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Abstract

Background: For real-time monitoring of hospital patients, high-quality inference of patients’ health status using all
information available from clinical covariates and lab test results is essential to enable successful medical interventions
and improve patient outcomes. Developing a computational framework that can learn from observational large-scale
electronic health records (EHRs) and make accurate real-time predictions is a critical step. In this work, we develop and
explore a Bayesian nonparametric model based on multi-output Gaussian process (GP) regression for hospital patient
monitoring.

Methods: We propose MedGP, a statistical framework that incorporates 24 clinical covariates and supports a rich
reference data set from which relationships between observed covariates may be inferred and exploited for
high-quality inference of patient state over time. To do this, we develop a highly structured sparse GP kernel to enable
tractable computation over tens of thousands of time points while estimating correlations among clinical covariates,
patients, and periodicity in patient observations. MedGP has a number of benefits over current methods, including (i)
not requiring an alignment of the time series data, (ii) quantifying confidence regions in the predictions, (iii) exploiting
a vast and rich database of patients, and (iv) inferring interpretable relationships among clinical covariates.

Results: We evaluate and compare results from MedGP on the task of online prediction for three patient subgroups
from two medical data sets across 8,043 patients. We find MedGP improves online prediction over baseline and
state-of-the-art methods for nearly all covariates across different disease subgroups and hospitals.

Conclusions: The MedGP framework is robust and efficient in estimating the temporal dependencies from sparse
and irregularly sampled medical time series data for online prediction. The publicly available code is at https://github.
com/bee-hive/MedGP.
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Background
Large-scale collections of electronic health records
(EHRs) are becoming useful for understanding disease
progress, early diagnosis, and personalized treatments for
many clinical diseases [1–3]. EHRs contain rich patient
information—disease history, demographics, vital signs,
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and lab results—that clinicians use to diagnose and treat
patients. In this work, we are interested in developing
a statistical framework that leverages medical data from
a set of reference patients to enable personalized, real-
time monitoring of new hospital patients. In particular,
we consider data from the Hospitals at the University
of Pennsylvania (HUP) containing information for over
260,000 patients, and the public Multiparameter Intelli-
gent Monitoring in Intensive Care (MIMIC-III) data set
with more than 53,000 admissions from 38,000 patients in
intensive care units (ICUs) [4].
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Robust models of patient state are essential as the basis
for important downstream analyses of patient data. In
particular, these models allow smoothing of noisy data
across time, estimates of patient clinical covariates val-
ues and uncertainty in those estimates at any time point,
and forecasting of patient state based on trends of spe-
cific covariates across time. For example, we might wish
to predict the time-to-event for septic shock based on
patient state. Early diagnosis of sepsis is extremely effec-
tive at reducing the mortality rate of sepsis. Sepsis is one
of the leading causes of death in critically ill patients in the
United States [5]. Each year an estimated 750,000 cases
of sepsis or septic shock occur in the US. The mortal-
ity rate of septic patients ranges from 20% to 30%, and
accounts for roughly 9.3% of all US deaths [6, 7]. Sepsis
is often developed during a patient’s stay in the hospital.
However, accurate diagnosis of sepsis is difficult due to
heterogeneous symptoms across patients [8].
A time-to-event prediction for septic shock would

greatly improve if it were built upon an underlying model
of patient state. Predicting septic shock without a model
of patient state is challenging: Many of the covariates, lab
results in particular, are sparsely sampled across patients.
For example, vital signs (respiratory rate, heart rate, sys-
tolic blood pressure, and body temperature) are generally
taken once every three to four hours for inpatient data,
and once every hour for patients in the intensive care unit
(ICU). Blood tests requiring a blood draw are generally
performed at most once a day (Fig. 1; Table 1). Data miss-
ingness is systematic and not at random [9]: a doctor will
generally order a test to inform patient state relevant to
a specific diagnosis. Time-to-event models thus benefit
greatly from the use of a patient state model to avoid these
challenging properties of medical data in the downstream
analysis.
However, these inpatient data also pose challenges to

developing patient state models. In particular, these time
series data are not aligned across patients to a reference
time point or disease onset; instead, patient intake is at
time 0 and release is hours or days later. The time intervals
between observations are non-uniform, and no two obser-
vations are generally taken at the same time. The sparsity
over patients and uncalibrated time series make the phys-
iological progression of patient state within patients or
joint analysis of time series across patients difficult to
model using many existing time series analyses.
In this work, we build a statistical framework that uses

sparse, heterogeneous EHR time series data to monitor
and predict vital signs and lab results for each patient in
an online way. To do this, we first designed a nonparamet-
ric model based on Gaussian process (GP) multivariate
regression to explore the correlations both within each
clinical covariate across time and across clinical covari-
ates given rich EHR reference data. Our model includes

a highly structured GP kernel regularized using sparsity-
inducing priors to avoid overfitting, allow interpretability,
and ensure computational tractability. Second, we pro-
pose a framework based on nonparametric density esti-
mation to tailor the empirical model to a patient-specific
model for each new patient. For real-time monitoring, we
update the empirical distribution from reference patients
with patient-specific observations as measurements are
observed. We evaluate our method, MedGP, on over 6,000
patients from three disease groups with more than four
million measurements from the HUP data, and on one
disease group from the MIMIC-III data set. We compare
results to state-of-the-art approaches for patient online
monitoring and investigate similarities and differences in
correlations among covariates across disease groups.

Related work
Related work falls into three areas of medical time series
analysis: (i) incorporating noisy, heterogeneous, irregu-
lar, and sparsely sampled time series data; (ii) combining
information across multiple time series; and (iii) exploit-
ing reference data in addition to observations about the
current patient to enable patient-specific predictions for a
new hospital patient.
Most prior work has focused on modeling each clinical

covariate separately. Due to the irregularity and temporal
sparsity of medical data, conventional time series models,
such as hidden Markov models (HMMs), autoregressive
(AR) models, state-space models, and linear dynamical
systems (LDS), are challenging to apply because of the
assumption of regular measurement sampling in time.
Recent work has focused on developing methods to com-
pensate for the missing data in order to work with models
that assume complete data. Methods such as kernel sup-
port vector machine (SVM), matrix factorization, and
k-nearest neighbors (KNNs) were applied for missing data
imputation to improve sepsis or septic shock prediction
[10, 11]. In other work, a hierarchical switching LDS
model was used to monitor the physiological signals dur-
ing neonatal sepsis; the model allows the latent state of a
patient to change during periods with fewer observations
[12]. In an alternative approach, noisy and sparse time
series data were smoothed temporally by putting Gaussian
priors on the mean parameters of the Gaussian mix-
ture model, which is related to a Gaussian process prior,
although the distribution is over a finite-dimensional vec-
tor [13].
Gaussian processes (GPs) are useful approaches for

time series analysis because they can naturally capture
irregular time series observations and estimate predic-
tion uncertainties in a probabilistic framework [14]. For
these reasons, GPs have been applied to the analysis of
medical time series data. Previous work used a single-
output GP regression model to smooth and impute each
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Fig. 1 An example of time series data of 24 clinical covariates for a septic patient in the HUP data. The 24 covariates include four vital
signs—respiratory rate (RR), heart rate (HR), systolic blood pressure (SBP), body temperature—and 20 lab results. The time series are aligned by the
patient’s admission time. The density of sampling varies widely over the 24 covariates. A full description of these covariates can be found in Table 1

covariate independently [15, 16]. The Probabilistic Sub-
typing Model (PSM) added patient-specific information
for smoothing temporal trajectories of clinical covari-
ates and clustering disease subtypes [17]. PSM learns a
mixture model based on a B-spline and GPs to impute
the clinical measurements for patients with scleroderma.

Demographic covariates, including gender, ethnicity, and
clinical history, were also incorporated in the model. In
an extension of PSM, the authors adapted patient-specific
information to forecast specific clinical covariates [18];
the time series for each covariate was still modeled inde-
pendently.
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Table 1 The 24 clinical covariates modeled in MedGP

Type Covariate Sepsis Neoplasms Heart Failure MIMIC-III

Vital Respiratory rate (RR) 87,076 493,964 147,445 291,466

Vital Heart rate (HR) 96,317 527,989 227,951 294,746

Vital Systolic blood pressure (SBP) 84,909 447,666 104,129 124,587

Vital Body temperature (Temp) 80,597 364,286 94,468 56,533

Lab Blood urea nitrogen (BUN) 12,528 71,825 21,751 25,102

Lab Carbon dioxide (CO2) 12,672 72,784 21,844 20,979

Lab Calcium level 10,388 66,051 18,867 20,568

Lab Chloride 10,100 68,534 21,421 26,248

Lab Creatinine 12,689 72,928 21,889 25,237

Lab Glucose point-of-care (Glucose POC) 20,444 170,872 54,239 24,196

Lab Hematocrit (Hct) 12,752 74,060 22,035 24,810

Lab Hemoglobin (Hgb) 13,005 75,646 27,891 21,226

Lab Mean cell hemoglobin (MCH) 12,587 69,736 18,379 20,877

Lab Mean cell hemoglobin concentration (MCHC) 12,577 69,682 18,359 20,885

Lab Mean cell volume (MCV) 12,587 69,751 18,380 20,875

Lab International normalization ratio (INR) 5,733 38,810 17,005 15,735

Lab Prothrombin time (PT) 5,722 38,844 17,007 15,734

Lab Partial thromboplastin time (PTT) 5,872 41,894 19,596 17,185

Lab Platelet 12,586 69,945 18,367 21,395

Lab Potassium level 12,830 77,395 28,470 27,200

Lab Red blood cell (RBC) 12,600 69,776 18,387 20,876

Lab Red cell distribution width (RDW) 12,580 69,757 18,381 20,877

Lab Sodium level 12,848 78,617 28,597 26,383

Lab White blood cell (WBC) 12,581 69,950 18,384 20,960

This table includes the total number of observations for each covariate across patients in three disease groups—sepsis, neoplasms, and heart failure—in the HUP data, and
the heart failure patients in the MIMIC-III data

The idea of capturing the joint dynamics between vital
signs and lab tests has also been explored. Using high-
frequency regularly sampled time series, the dynamics
between heart rate (HR) and blood pressure (BP) were
modeled using a mixture of an LDS model [19] and a
switching vector autoregressive model (SVAR) [20]. The
joint dynamics estimated across covariates were reported
to be associated with hospital mortality. In other work
[21], a multivariate spline-based approach with linear
mixed effects was used to predict multiple longitudi-
nal outcomes and time-to-death of patients. Time series
graphical models (TGMs) [22, 23] have also been stud-
ied and applied for analyzing multivariate medical time
series of ICU patients [24]. TGMs model the partial cor-
relations between each dimension of the multivariate time
series as an undirected graph. However, both TGMs and
SVAR models follow the assumptions of vector autore-
gressive (VAR) models, and thus assume the sampling
interval of the time series is fixed across dimensions.
In practice, this means missing data imputation needs

to be done in advance [23]. Coupled Latent Trajectory
Model (C-LTM) [25], an extension of PSM, adapted con-
ditional random fields (CRFs) to update the distribution
of the target covariate from five other auxiliary covari-
ates. While tackling the challenge of irregular sampling
and jointly modeling multiple covariates, C-LTM is lim-
ited by requiring temporal alignment across patients, as in
PSM.
Several multi-output GP frameworks have been pro-

posed for other application areas. In the geostatistics
literature, the linear model of coregionalization (LMC)
characterizes correlations between outputs through a set
of kernels and coregionalization matrices that estimate
weights for pairwise outputs [26, 27]. In the machine
learning literature, related models include multi-task GPs
[28], semiparametric latent factor models [29], and multi-
task kernel learning [30]. These can be viewed as vari-
ations of the LMC with different parameterizations and
constraints. Convolution processes (CPs) have also been
adapted to model multiple correlated outputs through
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the convolution of smooth kernels and latent processes
[31]. This approach usually has fewer hyperparameters
and more efficient computation as compared to LMC, but
only squared exponential (SE) kernels have been shown
to be computationally tractable. Applying a multi-task GP
(MTGP) framework [28] to clinical time series analysis has
also been considered in two studies [32, 33]; both studies
considered one patient as one task and used the remaining
patients as reference training data. Other work adapted
the LMC framework with one SE kernel to model three
sparsely sampled clinical covariates (intracranial pres-
sure, mean arterial blood pressure, and pressure-reactivity
index) jointly [32]. The MTGP was shown to outperform
a single-task GP (STGP) in prediction error. Both MTGP
and CP have also been used with an SE kernel to model
three densely sampled vital signs (respiratory rate, systolic
blood pressure, and heart rate); both methods showed
improvements as compared to a single-task GP [33].
Our work is distinct from previous research in sev-

eral ways. First, we use the GP regression framework to
model multiple irregularly sampled medical time series
using a sparse structured multi-output kernel. In contrast
to related work [32, 33], our kernel uses a mixture of flex-
ible spectral kernels [34], allowing periodic behavior and
both short-term and long-term dependencies within and
across the clinical covariates over time. Second, we use
the LMC framework to enable an interpretable quantifica-
tion of cross-correlation and sparsity between covariates.
Third, we model many more clinical covariates (24) com-
pared with previous studies (at most six); in the online
medical setting, efficient and scalable computation in this
multi-view model is essential. To do this we use a sparse
and low-rank formulation of the shared covariance matrix
across clinical covariates to estimate and regularize the
relationships between covariates in order to learn about
covariate relationships specific to patient subgroups and
to prevent overfitting.
In our methodology, MedGP, we trained a GP model

on each reference patient separately, and used these
models to estimate the empirical population-level model
using nonparametric density estimation. This approach
avoids training procedures that iterate through all refer-
ence patients, which is computationally intractable for an
online system [32, 33]. To speed up training, we optimized
the implementation in C++ using multithreading. Finally,
in order to personalize the model for a new patient, we
update the empirical population-level model on-the-fly
to estimate patient specific parameters as measurements
from the new patient are observed.

Methods
In this section, we describe our method, MedGP, for esti-
mating the underlying dynamic processes jointly across
a large number of sparsely sampled clinical covariates.

We first describe the design of the Gaussian process
kernel for capturing the temporal correlations within
and between covariates. Next, we introduce the sparsity-
inducing prior to regularize the LMC weight matrix. We
then describe estimation of the parameters in the empiri-
cal prior and in the kernel. Next, we describe how to learn
a patient-specific kernel by first building a population-
level model from reference patients and then performing
online updating of the parameters when observations
about a new patient accumulate. Finally, we describe
methods to perform computationally tractable online
inference in these models, concluding with a discussion of
computational complexity.

Gaussian processes
Gaussian processes (GPs) are distributions over arbitrary
functions. By definition, a GP is a collection of random
variables, any finite collection of which have a joint Gaus-
sian distribution. Alternatively, a GP can be described as a
distribution on an arbitrary function, defined as

f (x) ∼ GP(m(x), κ(x, x′)), (1)

wherem(x) is themean function:

m(x) = E[ f (x)] , (2)

and κ(x, x′) is the covariance function or kernel:

κ(x, x′) = E[ (f (x) − m(x))(f (x′) − m(x′))] . (3)

Any finite number of function values jointly have a mul-
tivariate Gaussian distribution with mean vector μ and
covariance matrix K between any pair of observations,
defined by the kernel function,

[ f (x1), f (x2), · · · , f (xT )]� ∼ N (μ,K),

μ =[m(x1),m(x2), · · · ,m(xT )]� ,

Ki,j = κ(xi, xj).

(4)

Properties of the function f (x) such as smoothness or
periodicity are determined by the kernel function κ(x, x′).
One of the most commonly used kernels is the squared
exponential (SE) kernel

κ(x, x′) = σ 2 exp
(

−||x − x′||2
2�2

)
, (5)

which is parameterized by a length scale � and a scale
factor σ . The functions generated by a GP with an SE ker-
nel are smooth because the kernel function is infinitely
differentiable [35]. The value of the length scale � deter-
mines the distribution of changes over the function value
with respect to changes in the input x, encouraging a spe-
cific smoothness. Due to its simplicity, SE is used in many
applications; however, the properties of the functions that
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it captures are fairly limited. Periodic functions, for exam-
ple, are not well modeled by an SE kernel, but instead
captured by a periodic kernel

κ(x, x′) = σ 2 exp

⎡
⎣−

4 sin2
(

π ||x−x′||
p

)
�2

⎤
⎦, (6)

where p is the period of the function. When modeling
medical time series, the SE kernel or the periodic kernel
are often used in combination to capture the unknown
source-specific smoothness and periodicity of the trajec-
tories of clinical covariates [15, 33].

Gaussian process regression with a structured
multi-output kernel
Our first goal is to jointly model multiple clinical
covariates—vital signs and lab tests—over time for each
patient using GP regression. For the ith patient, we denote
the time series of the dth covariate as a vector xi,d,
representing the time points that the dth covariate was
observed, and the corresponding observation vector yi,d:

x�
i,d = [

xi,d,1, xi,d,2, . . . xi,d,t . . . , xi,d,Ti,d

]
, (7)

y�
i,d = [

yi,d,1, yi,d,2, . . . yi,d,t . . . , yi,d,Ti,d

]
, (8)

where t indexes time, and Ti,d is the total number of
observations for the dth covariate of the ith patient.
To represent the time series data over all D covariates,

we define the flattened data,

x�
i =

[
x�
i,1, x�

i,2, . . . , x�
i,D

]
, (9)

y�
i =

[
y�
i,1, y�

i,2, . . . , y�
i,D

]
, (10)

where xi, yi ∈ R
Ti×1, Ti =

(∑D
d=1 Ti,d

)
. LetFi be a multi-

output function over time for the ith patient. We capture
the relationship between time and clinical observations as
a GP regression model:

yi = Fi(xi) + εi, (11)

where εi is the residual noise vector. Marginally at the
tth observation of the dth covariate, the residual noise is
modeled as

εi,d,t ∼ N
(
0, σ 2

i,d
)
, (12)

where σ 2
i,d is the covariate-specific residual variance for

each individual.
We assume that the functionFi is drawn from a patient-

specific Gaussian process GP i with mean function μi(x)
and kernel κi(x, x′):

Fi ∼ GP i(μi(x), κi(x, x′)). (13)

We set μi(x) = 0 [35].
We designed the kernel κi(x, x′) to capture predictive

and generalizable covariance structure across medical

time series data. Assuming the covariates are correlated
across time, we adapted the linear model of coregionaliza-
tion (LMC) framework [26, 27]. We used a set of Q basis
kernels {κq(x, x′)}Qq=1 to model D covariates jointly. The
kernel for the cross-covariance of any pair of covariate
types is modeled by a weighted structured linear mixture
of the Q basis kernels. The full joint kernel is written as a
block structured function

κi(xi, x′
i)

= ∑Q
q=1

⎡
⎢⎢⎢⎢⎢⎣

bq,(1,1)κq(xi,1, x′
i,1) · · · bq,(1,D)κq(xi,1, x′

i,D)

bq,(2,1)κq(xi,2, x′
i,1) · · ·

...
...

. . .
...

bq,(D,1)κq(xi,D, x′
i,1) · · · bq,(D,D)κq(xi,D, x′

i,D)

⎤
⎥⎥⎥⎥⎥⎦
, (14)

where bq,(d,d′) scales the covariance (defined by the qth
basis kernel) between covariates d and d′, and κi(xi, xi) ∈
R
Ti×Ti . We collapsed bq,(d,d′) into a set of weight matrices

{Bq}Qq=1, where each Bq is a symmetric positive definite
matrix

Bq =

⎡
⎢⎢⎢⎢⎣

bq,(1,1) bq,(1,2) · · · bq,(1,D)

bq,(2,1)
...

. . .
...

...
...

. . .
...

bq,(D,1) bq,(D,2) · · · bq,(D,D)

⎤
⎥⎥⎥⎥⎦ ∈ R

D×D. (15)

If the inputs, observation times are the same for all covari-
ates, we can further simplify Eq. (14) with the Kronecker
product ⊗. That is, if xi,1 = xi,2 = · · · = xi,D � xi,∗ and
x′
i,1 = x′

i,2 = · · · = x′
i,D � x′

i,∗ :

κi(xi, x′
i) =

Q∑
q=1

Bq ⊗ κq(xi,∗, x′
i,∗), (16)

although in practice we do not often see this situation in
medical time series data. For simplicity, we only use the
index when date come from different individual.
Properties of the time series observations, such as peri-

odicity and short term dependencies, are captured in the
Q basis kernels. For medical covariates, the properties
and patterns of each patent’s time series observations may
vary. As a trivial example, when a patient is under age 18,
their pulse will be well correlated with their age, height,
and weight; above age 18, the correlation among pulse,
age, height, and weight is more variable within age than
across ages. Furthermore, only a few vital signs, such
as heart rate, blood pressure, and body temperature, are
known to be periodic with a 24-h period (i.e., a circadian
rhythm), but whether there is a similar period for specific
lab results, such as white blood cell counts or pressure of
carbon dioxide in the blood, is unclear [36].
To handle the heterogeneity of patterns within covari-

ates and across patients, we selected the spectral mixture
(SM) kernel as the basis kernel [34]. The SM kernel is
a general form of a variety of stationary kernels, includ-
ing the squared exponential (SE) kernel and the periodic
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kernel, and has also shown good performance in mod-
eling processes generated from more complex kernels
through a mixture of kernels approach [34]. The basis
kernel κq(xt , xt′) is written as

κq(xt , xt′) = exp (−2π2ρ2vq) cos (2πρμq), (17)

where ρ = |xt − xt′ | is the absolute distance in time. In
our work, the mixture weights for each basis kernel are
encoded in Bq.
To be used for GP regression, κi(x, x′) must be a valid

Mercer kernel, i.e., the Gram matrix must be positive def-
inite for all x and x′. Since the matrix produced by each
basis kernel κq(x, x′) is symmetric positive definite, we
only need to ensure that every Bq is positive definite to
produce a Mercer kernel. To do this, we parameterized Bq
as

Bq = AqA�
q +

⎡
⎢⎢⎢⎣

λq,1 0 · · · 0
0 λq,2 · · · 0
...

...
. . .

...
0 0 · · · λq,D

⎤
⎥⎥⎥⎦

= AqA�
q + diag(λq),

(18)

Aq =
⎡
⎢⎣
aq,(1,1) · · · aq,(1,Rq)

...
. . .

...
aq,(D,1) · · · aq,(D,Rq).

⎤
⎥⎦ (19)

Here Aq ∈ R
D×Rq , λq ∈ R

D×1. We let Rq denote the
number of non-zero columns in Aq, or the rank for Bq
when λq = 0.
For any two observations from the same patient of dif-

ferent covariates at different times, denoted as xd,t and
xd′,t′ , the prior covariance from the GP kernel is

κ(xd,t , xd′,t′) =
Q∑

q=1
bq,(d,d′)κq(xt , xt′). (20)

We summarize the parameters and hyperparameters of
our SM-LMC kernel in Table 2.

Sparsity-inducing priors on weight matrix Bq
As the number of medical covariates included in the
model increases, we need to increase the number of basis

Table 2 The list of hyperparameters for modeling the d = 1 : D
clinical variables and q = 1 : Qmixture kernels

Notation Size Description

vq Q Squared exponential part of qth basis kernel

μq Q Periodicity of qth basis kernel

aq,(d,r)
∑Q

q=1 D × Rq Weights of (d, d′) for qth basis kernel

λq, D Intra-covariate weights of the dth covariate
for qth basis kernel

kernels Q and corresponding Rq to allow greater repre-
sentational flexibility. However, too many basis kernels
may lead to overfitting and will become computationally
intractable. To avoid this, we regularized the elements of
each weight matrix Bq by introducing structured sparsity-
inducing priors on each Aq matrix as follows.
We included two layers of sparsity-inducing priors for

flexible, data-adaptive shrinkage behavior, modified from
previous work [37, 38]. First, we put column-wise sparsity-
inducing priors to regularize each column in Aq. This
corresponds to regularizing the degrees of freedom of
the functions, or number of latent processes generated
from each basis kernel in the LMC model [39]. Second,
we put sparsity-inducing priors on each matrix element
aq,(d,r) in Aq to produce element-wise sparsity. The effect
of element-wise sparsity is to perform model selection
on the number of basis kernels that each pair of covari-
ates uses for covariance representation. Finally, we put
sparsity-inducing priors on the elements of λq to shrink
the covariance for observations from the same covariate.
In practice, we implemented each layer of the prior as

a two-layer hierarchical gamma distribution. The genera-
tive model is written as

τq,(r) ∼ Gamma(ξ , η),
φq,(r) ∼ Gamma(γ , τq,(r)),

δq,(d,r) ∼ Gamma(β ,φq,(r)),
ψq,(d,r) ∼ Gamma(α, δq,(d,r)),
aq,(d,r) ∼ N (0,ψq,(d,r)), (21)

where each element aq,(d,r) has a Gaussian distribution.
Parameters φq,(r) and τq,(r) control the column-specific
shrinkage, while parameters ψq,(d,r) and δq,(d,r) control the
local shrinkage of each element in the Aq matrix. For vec-
tor λq, we regularized each element with a local Laplace
prior:

λq,(d) ∼ Laplace(0,βλ). (22)

For our results, we set α = β = γ = ξ = 0.5 to
recapitulate two layers of the horseshoe prior, using a sta-
tistically equivalent prior represented by a hierarchical
gamma with four layers [38, 40–42]. Parameters ψq,(d,r),
δq,(d,r), φq,(r), and τq,(r) were estimated during optimiza-
tion. We set βλ = 0.01 to regularize the diagonal terms
λq,(d). The hyperparameter η controls the overall shrink-
age profile of the hierarchical gamma prior (see Additional
file 1: Appendix A for more details). We chose η over
{0.01, 0.1, 1.0} using cross-validation prediction error.

Parameter learning
To estimate the parameters for the regularized kernel,
we optimized the posterior probability. We denote all
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parameters that were estimated directly as θ and hyperpa-
rameters in the sparsity-inducing prior as θ f :

θ = {
μq, vq, aq,(d,r), λq,(d),

ψq,(d,r), δq,(d,r),φq,(r), τq,(r)
}
,

for q = 1, · · · ,Q; d = 1, · · · ,D; r = 1, · · · ,Rq

(23)

θ f = {α,β , γ , ξ , η,βλ} ,
α = β = γ = ξ = 0.5. (24)

The posterior density of our model is then

p(θ |y, x, θ f ) ∝ p(y|x, θ)p(θ |θ f )
∝ p(y|x, θ)

[∏Q
q=1

∏D
d=1

∏Rq
r=1 p(aq,(d,r)|ψq,(d,r))

p(ψq,(d,r)|α, δq,(d,r))p(δq,(d,r)|β ,φq,(r))
]

×
[∏Q

q=1
∏Rq

r=1 p(φq,(r)|γ , τq,(r))p(τq,(r)|ξ , η)
]

×
[∏Q

q=1
∏D

d=1 p(λq,(d)|βλ)
] [∏Q

q=1 p(vq)p(μq)
]
.

(25)

The term p(y|x, θ) is found by calculating the GPmarginal
likelihood given the values of θ [35], which is

log p(y|x, θ) = − 1
2
y�(K|θ + εI)−1y

− 1
2
log |K|θ + εI|

−
(∑D

d=1 Ti,d
2

)
log (2π). (26)

We use K|θ to denote the covariance matrix given θ .
We thus estimated θ by solving the posterior

optimization problem, for Q(θ) = log p(θ |y, x, θ f )
= argmaxθ Q(θ).
See equations in Additional file 1: Appendix B for the

derivation ofQ(θ).
Due to the conjugacy of the hierarchical gamma pri-

ors, we optimized parameters ψq,(d,r), δq,(d,r), φq,(r), τq,(r)
directly using maximum a posteriori (MAP) estimates of
their posterior distribution (or mean when the mode does
not exist). Our optimization procedure then consists of
two parts. In the first part, we used the update equations
to estimate ψq,(d,r), δq,(d,r), φq,(r), and τq,(r) conditional
on current estimates of μ̂q, ν̂q, âq,(d,r), and λ̂q,(d) directly
(details can be found in Additional file 1: Appendix B). In
the second part, we estimated parameters μq, vq, aq,(d,r),
and λq,(d) using a scaled conjugate gradient method to
find the local maximum, conditioned on current estimates
of ψ̂q,(d,r), δ̂q,(d,r), φ̂q,(r), and τ̂q,(r). We iterated over the
two steps until the change in Q(θ) reached the conver-
gence criterion (< 0.005) or until the maximum number
of iterations (≥ 30).

Estimating the population-level model and online
updating
The GP with the structured kernel described above lets us
model the patient-specific joint dynamics between covari-
ates within the same patient. We now describe how we
built a populatio n-level empirical prior from a set of mix-
ture kernels estimated from all training patients, and how
we apply this empirical prior to a new patient.
To estimate the empirical priors across training patients,

we trained one GP kernel for each patient separately, and
then we clustered and extracted the estimates of the basis
kernels (defined by hyperparameters μq and vq). The idea
here is that, when we estimate a set of patient-specific
mixture kernels, we would like to understand the high-
level properties of these mixture kernels shared across
patients in the same patient group. Then, we can estimate
the group-specific distributions of the hyperparameters
through in the estimates of basis kernels belonging to each
cluster. For instance, a circadian rhythm (24-h periodic-
ity) may be observed in some covariates for some patient,
groups but the period across patients could vary within
a range. Across the space of μ and v, the spectral ker-
nels vary substantially (Fig. 2a). For each basis kernel that
was estimated, the characteristic period is 1/μq and the
length scale is 1/2π√vq [34]. There are different ways to
define the features of a kernel. Here, we used the tempo-
ral features of the learned kernels directly (Fig. 2b). The
temporal spacing of two adjacent points is one hour, and
we use kernel values within a 72 h window. We then used
a Gaussian mixture model (GMM) to perform clustering
on the kernels, estimated across patients and we chose the
best number of kernel clusters Q′ (1 ≤ Q′ ≤ Q) based
on Bayesian information criterion (BIC). For the MedGP
implementation, we adapted the open source scikit-learn
package [43]. We used version 0.18.1, with ten random
restarts, a maximum of 2,000 iterations, and allowing each
mixture component to have its own covariance matrix.
For each identified kernel cluster, we estimated one

set of parameters μq and vq for the basis kernel, and
the weight coefficients—elements in Bq matrices, com-
puted using the Aq matrices and λq vectors. We do
this by building an empirical distribution using kernel
density estimation (KDE) with a Gaussian kernel over the
GP kernel hyperparameters assigned to that cluster. The
bandwidth of the kernel density estimator was chosen
based on Silverman’s “rule-of-thumb” [44]. We estimated
each new parameter using density-weighted means with
the density from the univariate KDE as the weights. When
there were multiple kernels in a patient cluster, the esti-
mated Bq matrices were added based on the additive
assumption of our kernel before aggregating to estimate
the population-level kernel for that cluster. To allow online
updating, we estimated the elements of the new empirical
Aq matrix and λq vector corresponding to each new Bq
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Fig. 2 Illustrations of the basis kernels and the features for kernel clustering. (a) An example of a discrete set of basis kernels with different μ and v
within a 72-h window. (b) An example of the 72-dim temporal features (shown with red dots) taken from a kernel for GMM clustering

matrix using singular value decomposition (SVD). For the
univariate GP regression, we did not use density weighted
means because we found them to be unstable; instead we
used a grid-based search to identify the hyperparameters
with the highest posterior probality with respect to the
kernel density estimates.
As the number of vital signs and lab measurements

for a new patient accumulated, we update the hyperpa-
rameters to estimate a patient-specific kernel. Indeed, we
update the kernel sequentially every time a new observa-
tion arrives. To do this in a computationally tractable way,
we used the momentum method [45] with almost a 72-
h window of previous observations to update the kernel
hyperparameters when predicting the value of next obser-
vation. For all experiments, we chose the momentum as
0.9 and the learning rate as 10−5. For elements in the Aq
matrices, we do not update the values if the elements were
set to near zero in the empirical prior so as to maintain the
empirical sparsity structure.

Efficient inference in MedGP
The main bottleneck of our method is in learning patient-
specific kernel hyperparameters. Let Ti = ∑D

d=1 Ti,d
denote the total number of samples of the ith patient;
the computational cost to compute the Gram matrix is
O

(
QT2

i
)
, which increases linearly with the chosen num-

ber of basis kernels. To find the MAP estimates of the
parameters, we need to invert and compute the deter-
minant of the Gram matrix (K|θ + εI) in Eq. (26). The
computational complexity for the full matrix inversion is
O(T3

i ) using Cholesky decomposition. When calculating
the gradients for optimizing the hyperparameters, the cost

is dominated byO(QDRT2
i ) after the inverse Grammatrix

is pre-computed, which is linear with the total number
of the kernel hyperparameters. In practice, the com-
plexity of each iteration is either O

(
T3
i
)
or O(QDRT2

i ).
That is, the patient with the most measurements is the
main bottleneck for training. In our implementation,
we mitigate the bottleneck using optimized linear alge-
bra functions in Intel MKL library with multithreading
and computing the gradients of the hyperparameters in
parallel.

Results
We analyzed the performance of the method, multi-
output GP with a sparse SM-LMC kernel and online
updating, MedGP by applying it to time series data from
the Hospital of the University of Pennsylvania (HUP)
and the public MIMIC-III data set [4]. We first intro-
duce the HUP and MIMIC-III data and preprocessing
procedures, and then we show experimental results and
comparisons with baseline and state-of-the-art methods
for online monitoring of time-series data with correlated
clinical covariates.

Medical data preprocessing
The HUP medical time-series data consist of electronic
health records (EHRs) from more than 260,000 patients
admitted to a University of Pennsylvania Hospital. For
each patient, the data include many heterogeneous clin-
ical covariates, including ICD-9 codes, patient demogra-
phy, length-of-stay, vital signs, and lab results. We jointly
modeled the 24 covariates with the greatest number of
observations across patients (Table 1). We selected three
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groups of discharged patients from these data: 1365 septic
patients, 952 patients with heart failure, and 4723 patients
with neoplasms. Each patient has at least one observation
for each of the 24 covariates, and in total over four million
observations were evaluated.
For each clinical covariate, we first removed obvious

artifacts (e.g., values outside of the possible range in liv-
ing humans). For the patients with neoplasms or heart
failure, we used the full patient length-of-stay in training
and testing. For septic patients, the disease progression
varies substantially across patients, and the distribution
of the covariates changes dramatically depending on the
disease phase. To address this issue, we segmented the
time series data into four disjoint partitions based on clin-
ical status: no sepsis, pre-sepsis, sepsis, and recovery. To
label each stage, we incorporated prior clinical domain
knowledge. For instance, we identified sepsis stages using
ICD-9 codes and positive blood culture results. Since our
model assumes stationarity, to better estimate the tem-
poral correlation across covariates, we chose the recovery
stage before the patients’ discharge to test our method,
since this is a relatively stable stage. We used the bed unit
information to identify if the patient is in a stable state.
That is, when a patient is transferred to step-down bed, we
labeled the time series after the transfer as recovery. The
median length-of-stay after preprocessing is 140 h for the
sepsis group, 285 h for the heart failure group, and 197 h
for the neoplasms group.
We applied similar preprocessing procedures to the

MIMIC-III data. We selected patients with a heart fail-
ure diagnosis that eventually had a routine discharge. We
removed artifacts such as out-of-bounds values for each
covariate, and applied the criteria to each patient that at
least five measurements were taken for all 24 selected
covariates. We extracted 1004 heart failure under these
criteria and used 1003 of them, excluding one patient
with more than 50K measurements due to memory
constraints.

Experimental setup
We applied MedGP to the three selected groups of
patients separately, and evaluated characteristics and per-
formance of MedGP under two different experimental
settings. In the first analysis, we evaluated the model’s
ability to learn the covariance between a pair of highly
correlated clinical covariates, and we measured the impu-
tation performance in an online setting. In the second
analysis, we follow the same online setting, but instead
jointly model all 24 clinical covariates, including four vital
signs and 20 lab covariates. In both settings, we eval-
uated our method using 10-fold cross-validation at the
patient level. That is, for each fold we ran the kernel clus-
tering step on the kernels from the training patients to

estimate a set of population-level basis kernels and Bq
matrices. This set of kernels was then applied to the held-
out patients to predict the value of each covariate using
observations from all other covariates measured at the
same time as, or earlier than, the test observation (i.e., no
future information included). After each prediction, we
updated the patient-specific kernel parameters using the
new observations from the test patient.
We compared our method to several univariate meth-

ods that modeled each covariate separately: (i) a naive
one-lag prediction procedure, which predicts an obser-
vation equal to the last observation available from the
same patient; (ii) an independent GP with squared expo-
nential (SE) or spectral mixture (SM) kernels fitting each
covariate separately (we tested with Q = 1 for SM); (iii)
the multi-resolution Probability Subtyping Model (PSM)
combining linear regression, B-splines, and independent
GPs [17]. To estimate the spectral kernel parameters, for
each patient we initialized 1000 random kernels by draw-
ing uniformly from a length scale range (between 6 and 72
h) and period range (between 24 and 72 h). We computed
the marginal likelihood of all random kernels for each
patient, and then initialize optimization using the kernels
with the highest marginal likelihood. The elements in the
Aq matrices are initialized randomly between −1.5 and
1.5.
We compared results from MedGP to these various

methods using two metrics: (i) mean absolute error
(MAE) of the predicted observations with the true obser-
vations, and (ii) 95% coverage, the percentage of true
observations that fell within the predictive 95% confi-
dence region. We quantified and reported the improve-
ments with respect to both metrics compared to all three
baselines (naive prediction, univariate GP, and PSM). To
test if the differences in prediction results from different
approaches were statistically significant, we performed
paired t-tests for the results of each covariate and com-
pared the p-values with a Bonferroni corrected threshold
(dependent on the number of jointly modeled covariates
in each experiment).
We note that the original PSM was designed to model

scleroderma disease [17]. Thus, to make it applicable to
our different patient groups, several adjustments were
made. First, we omitted the population and environmen-
tal factors selected for their relevance to scleroderma.
Second, we chose the knots of the B-spline basis by
sampling every hour for vital signs and every 24 h for
lab results between zero and the longest length-of-stay
for patients in each disease group. Third, to make PSM
training feasible on the scale of our data set, we limited
the maximum number of subtypes to ten for the sep-
sis and heart failure groups, and 20 for the neoplasms
group.



Cheng et al. BMCMedical Informatics and DecisionMaking          (2020) 20:152 Page 11 of 23

Fig. 3 The trained kernel for one patient jointly modeling PT and INR. For both the (a) SM-LMC kernel and (b) sparse SM-LMC kernel, the Aq matrices
(upper row), Bq matrices (middle row), and the basis kernel κq (bottom row) are illustrated. The zero elements are colored in light grey. Here l.c
denotes length scale for each basis kernel, and per. denotes period. The length-of-stay for this patient was over 90 days

Results of two lab covariates
As a proof of principle, we jointly modeled two well cor-
related lab covariates, prothrombin time (PT) and inter-
national normalization ratio (INR), on three HUP sub-
groups. PTmeasures the time it takes for the plasma in the
blood to clot, and is often ordered to check bleeding prob-
lems. INR is an international standard for PT to account
for possible variations across different labs. For the same
patient, the two covariates usually have similar trajectories
over time (Fig. 1).
We trained the kernels for one patient’s INR and PT

time series data both with and without the structured
sparse prior (Fig. 3). Both Aq and Bq matrices estimated
using the sparse prior have higher levels of sparsity ver-
sus those estimated without using the sparse prior. We
observed that, for both methods, one of the estimated
basis kernels κ1 captures long-term (around one month)
dependencies. However, with the sparse prior, the esti-
mated weights associated with this long term kernel A1
are rank one instead of rank two. This means the tra-
jectories of the two covariates are similar enough to be
explained by one instead of two functions, and thus fewer
hyperparameters. Moreover, two basis kernels were found
with zeros weights A2 and A5 (Fig. 3b), suggesting that
the prespecified number of basis kernels may be reduced.
We also found that the off-diagonal elements in the Bq
matrices in both cases have nonzero values, suggesting a
nonzero covariance between PT and INR observations.
In particular, two basis kernels captured the covariance
between PT and INR: one with a greater than one-month
trend (Fig. 3b, B1 and κ1), and one with a 27-h trend
(Fig. 3b, B4 and κ4). Here, the sparse kernel has 18 non-
zero hyperparameters, whereas there are 40 for the non-
sparse kernel. We can compare the two fitted kernels

using both log marginal likelihoods and model selection
scores. The log marginal likelihoods of the two kernels are
−118.16 (SM-LMC) and−128.50 (sparse SM-LMC), indi-
cating a better fit for the SM-LMCmodel without sparsity.
However, the Bayesian information criterion (BIC) val-
ues, which take into account the number of parameters
in a model, were 353.63 (SM-LMC) and 309.79 (sparse
SM-LMC), where values closer to zero reflect better mod-
els. Thus, using a sparse prior has the advantage of a
expressive but more compact kernel representation.
We then ran our model on all three disease groups

separately, and compared our method with the univari-
ate baselines under the scenario of online imputation of
the same two well-correlated clinical covariates. For inde-
pendent GPs, we used gradient descent to optimize the
hyperparameters. For PSM, we performed grid search for
the parameters of the B-spline and the independent GP
kernel. For our method, we set Q = 5 and Rq = 2 for
the Aq matrices for training. In the sepsis and heart fail-
ure groups, three nonzero basis kernel functions (Q′ = 3)
were found for themodel using the SM-LMC kernel, while
only two non-zero basis kernel functions (Q′ = 2) were
found using the sparse SM-LMC kernel; the number of
non-zero hyperparameters were 18 and 12 respectively. In
the neoplasms group, the number of nonzero basis ker-
nels were the same as the pre-specified number (Q′ =
Q = 5). With 10-fold cross-validation, we found that
results using the SM-LMC kernel showed smaller imputa-
tion error than those using the baselines for both PT and
INR (Fig. 4). The mean absolute errors (MAEs) showed
that the non-sparse SM-LMC kernels perform imputation
the best among the related approaches. On the other hand,
looking at the 95% coverage, results using non-sparse or
sparse SM-LMC kernel were well calibrated with respect
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Fig. 4 The results of prediction when jointly modeling INR and PT. The figure illustrates (a) mean absolute error (MAE), and (b) 95% coverage (the
dashed red line indicates 95%). The error bars denote ±1 standard error

to the confidence region compared with independent GPs,
although sometimes slightly worse than PSM. Note that
in this experiment we used a p-value threshold p <

0.005 to detect statistical significance, which reflects the
Bonferroni correction. The results indicate that the sparse
prior finds models with sparse structure while maintain-
ing predictive performance in this two covariate case.

Results of a joint model including 24 vital signs and lab
covariates
In the second experimental setting, we jointly modeled 24
vital signs and clinical covariates (D = 24) for all three
disease groups (Table 1). We set the number of basis ker-
nels Q = 5 and the number of nonzero columns in Aq as
Rq = 8 in this experiment for the three HUP subsets. For
theMIMIC-III heart failure subset, we setQ = 4. Detailed
results of the best setup as well as the results for differ-
ent Q may be found in Additional file 1: Appendix C and
Appendix D.

Estimating population-level kernels
We first visualized the population-level kernels estimated
from the three patient groups of the HUP data (Figs. 5, 6

and 7) and the MIMIC-III patient subgroup (Fig. 8). We
observed shared patterns in the basis kernels κq and the
weight matrices Bq across all patient groups. Compar-
ing the estimated population-level kernels, we found at
least one long-term smoothing basis kernel with length
scale longer than three days, and one 24- to 25-h periodic
basis kernel, which indicates the existence of circadian
rhythms in specific covariates as expected. Furthermore,
in the neoplasms group, which consists of more patients
than the other two groups, we found additional short-term
smoothing basis kernels and one 12- to 13-h periodic basis
kernel, which may correspond to known circasemidian
rhythm of clinical covariates, such as body temperature.
We also observed an 11-h periodic kernel in the MIMIC-
III subset.
In addition to the characteristics of the basis kernels,

our model with the sparse prior also showed inter-
pretable cross-covariate patterns (Figs. 5b to 8b). Based
on the Bq matrices, we identified groups of well corre-
lated covariates. For instance, lab covariates hematocrit
(Hct), hemoglobin (Hgb), and red blood cell (RBC) count
showed the highest levels of correlation. Since both Hct
and Hgb are known to be proportional to the number
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Fig. 5 The estimated population-level basis kernels and corresponding Bq matrices for septic patients. We show the kernels estimated (a) without a
sparse prior and (b) with a sparse prior (Q′ = 3). The sparsity of the Bq matrices is calculated as the percentage of nearly zero entries (i.e., values
≤ 10−3). The units for length-scale or period are (d) for days and (h) for hours
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Fig. 6 The estimated population-level basis kernels and corresponding Bq matrices for patients with heart failure. We show the kernels estimated (a)
without a sparse prior and (b) with a sparse prior (Q′ = 4). The sparsity of the Bq matrices are calculated as the percentage of nearly zero entries (i.e.,
values ≤ 10−3). The units for length-scale or period are (d) for days and (h) for hours

of red blood cells, this positive correlation was encour-
aging [36]. The pair of lab covariates studied in the
previous section, INR and PT, also showed substantial
positive correlation. We found that the four vital signs—
respiratory rate (RR), heart rate (HR), systolic blood
pressure (SBP), and body temperature (Temp)—had sub-
stantial correlations with each other as well as weak cor-
relations with some lab covariates. Another identifiable
set of well-correlated covariates includes lab measure-
ments of carbon dioxide (CO2), calcium, chloride, potas-
sium, and sodium. The three lab covariates related to

the concentration of hemoglobin—mean cell hemoglobin
(MCH), mean cell volume (MCV), and mean cell
hemoglobin concentration (MCHC)—appeared to have
substantial correlation (Fig. 5). The correlations modeled
in these covariance matrices are exploited for accurate
prediction and imputation in the MedGP framework.
To learn more about the importance of each kernel

type across all subsets, we visualized the percent cover-
age of each type of kernel clusters found in the patients
subsets (Fig. 9). The coverage of each kernel type is com-
puted as the ratio of patients that have non-zero Bq matrix
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Fig. 7 The estimated population-level basis kernels and corresponding Bq matrices for patients with neoplasms. We show the kernels estimated (a)
without a sparse prior (Q′ = 5) and (b) with a sparse prior (Q′ = 5). The sparsity of the Bq matrices are calculated as the percentage of nearly zero
entries (i.e., values ≤ 10−3). The units for length-scale or period are (d) for days and (h) for hours

corresponding to it.We found that the kernel clusters with
long-term (length scale > 3 days) and short-term (length
scale < 12 h) dependencies have the highest coverage
across the four subsets. In the MIMIC-III patients sub-
set, the coverages of the short-term kernel, and the 12-h

and 24-h periodic kernels are higher than that of in the
HUP subsets. We think this is because the higher sam-
pling frequency in the MIMIC-III patient subset enables
more accurate estimation of the short-term and periodic
dependencies.
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Fig. 8 The estimated population-level basis kernels and corresponding Bq matrices for 1003 patients with heart failure in MIMIC-III data set. We
show the kernels estimated (a) without a sparse prior and (b) with a sparse prior (Q′ = 4). The sparsity of the Bq matrices is calculated as the
percentage of nearly zero entries (i.e., values ≤ 10−3). The units for length scale or period are (d) for days and (h) for hours

Results for online imputation
Next, we used the trained kernels to perform online impu-
tation for each patient subgroup, where the goal is to
predict the next observation for each covariate given the
observations at previous time points. Across these meth-
ods, we used the percentage of improvement in MAE
over three types of baselines—naive prediction, univari-
ate GP (with SE or SM kernel), and PSM—to compare
results for each of the 24 clinical covariates; we visualized
the results separately (Figs. 10, 11 and 12; Figure B–E in
Additional file 1: Appendix C; Figure F–U in Additional

file 1: Appendix D). We also show the results of variations
of our method for comparison (with or without the pro-
posed sparse prior; with or without online updating). We
performed paired t-tests on predictions fromMedGP and
each baseline to quantify the improvements, and statisti-
cal significance was evaluated using Bonferroni-corrected
p < 4.17 × 10−4.
Comparing results with the independent GP model—

specifically, selecting the best results from the SE or
SM kernel, we found that MedGP, and in particular
sparse SM-LMC with online updating, outperformed the
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Fig. 9 The coverage over patients for each discovered kernel. We show the proportion of subjects that a kernel include, of each fuelypes of the
population-level kernel clusters

independent GP model on the online imputation task for
most covariates across the four patient groups (Fig. 10). In
the HUP data, we found 18, 21 and 22 covariates signifi-
cantly improved byMedGP in the sepsis, heart failure, and
neoplasms groups, respectively. In theMIMIC-III patients
subset, we found 19 covariates were improved. For all four
groups, the number of covariates that were improved sig-
nificantly by MedGP is greater than using SM-LMC ker-
nels without the sparse prior.We found that the covariates
that were well correlated in Bq usually showed significant
positive improvements over independent GPs; Hct, Hgb,
and RBC are notable examples. Similar observations could
be made for INR and PT, the pair of lab covariates stud-
ied previously (Fig. 4). Across 24 covariates, the MAEs
for INR and PT were slightly worse compared with only
modeling these two covariates. However, we also observed
that using the sparse prior with the SM-LMC kernel led to
better performance as compared to not using the sparse
prior, indicating that sparse regularization is helpful when
jointly modeling heterogeneous covariates. Finally, there
were some covariates for which MedGP did not improve
over univariate GPs in two ormore disease groups, includ-
ing red cell distribution width (RDW), white blood cell
count (WBC) and platelets.
When the baseline method is the naive one-lag

method, for all four patient groups, we found fewer
covariates with significant improvements compared with
improvements over univariate GPs (Fig. 11). In partic-
ular, the covariates for which the naive method had
an advantage were lab covariates that have piece-wise

linear behavior, such as mean cell hemoglobin (MCH) and
mean cell hemoglobin concentration (MCHC Fig. 1). In
the case of piece-wise linear behavior, our kernel does
not improve the performance compared with the naive
approach since the time series are neither smooth nor
periodic. Moreover, we also found that the naive method
performed better in respiratory rate, PTT, platelet, RDW,
and white blood cell (WBC) count. Overall, however, our
method improved online prediction results for 18, 20 and
20 of the 24 covariates in sepsis, heart failure, and neo-
plasms groups, respectively. In the MIMIC-III subset, we
found 14 covariates were improved significantly over the
naive method.
When the baseline method is PSM [17], we found that

our method outperformed PSM for most of the lab covari-
ates, but PSMoutperformedMedGP in imputation of vital
signs and two lab covariates: glucose point-of-care (Glu-
cose POC) and potassium (Fig. 12). For vital signs and
glucose level, PSM has an advantage because of a higher
sampling rate in those covariates and the highly struc-
tured mean function in the HUP subsets. The sampling
rates are usually every 4 h for vital signs and every 8 h
for glucose, which is more frequent than other lab covari-
ates. Since PSM uses a B-spline basis function to cap-
ture the empirical mean, it may tolerate non-stationarity
better. However, in the MIMIC-III subset, our method
improved in imputing glucose and three vital signs (RR,
SBP, Temp) over PSM. We think this reflects the higher
sampling rate of the covariates that allows better estima-
tion of the short-term temporal dependencies. Overall,
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Fig. 10 The percent improvement using MedGP for online imputation compared to independent (unvariate) GPs. The figures depicts the results of
24 covariates for the (a) sepsis, (b) heart failure, and (c) neoplasms and (d) MIMIC-III heart failure subgroups. The y-axis is on log scale. The error bars
denote ±1 standard error. The � indicates statistical significance p < 4.17 x 1e-4

MedGP significantly improved the imputation of 17, 20
and18 covariates in sepsis, heart failure, neoplasms sub-
sets, respectively in the HUP data set, and 16 covariates
in the MIMIC-III subset when compared with PSM. We
contrast the PSM approach of structuring the mean func-
tion with our approach of structuring the kernel function,
which leads to different types of gains in this problem.
Next, we looked at the calibration of the 95% cover-

age estimates (Figure D–E in Additional file 1: Appendix
C; Fig N–U in Additional file 1: Appendix D). We
found that MedGP outperformed independent GPs in

terms of calibration of the 95% confidence region for
all covariates. For this evaluation, values closer to 95%
are better. We observed that the coverage using the
non-sparse SM-LMC kernel was usually higher than the
coverage using the sparse SM-LMC kernel in the three
HUP subgroups, indicating that MedGP may slightly
underestimate covariate-specific noise. In contrast, in the
MIMIC-III subset, we observed that MedGP gave con-
sistently more accurate 95% coverage than without reg-
ularization in most covariates. We also found that, in
all patient subsets, online updating significantly improves
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Fig. 11 The percent improvement using MedGP for online imputation compared to the naive method. The figures depicts the results of 24
covariates for the (a) sepsis, (b) heart failure, and (c) neoplasms and (d) MIMIC-III heart failure subgroups. The y-axis is on log scale. The error bars
denote ±1 standard error. The � indicates statistical significance p < 4.17 x 1e-4

the accuracy of the 95% coverage. Among all tested
methods, PSM tended to overestimate the 95% confi-
dence region. We think this is because PSM assumes
that the input time series are aligned by patient status,
and this alignment is not the case in our data. With
unaligned data, PSM learned large marginal variance
parameters due to high empirical variance of the obser-
vations across patients at the same elapsed time. In con-
trast, the estimation of marginal covariance parameters in
MedGP is not affected by alignment because estimates are
patient-specific. We also observed that, for either MedGP
or PSM, the coverage was lower for some covariates

in the MIMIC-III subset than in HUP subsets, such
as temperature, CO2, and PTT. This potentially reflects
greater non-stationarity in the MIMIC-III subset, whose
records were from intensive care units (ICUs) instead of
regular hospital beds.
Finally, we compared the prediction performance of

MedGP compared with the version without patient-
specific online updating. We observed that online updat-
ing significantly improves the imputation errors of at
least 12 out of 24 covariates in sepsis, heart failure, neo-
plasms, and the MIMIC-III subset. Similarly, evaluating
the 95% coverage, all 24 covariates were improved by
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Fig. 12 The percent improvement using MedGP for online imputation compared to PSM. The figure depicts the results of 24 covariates for the (a)
sepsis, (b) heart failure, and (c) neoplasms and (d) MIMIC-III heart failure subgroups. The y-axis is on log scale. The error bars denote ±1 standard
error. The � indicates statistical significance p < 4.17 x 1e-4

online updating across the three diseases groups in HUP,
and 18 covariates were improved in the MIMIC-III sub-
set (Figure D–E in Additional file 1: Appendix C; Figure
N–U in Additional file 1: Appendix D). This improvement
highlights the importance of updating the empirical priors
with patient-specific observations for this problem.

Computational efficiency and scalability
In this section, we compare computational speed between
different implementations of our method. For patients
with only a few observations, an existing implemen-
tation using conventional GP inference is sufficient

for computationally tractable online inference. However,
since our data include a large number of patients with
potentially thousands of observations each, we imple-
mented an exact inference algorithm in C++ and opti-
mized it through Intel MKL libraries and customized
multithreading blocks. In the experimental setting of
Q = 5, D = 24, and Rq = 8, there are 1114
hyperparameters to estimate. We summarized the run-
time under different implementations for one patient with
2028 unique time points and 6679 observations (Table 3);
the tests were performed using a machine with Intel®
Xeon® CPUs running at 2.40GHz. Using our optimized
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Table 3 Training time (in seconds) for a single iteration under
different implementations of MedGP

Implementation Sequential Multithreading

Computing Gram matrix 11 2

Inverting Gram matrix 13 3

Computing gradients 2497 97

Total per iteration 2521 102

The total number of observations across time for this patient is 6679. The sequential
test used a single CPU, while the multithreading test used 35 CPUs—one thread per
CPU

implementation, for patients with a large number of
observations (Ti ≥ 5000), we accelerated training by a fac-
tor of 10 to 25 on average as compared with the sequential
approach.We also compared our implementation with the
standard GPy [46] implementation under different sample
sizes and Q, and reached empirically at least three times
speed up. We provide these results in Additional file 1:
Appendix E.
The proposed framework can be parallelized at the

patient level and is suitable for analysis when patient data
are observed in a streaming form. For each reference
patient, we distributed the optimized training process on
a computing cluster to estimate the patient-specific hyper-
parameters in parallel. In addition, the population-level
kernels could be updated sequentially; the computation-
ally expensive GP training procedure does not need to
be applied to patient data in bulk. That is, when we
receive more data from new patients, we only need to
update the kernel density estimators. Our framework pro-
vides better computational efficiency compared to mod-
els designed for smaller collections of observations (e.g.,
approximately two hundred observations for each patient)
as in most previous work. Those approaches are computa-
tionally intractable when working on a set of rich patient
observations of the magnitude of the HUP data due to
large matrix inversions and summingmarginal likelihoods
across patients at each iteration.

Discussion
We showed that our method, MedGP, improves per-
formance for online prediction of 24 clinical covariates
as compared with independent univariate GPs, a naive
method of propagating the previous observation, and an
earlier state-of-the-art approach, PSM [17]. We found
that, for well-correlated covariates, our method improves
online imputation performance substantially over the
related methods in most tested covariates. The improve-
ments over the naive one-lag prediction and univariate
GPs were significant in both vital signs and lab covariates.
We found that PSM was, in general, better at predict-
ing vital signs with more densely sampled observations.
However, our approach does not require patient time

series alignment and shows better calibration of the 95%
confidence region as compared to PSM.
There are several directions that will be explored using

the MedGP framework motivated by the present results.
The first direction is to allow time-varying covariances
by specifically modeling non-stationarity. Some possible
approaches to explore include incorporating state-space
models or change point detection [47, 48], and extending
thosemethods to work onmultivariate scenarios. Another
direction of interest is to consider latent subpopulation-
level structured kernels through multivariate medical
time series. We expect that our results could be further
improved through incorporating hierarchical methods
with proper features or metrics to represent the differ-
ences between patients within the same disease group and
across disease groups more carefully. For instance, the
original PSM used three levels of hierarchy based on the
subpopulations of patients with scleroderma, including
population level, subpopulation level, and individual level.
Our model may benefit from such an approach, but more
efficient inference procedures are needed to train on our
large data set [49].We should point out that this is possible
through, for instance, deriving corresponding stochastic
variation inference (SVI) algorithm. For example, previ-
ous work develops an SVI algorithm for a semiparametric
latent factor model (SLFM) with Rq = 1 [50], which could
be generalized to apply to MedGP.
For future applications, we will use the framework to

monitor the health status of patients in a hospital set-
ting and identify those patients at high risk for acute
diseases in order to assist with decision making in treat-
ment plans. Specifically, MedGP can impute latent state
in patients at any time point, including confidence region
around those estimates; this latent state can be used for
a number of downstream analyses that require complete
knowledge of patient state at specific time points. For
instance, the changes of dynamics and temporal correla-
tions between two vital signs have been found to be useful
for disease detection given high-frequency regularly sam-
pled time series [19, 20]. We demonstrated that MedGP
accurately estimates the temporal correlations in the pres-
ence of sparse, unaligned time-series data for up to 24
covariates, and we would expect to further associate the
cross-covariate dynamics to more complicated diseases,
such as septic shock [51], where the interactions of mul-
tiple covariates are jointly taken into consideration for
diagnosis.

Conclusions
In this paper, we propose a flexible and efficient frame-
work for estimating the temporal dependencies across
multiple sparse and irregularly sampled medical time
series data. We developed a model with multi-output
Gaussian process regression with a highly structured
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kernel. We fit this model using an optimized implementa-
tion of exact GP inference to three different disease groups
in the HUP medical data set and the MIMIC-III ICU data
set. We demonstrate in the results that our model is a
robust and reliable estimate of patient state upon which
downstream medical analyses can be built.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12911-020-1069-4.

Additional file 1: Appendix.
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