context information carried by the character
embedding trained by Skip-Gram.The HyC is represented
as Hypertension and its temporal attribute is Continue.
The HyD is represented as Hypertension and its tem-
poral attribute is During. It is similar to the ones pre-
sented by Huang et al. [7], Lample et al. [8] and Ma
and Hovy [9].

Given a sentence, the model predicts a label corre-
sponding to each of the input tokens in the sentence.
Firstly, through the embedding layer, the sentence is rep-
resented as a sequence of vectors X = (x1, ..., xt , ..., xn)

where n is the length of the sentence. Next, the embed-
dings are given as input to a BiLSTM layer. In the BiLSTM
layer, a forward LSTM computes a representation

→
ht of

the sequence from left to right at every character t, and
another backward LSTM computes a representation

←
ht of

the same sequence in reverse. These two distinct networks
use different parameters, and then the representation of a

character ht =
[→

ht ;
←
ht

]
is obtained by concatenating its

left and right context representations. LSTM memory cell
is implemented as Lample et al. [8] did.

Then a tanh layer on top of the BiLSTM is used to pre-
dict confidence scores for the character having each of the
possible labels as the output scores of the network.

et = tanh(Weht), (1)

where the weight matrix We is the parameter of the model
to be learned in training.

Finally, instead of modeling tagging decisions indepen-
dently, the CRF layer is added to decode the best tag path
in all possible tag paths. We consider P to be the matrix of
scores output by the network. The tth column is the vec-
tor et obtained by the Equation (1). The element Pi,j of
the matrix is the score of the jth tag of the ith character in
the sentence. We introduce a tagging transition matrix T,
where Ti,j represents the score of transition from tag i to
tag j in successive characters and T0,j as the initial score for
starting from tag j. This transition matrix will be trained as
the parameter of model. The score of the sentence X along
with a sequence of predictions y = (y1, ..., yt , ..., yn) is then
given by the sum of transition scores and network scores:

s(X, y) =
N∑

i=1

(
Tyi−1,yi + Pi,yi

)
, (2)

Then a softmax function is used to yield the conditional
probability of the path y by normalizing the above score
over all possible tag paths ỹ:

p (y|X) = es(X,y)

∑
ỹ es (X, ỹ)

, (3)

During the training phase, the objective of the model is to
maximize the log-probability of the correct tag sequence.
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Fig. 1 The entire model architecture of our proposed

At inference time, we predict the best tag path that obtains
the maximum score given by:

argỹ max s (X, ỹ) , (4)

This can be computed using dynamic programming, and
the Viterbi algorithm [10] is chosen for this inference.

Overview of EnDCNN
Figure 3a is our proposed model EnDCNN. Figure 3b
is He et al. proposed the ResNet network architecture
for image. ⊕ indicates addition. The dotted red short-
cuts in Fig. 3b perform dimension matching. EnDCNN
is dimension-matching free. The first layer of our model
performs text region embedding, which generalizes com-
monly used character embedding to the embedding of text

Fig. 2 The architecture of BiLSTM-CRF model
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Fig. 3 The architectures of our model and ResNet

regions covering one or more characters. It is followed
by stacking of convolution blocks (two convolution lay-
ers and a shortcut) interleaved with pooling layers with
stride 2 for downsampling. The final pooling layer aggre-
gates internal data for each document into one vector. We
use max pooling for all pooling layers. The key features of
EnDCNN are as follows.

Downsampling without increasing the number of fea-
ture maps (dimensionality of layer output, 250 in Fig. 3a).
Downsampling enables efficient represent-ation of long-
range associations (and so more global information) in
the text. By keeping the same number of feature maps,
every 2-stride downsampling reduces the per-block com-
putation by half and thus the total computation time is
bounded by a constant.

Shortcut connections with pre-activation and identity
mapping [11] for enabling training of deep networks.

Text region embedding enhances the relevance of indi-
vidual character to character, the relevance of risk factors
to their corresponding tags. When we use risk factors
and their corresponding labels as a unit, text region
embedding can also enhance the correlation between each
unit. Therefore, accuracy can be improved by text region
embedding.

Network architecture of EnDCNN
Downsampling with the number of feature maps fixed
After each convolution block, we perform max-pooling

with size 3 and stride 2. That is, the pooling layer produces
a new internal representation of a document by taking
the component-wise maximum over 3 contiguous inter-
nal vectors, representing 3 overlapping text regions, but
it does this only for every other possible triplet (stride 2)
instead of all the possible triplets (stride 1). This 2-stride
downsampling reduces the size of the internal representa-
tion of each document by half.

A number of models (Simonyan and Zisserman, 2015
[12]; He et al., 2015 [13], 2016 [11]; Conneau et al.,
2016 [14]) increase the number of feature maps whenever
downsampling is performed, causing the total computa-
tional complexity to be a function of the depth. In con-
trast, we fix the number of feature maps, as we found that
increasing the number of feature maps only does harm -
increasing computation time substantially without accu-
racy improvement, as shown later in the experiments.
With the number of feature maps fixed, the computa-
tion time for each convolution layer is halved (as the data
size is halved) whenever 2-stride downsampling is per-
formed. Therefore, with EnDCNN, the total computation
time is bounded by a constant - twice the computation
time of a single block, which makes our deep networks
computationally attractive.

In addition, downsampling with stride 2 essentially dou-
bles the effective coverage (i.e., coverage in the origi-
nal document) of the convolution kernel; therefore, after
going through downsampling L times, associations among
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Fig. 4 Generate the character embedding for experiments

characters within a distance in the order of 2L can be rep-
resented. Thus, deep CNN is computationally efficient for
representing long-range associations and so more global
information.

Shortcut connections with pre-activation To enable
training of deep networks, we use additive shortcut con-
nections with identity mapping, which can be written as
z+f (z) where f represents the skipped layers [11]. In EnD-
CNN, the skipped layers f (z) are two convolution layers
with pre-activation. Here, pre-activation refers to activa-
tion being done before weighting instead of after as is
typically done. That is, in the convolution layer of EnD-
CNN, Wσ(x) + b is computed at every location of each
document where a column vector x represents a small
region (overlapping with each other) of input at each loca-
tion, σ(·) is a component-wise nonlinear activation, and
weights W and biases b (unique to each layer) are the
parameters to be trained. The number of W’s rows is the
number of feature maps (also called the number of filters
[13]) of this layer.We set activation σ(·) to the rectifier
σ(x) = max(x, 0). In our implementation, we fixed the
number of feature maps to 250 and the kernel size (the size
of the small region covered by x) to 3, as shown in Fig. 3a.

With pre-activation, it is the results of linear weight-
ing Wσ(x) + b that travel through the shortcut, and what
is added to them at a ⊕ (Fig. 3a) is also the results of
linear weighting, instead of the results of nonlinear activa-
tion (σ (Wx+b)). Intuitively, such ’linearity’ eases training
of deep networks, similar to the role of constant error
carousels in LSTM [15]. We empirically observed that pre-
activation indeed outperformed ’post-activation’, which is
in line with the image results [11].

No need for dimension matching Although the short-
cut with pre-activation was adopted from the improved
ResNet of [11], our model is simpler than ResNet (Fig. 3b),
as all the shortcuts are exactly simple identity mapping

(i.e., passing data exactly as it is) without any complica-
tion for dimension matching. When a shortcut meets the
’main street’, the data from two paths need to have the
same dimensionality so that they can be added; therefore,
if a shortcut skips a layer that changes the dimensional-
ity, e.g., by downsampling or by use of a different number
of feature maps, then a shortcut must perform dimension
matching. Dimension matching for increased number of
feature maps, in particular, is typically done by projec-
tion, introducing more weight parameters to be trained.
We eliminate the complication of dimension matching by
not letting any shortcut skip a downsampling layer, and
by fixing the number of feature maps throughout the net-
work. The latter also substantially saves computation time
as mentioned above, and we will show later in our exper-
iments that on our tasks, we do not sacrifice anything for
such a substantial efficiency gain.

Text region embedding for EnDCNN
A CNN for disease prediction typically starts with con-
verting each character in the text to a character vector

Table 2 Hyper parameters of EnDCNN

Parameter Description Value

dw Dimension of word embedding 100

lr Learning rate 0.001

B Batch size 64

kp Each neuron’s keep rate 0.5

dr Decay rate for lr 0.99

ds Number of decay steps 500

ks Window size 3

m Number of filters 250

s Number of strides 2

n Number of epochs 30

dp The depth of EnDCNN 15
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Table 3 The comparison of each model for CVD prediction results

Model k Accuracy% Precision% Recall% F-score%

1 93.91 93.87 93.91 93.89

EnDCNN 7 95.22 95.14 95.22 95.16

14 94.35 94.31 94.35 94.32

3 93.91 93.83 93.91 93.86

EnDCNN(no labels) 4 89.57 90.19 89.57 89.87

5 86.52 86.41 86.52 86.47

SVM(raw) 90.91 90.91 90.91 90.91

SVM(no labels) 89.39 89.03 89.39 89.21

ConvNets(raw) 92.83 92.64 92.83 92.73

LSTM(raw) 92.24 93.46 92.73 93.09

LSTM(risks with labels) 82.58 81.35 83.01 82.17

(character embedding). There is no exception in our mis-
sion, we need to put each Chinese character and its cor-
responding label. This is the entity type embedding layer
and character embedding layer in Fig. 1. Then, we take a
more general viewpoint as in [16] and consider text region
embedding - embedding of a region of text covering one
or more characters.

In the region embedding layer we compute Wx + b for
each character of a document where input x represents a
k-character region (i.e., window) around the character in
some straightforward manner, and weights W and bias b
are trained with the parameters of other layers. Activation
is delayed to the pre-activation of the next layer. Now let
v be the size of vocabulary, and let us consider the types
of straightforward representation of a k-character region
for x. We chose sequential input: the kv-dimensional con-
catenation of k one-hot vectors.

A region embedding layer with region size k > 1 seeks
to capture more complex concepts than single charac-
ters in one weight layer, whereas a network with char-
acter embedding uses multiple weight layers to do this,
e.g., character embedding followed by a convolution layer.
Because we want to enter the risk factor and bring along
its corresponding label, such as “ B-HyC”, we adjust the
parameter k in units of 7 according to the actual situation
of the experimental data.

Results
Dataset and evaluation metrics

Our dataset contains two corpora. The first corpus came
from a hospital in Gansu Province with 800,000 unla-
beled EMRs of internal medicine. The dataset was mainly
used to train and generate our character embedding. In
Fig. 4, we also added a dictionary of risk factors dur-
ing the training. In this way, the Skip-Gram model in
word2vec we use can better make each character in the

risk factor more compact. The other one is from the Net-
work Intelligence Research Laboratory of the Language
Technology Research Center of the School of Computer
Science, Harbin Institute of Technology, which contains
1186 EMRs. This corpus intends to be used to develop
a risk factor information extraction system that, in turn,
can be applied as a foundation for the further study of
the progress of risk factors and CVD [17]. For the cor-
pus, we divided it into CVD and no CVD according to
the clinically diagnosed disease in the electronic medical
record. In the corpus we used, there were 527 EMRs and
132 EMRs. The basis comes from the following two parts:
On the one hand, according to the definition of CVD by
the World Health Organization[18]. On the other hand,
the first (symptoms) and the third (diseases) in the book
of Clinical Practical Cardiology [19].

Our experiments involve 12 risk factors which are
Overweight/Obesity (O2), Hypertension, Diabetes, Dys-
lipidemia, Chronic Kidney Disease (CKD), Atherosis,
Obstructive Sleep Apnea Syndrome (OSAS), Smok-
ing, Age, Gender, Abuse (A2), Family History of CVD

Fig. 5 Comparison of CRF and BiLSTM-CRF models
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Table 4 The performance of each model at different embedding

Model Accuracy% Precision% Recall% F-score%

ConvNets(no pre−emd) 91.67 90.87 91.24 91.05

LSTM(no pre−emd) 81.82 79.45 82.36 80.88

EnDCNN(no pre−emd,k=7) 94.13 94.06 94.13 94.09

EnDCNN(no re−emd) 88.04 87.54 88.04 87.79

(FHCVD), as shown in Table 1. In addition, the dataset
also includes 4 temporal attributes which are Continue,
During, After, Before. Since risk factors of Age and Gen-
der have no temporal attributes, we have added a temporal
attribute: None.

In dataset, it consists of unstructured data, meaning
data which is not in well-formed data. Mostly medical
data is not in proper format. For the missing data, imputa-
tion and data cleaning are necessary. The unwanted data
and noisy data must remove from dataset so that we get
structured data.

In the experiment, our training set contained 461 EMRs,
the test set contained 132 EMRs, and the development
set contained 66 EMRs. Accuracy, Precision, Recall and
F-score are used as evaluation metrics.

Models and parameters
We carry out the experiments to compare the perfor-
mance of our model with others described in the follow-
ing.

CRF : This model was used by Mao, et al. [20] recog-
nized the named entity in the electronic medical records
based on Conditional Random Field.

BiLSTM-CRF : This model was used by Li, et
al. In order to realize automatic recognition and
extraction of entities in unstructured medical texts,
a model combining language model conditional
random field algorithm (CRF) and Bi-directional

Long Short-term Memory networks (BiLSTM) is
proposed [21].

SVM: This model was used by S. Menaria, et al. As a
traditional machine learning method, the support vector
machine algorithm performs well in [22].

ConvNets: This model was used by Xiang, et al. [23]
offers an empirical exploration on the use of character-
level convolutional networks (ConvNets) for text classifi-
cation.

LSTM: This model was used by Xin, et al. [24], which
proposed an LSTM network with fully connected layer
and activation layers.

EnDCNN : This is the model proposed in this paper.
Table 2 gives the chosen hyper-parameters for all exper-
iments. We tune the hyper-parameters on the develop-
ment set by random search. We try to share as many
hyper-parameters as possible in experiments.

Experimental results
We did a rich comparative experiment on our own model
itself and other models:

In Fig. 5, we performed a comparison of the CRF and
BiLSTM-CRF models for the identification of risk factors
in EMRs. The precision values for the two models are:
0.8851 and 0.9028; The recall values for the two models
are: 0.9142 and 0.9117; The F-score values for the two
models are: 0.8994 and 0.9073, respectively. It is clear that
the BiLSTM-CRF model outperforms the CRF. So, we

Fig. 6 Training efficiency
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chose the BiLSTM-CRF model as our extractor for risk
factors in EMRs.

In Table 3, we show the comparison between the previ-
ous model and our proposed EnDCNN model for accu-
racy, precision, recall, and F-score. In addition, we also
compared the performance of EnDCNN models with dif-
ferent ranges (k values) for region embedding. And the
performance of each model when the dataset is the origi-
nal EMRs, the risk factor with the label, or the risk factor
without the label.

In Table 4, we compared four cases: (1) The perfor-
mance of the ConvNets model in random embedding; (2)
The performance of the LSTM model in random embed-
ding; (3) When our model is in random embedding and
the region embedding size is 7; (4) The performance of
our model without region embedding, that is, only use our
pre-trained embedding.

In Fig. 6, we show a comparison of the training effi-
ciencies of our model without downsampling and with
downsampling. We plot the loss and accuracy in rela-
tion to the computation time - the time spent for training
task using our performances on a GPU. We recorded five
iterations from the start of training to the optimal training.

Discussion
Table 3 shows the overall classification performance of dif-
ferent models on our evaluation corpus. It can be seen that
when the region embedding range size is 7, our EnDCNN
method is superior to other methods in all evaluation indi-
cators. On the data without the risk factor labels, our
model performed well when the region embedding was
3. From the performance of our model in Tables 3 and 4,
we can use the character embedding pre-trained by med-
ical EMRs to help improve the performance of the model.
Not only that, but from the performance of our model
in Table 4 without region embedding, the importance of
region embedding to the performance of our model. For
Fig. 6, we can clearly see that downsampling is critical
to the training efficiency of deep convolutional neural
networks like ours.

Conclusions
In this paper, the disease prediction experiment was car-
ried out on the EnDCNN algorithm using structured data.
We used CRF and BiLSTM-CRF algorithm to identify
the risk of CVD and its corresponding risk factors. We
have compared the results of the CRF algorithm with the
BiLSTM-CRF algorithm and the accuracy of BiLSTM-
CRF 90.73% which is more than CRF algorithm. With the
help of region embedding, we used the character-level
embedding to achieve greater results, and the disease pre-
diction F-score reached 95.16%. On the other hand, the
downsampling technique solves the problem of slower
training time in deep CNN. What’s more, the shortcut

connections with pre-activation used in our model archi-
tecture implements dimension-matching free in training.
In the end, we got accurate disease prediction as output,
by giving the input as patients EMRs which help us to
understand the level of disease prediction. This output
predicted whether to have or not to have heart disease.
Because of this system may leads in low time consumption
and minimal cost possible for disease risk prediction. In
the future, we will strengthen research on the pathogenic
factors of CVD and improve the accuracy of CVD predic-
tion as much as possible.
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