Chen et al. BVIC Medical Informatics and Decision Making
https://doi.org/10.1186/512911-020-1050-2

(2020) 20:36

BMC Medical Informatics and
Decision Making

RESEARCH ARTICLE Open Access

Early prediction of acquiring acute kidney
injury for older inpatients using most

Check for
updates

effective laboratory test results

Yi-Shian Chen', Che-Yi Chou®>*" and Arbee LP. Chen>®"

Abstract

inpatients is therefore crucial.

performance of up to 5 days prior to the AKI event.

prediction times.

Background: Acute Kidney Injury (AKI) is common among inpatients. Severe AKI increases all-cause mortality
especially in critically ill patients. Older patients are more at risk of AKl because of the declined renal function,
increased comorbidities, aggressive medical treatments, and nephrotoxic drugs. Early prediction of AKI for older

Methods: We use 80 different laboratory tests from the electronic health records and two types of representations
for each laboratory test, that is, we consider 160 (laboratory test, type) pairs one by one to do the prediction. By
proposing new similarity measures and employing the classification technique of the K nearest neighbors, we are
able to identify the most effective (laboratory test, type) pairs for the prediction. Furthermore, in order to know how
early and accurately can AKl be predicted to make our method clinically useful, we evaluate the prediction

Results: We compare our method with two existing works and it shows our method outperforms the others. In
addition, we implemented an existing method using our dataset, which also shows our method has a better
performance. The most effective (laboratory test, type) pairs found for different prediction times are slightly
different. However, Blood Urea Nitrogen (BUN) is found the most effective (laboratory test, type) pair for most

Conclusion: Our study is first to consider the last value and the trend of the sequence for each laboratory test. In
addition, we define the exclusion criteria to identify the inpatients who develop AKI during hospitalization and we
set the length of the data collection window to ensure the laboratory data we collect is close to the AKI time.
Furthermore, we individually select the most effective (laboratory test, type) pairs to do the prediction for different
days of early prediction. In the future, we will extend this approach and develop a system for early prediction of
major diseases to help better disease management for inpatients.

Keywords: Acute kidney injury, Early prediction, Electronic health records, Laboratory tests, K nearest neighbors

Background

Acute Kidney Injury (AKI) affects 5-7% of inpatients [1]
and 22-57% of patients in the intensive care unit [2-6].
Severe AKI can result in significant mortality (40—-70%)
for critically ill patients [7]. Older inpatients have the
highest incidence of AKI due to multiple contributing
factors [8-11], including increased number of
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comorbidities, aggressive medical treatments, and
greater use of nephrotoxic drugs [12-15]. Even after
resolution of AKI, it can subsequently lead to severe kid-
ney problems such as progression to dialysis dependency
and chronic kidney disease [1, 16]. Therefore, early rec-
ognizing high-risk older inpatients to prevent them from
acquiring AKI is important for physicians. It can give
physicians adequate time to modify practice, and help
better disease management for the patients. In this
study, we propose an approach to early predict AKI up
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to 5days prior to possible AKI events for the inpatients
over age 60.

AKI is defined using Acute Kidney Injury Network
(AKIN) criteria [7] which is based on the serum creatin-
ine or urine output. However, the AKIN criteria can
only identify AKI after the inpatients have already ac-
quired AKI. The Acute Dialysis Quality Initiative
(ADQI) Consensus Conference [17] recommended that
forecasting AKI events with a horizon of 48 to 72h
would give physicians adequate time to modify practice.
In this study we develop an approach to early predict
AKI up to 5 days prior to the possible AKI event.

In recent years, the application of computer technolo-
gies to medicine has become a hot research field, and
among the technologies machine learning is most
adopted. It identifies patterns of diseases using patient
electronic health records (EHR) and informs physicians
of any anomalies. To predict AKI for inpatients by ma-
chine learning, Kate et al. [18] built models to predict
AKI for older inpatients at 24h of admission. In
addition, Cheng et al. [19] built models to predict AKI 0
to 5days prior to the possible AKI event for inpatients
aged 18-64. Mohamadlou et al. [20] built models to
early detect and predict AKI for the inpatiens older than
age 18. Nenad et al. [21] built a model for the continu-
ous risk prediction of future deterioration inpatients.

In order to early predict AKI, we use a classification
method. A patient is classified to a potential AKI patient
if most of the patients with similar features based on
EHRs are AKI patients. On the other hand, a patient is
classified to a non-AKI one if most of the patients with
similar EHR features are non-AKI patients. In this study,
we use the laboratory test data and the corresponding
similarity measures to determine the similarity of two
patients. For a laboratory test, an inpatient may have
several values from different times of the test. A se-
quence of the laboratory test values can therefore be
formed. Two types of data from the sequence are then
extracted to represent this sequence. The first type is the
last value in the sequence, and the second type is the
trend of the sequence. The trend of the sequence repre-
sents the rate of increase or decline of the values. In
order to avoid minor differences, we transform the last
value and the trend of the sequence into symbolic values
for further processing.

We then employ two different similarity measures for
the last value and the trend of the sequence. For the last
value, we compute the difference of the values as the
similarity score of each pair of patients. For the trend of
the sequence, we use a similarity measure to obtain the
similarity score of each pair of patients because the
lengths of the individual sequences are often different.
Finally, we consider 80 different laboratory tests from
the EHR and the two types of sequence representations
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for each laboratory test, that is, we consider 160 (labora-
tory test, type) pairs one by one to classify the patients.
Since not all of these (laboratory test, type) pairs can
help for the AKI prediction, we use two selection
methods, i.e. sequential forward selection (SFS) [22] and
sequential backward selection (SBS) [23] to select the
most effective (laboratory test, type) pairs.

The framework of our AKI prediction method is
shown in Fig. 1. We first preprocess the inpatient de-
partment data and laboratory test data to obtain the
dataset for further processing. Then, the dataset is di-
vided into two parts, one for selecting the most effective
(laboratory test, type) pairs and the other for doing pre-
diction. To select the most effective (laboratory test,
type) pairs, we first transform the last value and the
trend of the sequences into symbolic values. Then, we
employ the similarity measurements and the classifica-
tion method to obtain the result for each (laboratory
test, type) pair, and select the most effective (laboratory
test, type) pairs. In the prediction part, we use these ef-
fective (laboratory test, type) pairs to do the prediction.
Similarly, we transform the last value and the trend of
the sequences into symbolic values for the (laboratory
test, type) pairs we selected in the first part. Finally, we
employ the similarity measurements and the classifica-
tion method to obtain the prediction result, and evaluate
the performance.

Methods

Description of the dataset

The dataset is from China Medical University Hospital
which contains the inpatient department data, outpatient
department data, emergency department data, medica-
tion data, and laboratory test data from 2003 to 2015. In
this study, we use the inpatient department data and la-
boratory test data. There are 561,222 encounters in the
inpatient department data. The inpatient department
data includes the inpatient ID, admission date, discharge
date, admission diagnosis, and discharge diagnosis. The
laboratory test data includes the inpatient ID, laboratory
test code, laboratory value, and laboratory time. We link
the inpatient department data and laboratory test data
based on the inpatient ID. An inpatient may have mul-
tiple admissions (encounters). In some admissions the
AKI might occur, and in some others it might not. We
define the exclusion criteria to identify the inpatients
who develop AKI in a specific admission, i.e. it ensures
the inpatients did not acquire AKI when they were ad-
mitted to the hospital, and developed AKI during the
hospitalization. Therefore, we treat each admission indi-
vidually and use the corresponding laboratory tests to do
the prediction. In addition, we need to ensure the la-
boratory time is within the admission time and discharge
time for an encounter. A sequence of the laboratory test
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values for a laboratory test can therefore be formed for
an encounter. Notice that the number of laboratory tests
varies from patient to patient.

Preprocessing of the dataset

AKI is defined using AKIN criteria [7] which is based on
the serum creatinine or urine output. Although the urine
output is one of the diagnostic criteria of AKI, it can be
influenced by factors other than renal health. In this
study, we use the serum creatinine to distinguish the
AKI inpatients and non-AKI inpatients based on the fol-
lowing criterion: A patient with an absolute increase in
serum creatinine of 0.3mg/dL or increase to 150-200%
within 48 h is classified as “AKIN stage 1.” The inpa-
tients classified to AKI inpatients need to meet the
AKIN stage 1 criteria. In addition, we strictly extract the
inpatients who develop AKI during hospitalization to
make the results more convincing. That is, before the in-
patients acquire AKI, we ensure that there is one pair of
serum creatinine measurements taken within 48 h and

the increase of the second serum creatinine measure-
ment does not exceed the threshold defined in the AKIN
criteria. For the non-AKI inpatients, we ensure that
there is at least one pair of serum creatinine measure-
ments taken within 48 h and all pairs of serum creatinine
measurements do not meet the AKIN criteria. Further-
more, the laboratory test data before the AKI Time (the
laboratory time of the second serum creatinine measure-
ment which first meets the AKIN criteria) was collected
for the AKI inpatients. For non-AKI inpatients, we col-
lect the laboratory test value before the laboratory time
of the last serum creatinine measurement.

We evaluate the prediction performance at 0 to 5 days
prior to the AKI event. The data collection window is
denoted as [lower_bound, upper_bound]. We set the
length of data collection window to 5days and adjust
the prediction time as shown in Fig. 2. To illustrate with
an example, an inpatient acquires AKI at 2010-08-25 14:
00 (the AKI Time), then the data collection window for
predicting at 2-days prior to the AKI event would be
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Fig. 2 An illustration of adjusting the prediction time

[AKI Time — 7 days, AKI Time — 2 days] which is [2010-
08-18 14:00, 2010-08-23 14:00]. In order to evaluate the
performance of different prediction times, we collected
data from the inpatients who stayed at least 10 days from
admission to the AKI time. The data collected include 5
days for the prediction and 5 days for evaluating the per-
formance of the prediction times. In order to relax the
requirement of the 5 days data collection window for the
prediction, we also consider other lengths of the data
collection window, i.e. 1 day and 3 days, and evaluate the
prediction performance accordingly.

In addition, we exclude the inpatients younger than
60 years of age since we focus on the older inpatients in
this study. Out of the total of 7930 encounters included
in our data, 836 (10.54%) encounters acquire AKI as
shown in Fig. 3.

Our dataset is highly imbalanced with an approximate
1:8 ratio for the AKI inpatients to non-AKI inpatients.
With such an imbalanced dataset, most classifiers will
favor the majority class (non-AKI inpatients), resulting
in a poor accuracy in the minority class (AKI inpatients)
prediction. In this study, we randomly under-sampled
the non-AKI inpatients such that the ratio for the AKI
inpatients to non-AKI inpatients is 1:1. We repeatedly
and randomly under-sampled the remaining non-AKI
inpatients until the remaining non-AKI inpatients are

less than the AKI inpatients. That is, we generated 8
data sets as shown in Fig. 4. We also compare the per-
formance of using the imbalanced data and balanced
data.

Finally, we divide each data sets into two parts, one for
selecting the (laboratory test, type) pairs and the other
for doing prediction. We consider two ratios for these
two parts, i.e. 8:2 and 5:5. Figure 5. Shows the number
of encounters in these two parts for the case of the 8:2
ratio. Out of a total of 1338 encounters that are included
in (laboratory test, type) pairs selection, and 334 encoun-
ters that are included in prediction. The AKI sample to
non-AKI sample ratio is 1:1 in both (laboratory test,
type) pairs selection and prediction.

Segmentation and data representation
The sequence of the laboratory test values for an in-
patient is denoted L = ((¢1, vy), (£, v2), ...(t,, v,,)) where £
is the first laboratory time, and v; is the first laboratory
value of the inpatient, and ¢, is the last laboratory time,
and v, is the last laboratory value. We extract two types
of data from the sequence of the laboratory test values
to represent the sequence. The first type of data is the
last value of the sequence, denoted vy s, Vigst = Vi

In order to avoid minor differences, we transform the
last value v, into a symbolic value ry,,, according to the

- without AKI
n=7,094
Total encounters Exclusion
n =561,222 Criteria
Total encounters
with AKI
n =836

Fig. 3 The number of AKI encounters and non-AKI encounters in the dataset
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following formula, where y,,,; denotes the mean and oy,
denotes the standard deviation of v, for all inpatients. It
can transform similar values to the same symbolic value.

1 V< Hiast—Olast

Olast
2 Hiase=Olast < Viast <Hjge— 2
Olast

3 Hiast— P < Viast <yas

Vigst = Clust
as
4 Plast < Viast <Hyzg + 2
Olast
5 Plast + < Viast SHigg + Olast

2
6 Hiast + Olast < Vigst

The second type of data is the trend of the sequence.
Similarly, we transform the sequence of the laboratory test
values into the slope sequence S = (sy, sy, ..., 5, _ 1), where s;
is the slope between two adjacent laboratory values,

5 = U
Li1—tj

We calculate the difference of time in minutes and con-
vert it into days. For example, the sequence of the labora-
tory test values of an inpatient is ((2004-06-05 07:38, 88),
(2004-06-09 17:22, 104), (2004-06-12 22:13, 137)). The

difference of 2004-06-05 07:38 and 2004-06-09 17:22 is
4.41 days. The slope sequence S = (3.63, 10.31). The longer
the time interval between the two laboratory tests is, the
smaller the slope will be. Then, we transform the slope se-
quence into a symbolic slope sequence R = (11, 79, ..., 7, _ 1)
according to the following formula, where 7; is the sym-
bolic representation of sj, {45,y denotes the mean, and
Ogi0pe denotes the standard deviation of 5;’s in the slope se-
quence S for all inpatients.

1 5js Hsiope —Osslope

Oslope
2 /’tslope_USIUPe < S/S”slope_ 2

Oslope
3 Hsiope™ 2 < Sisﬂslope
= 4 . Oslope
/’tslape < S/_/'{slope + 2
Oslope
5 Hsiope + 2 < sisﬂslupe + Osiope

6 /’lslape + O'slope < Sj

Similarity measures

We employ two different similarity measures for the last
value and the trend of the sequence. The similarity score
for the last value (LS) is measured by the difference of
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where the smaller the LS is, the more similar the two in-
patients are. If the difference is zero, it means the sym-
bolic values are the same, and the two inpatients are
most similar. For the trend of the sequence, the trend
similarity score (7S) is obtained by Dynamic Time
Warping (DTW) [24]. DTW is a classic similarity meas-
ure. It has been widely applied to measure the similarity
for two sequences. A well-known application is the auto-
matic speech recognition which matches a sample voice
with another voice with a faster or slower pace than the
sample voice. It executes a mapping of one sequence to
the other and find the best mapping with the minimum
distance. Given two symbolic slope sequences R; = (r1,
rh.rk) and Ry = (r2,r%,...,r2), there is an m by n
matrix D with elements D(i,j). The distance function §
between R, and R, is defined as &(i, j) = |r}-r3|. The
matrix D can be constructed with the initial condition
D(1,1) =5(1,1). The matrix is filled in one element at a
time following a column-by-column or row-by-row
order. The element D(i, j) which denotes the cumulative
distance is determined by the recursive formula below.

D(i, j) = 6(, j)
+ min{D(i, j-1),D(i-1, j-1),D(i-1, j)}

The resultant D(m, n) is the minimum distance be-
tween the two sequences. For the example shown in
Fig. 6, sequence S=(1,1,3,3,4) and sequence T=(1,1,
3,4), m=5 and n = 4. The distance function ¢ is defined
as |s; — ¢;|. The matrix D (5,4) can be constructed as fol-
lows. The initial element D(1, 1) is the distance of s; and
t;, which is 0. We fill in the element row-by-row. The

element D(2,1) is the sum of the distance between
sy and t; and D(1, 1), resulting in 0. The element D(2, 4)
is 5 as the sum of the distance between s, and ¢, (which
is 3) and the minimum of the cumulative distances
of D(1,4), D(1, 3), and D(2, 3) (which is 2). Finally, D(5,
4) = 0 is the minimum distance between the two
sequences.

K-nearest neighbor classification

We use the K-nearest neighbor (KNN) classification
method [25] to determine whether the target inpatient is
an AKI inpatient. The idea behind KNN classification is
that similar data points should have the same class. The
principle is classifying a data point based on how its K
neighbors are classified. We calculate the distance be-
tween the target point to be classified and all other
points. The resultant distances are then ranked to find
the K nearest neighbors. The majority class of the K
nearest neighbors is designated as the class of the target
point. In this study, the distance is used to measure the
similarity score between each pair of inpatients. The
smaller the distance is, the more similar the two inpa-
tients are. For a laboratory test, there are two different
similarity scores, ie. the LS and TS. Therefore, we con-
sider 160 (laboratory test, type) pairs one by one to clas-
sify the patients. Since not all of these (laboratory test,
type) pairs can help for the AKI prediction, we select the
most effective (laboratory test, type) pairs.

(laboratory test, type) pair selection

In this study, we use the SFS [22] and SBS [23] strategies
to select the most effective (laboratory test, type) pairs.
For an inpatient, if there exist one (laboratory test, type)
pair which classifies the inpatient to be positive, we clas-
sify the inpatient to be positive. Then, we use the SFS
and SBS strategies to select the most effective
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Fig. 6 Computing the minimum distance of (1,1,3,3,4) and (1,1,3,4) by DTW

(laboratory test, type) pairs by the accuracy of the differ-
ent combinations of the (laboratory test, type) pairs. For
SES, we start with an empty set. With each iteration, one
(laboratory test, type) pair among the remaining (labora-
tory test, type) pairs is added to the subset so that the
subset maximizes the evaluation performance. For SBS,
we exclude each (laboratory test, type) pair to compute
the accuracy. We remove the (laboratory test, type) pair
if the accuracy is the maximum when we exclude the
(laboratory test, type) pair. We keep removing the (la-
boratory test, type) pairs until there is only one
remaining (laboratory test, type) pair. Finally, we find
the most effective (laboratory test, type) pairs to do the
prediction.

Prediction by the most effective (laboratory test, type)
pairs

We repeat the process in the (laboratory test, type) pair
selection part for the prediction part and use the se-
lected most effective (laboratory test, type) pairs to do
the prediction. Finally, we classify the inpatient to be

positive if there exist one (laboratory test, type) pair
which classify the inpatient to be positive.

Results

We first compare our method with Kate et al. [18] and
Cheng et al. [19]. Then, we compare with Cheng et al.
[19] using our dataset on the performance at 0 to 5-days
prior to AKI events. Finally, we consider different pa-
rameters on the balanced data, different ratio of the (la-
boratory test, type) pairs and doing prediction, different
feature selection methods, the most effective (laboratory
test, type) pairs for different prediction times, and the
different lengths of data collection window.

Comparison of existing works

Cheng et al. [19] shows the precision and recall using ran-
dom forest at 1-day prior to AKI events to be 0.587 and
0.211, respectively. The precision and recall of our method
are 0.713 and 0.821 at 1-day prior to AKI events, respect-
ively. In addition, Kate et al. [18] shows that the area
under the receiver operating characteristic curve, i.e. the

Table 1 The precision and recall of our approach and the three machine learning methods at 0 to 5-days prior to AKl events

Prediction Our approach (Precision/ Logistic Regression (Precision/ Random Forest (Precision/ AdaBoostM1 (Precision/
Time Recall) Recall) Recall) Recall)

AKI Time-0 0.826/0.93 0.779/0.781 0.749/0.742 0.759/0.765

AKI Time-1 0.713/0.821 0.716/0.757 0.687/0.686 0.713/0.734

AKI Time-2 0.64/0.766 0.652/0.646 0.631/0.582 0.639/0.688

AKI Time-3 0.651/0.664 0.633/0.609 0.611/0.567 0.628/0.615

AKI Time-4 0.654/0.668 0.631/0617 0.603/0.578 0.621/0.651

AKI Time-5 0.596/0.708 0.618/0.602

0.578/0.565 0.606/0.642
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Table 2 The F1-score of our approach and the three machine learning methods at 0 to 5-days prior to AKI events

Prediction Time Our approach Logistic Regression Random Forest AdaBoostM1
AKI Time-0 0.875 0.780 0.745 0.762

AKI Time-1 0.759 0.736 0.686 0.723

AKI Time-2 0.695 0.649 0.605 0.662

AKI Time-3 0.654 0.621 0.588 0.621

AKI Time-4 0.659 0.624 0.590 0.635

AKI Time-5 0.646 0610 0.572 0.623

AUC using logistic regression is 0.743 when the AKI hap-
pens. The AUC of our method is 0.866.

Comparison of existing methods using our dataset

We implemented the method of Cheng et al. [19] and
compared the performance with our approach using
our dataset. Table 1 and Table 2 show the perform-
ance in terms of precision, recall and Fl-score. Al-
though it would be advantageous to predict AKI as
early as possible, lengthening the prediction time re-
duces the performance. The ADQI consensus confer-
ence [17] recommended that predicting AKI before
48 to 72h would give physicians adequate time to
modify practice. Our study shows that the F1- score
of our method is 0.695 at 2-days prior to AKI events
and 0.654 at 3-days prior to AKI events. By using the
same dataset, we show a better performance of our
approach than Cheng et al. [19].

Analysis of different parameters

We also compared the performance of using the imbal-
anced data and balanced data as shown in Table 3. The
result of the balanced data shows the average result of
the 8 balanced datasets. Although the accuracy of using
imbalanced data is higher than the balanced data, the
precision, recall, and Fl-score are lower than the bal-
anced data. With such an imbalanced dataset, most clas-
sifiers will favor the majority class (non-AKI inpatients),
resulting in a low accuracy in the minority class (AKI in-
patients) prediction. Therefore, we use the balanced data
for the following comparisons.

In data preprocessing, we divided each data set into
two parts, one for selecting the (laboratory test, type)
pairs and the other for doing prediction. We consider
two ratios for these two parts, i.e. 8:2 and 5:5. Table 4
shows that these two ratios have similar performance.

Table 3 The prediction performance using imbalanced data
and balanced data when AKI happens

Precision Recall F1-score Accuracy
Balanced data 0.826 0.930 0.875 0.866
Imbalance data 06 0.172 0.268 0.901

In the (laboratory test, type) pair selection part, we use
two methods to select the most effective (laboratory test,
type) pairs, including SFS and SBS. Table 5 shows the
and F1-score of SES and SBS at 0 to 5-days prior to AKI
events. It shows that SFS has a higher F1-score than SBS
for all prediction times.

In this study, we use the serum creatinine to deter-
mine the AKI inpatients and non-AKI inpatients.
Therefore, we also compare the performance of only
using the serum creatinine and the most effective (la-
boratory test, type) pairs as shown in Table 6. It
shows that the prediction performance of using the
most effective (laboratory test, type) pairs is better
than only using the serum creatinine at 0 to 5-days
prior to AKI events.

Table 7 shows the most effective (laboratory test,
type) pairs for individual prediction times. The (BUN,
Trend) plays more significant role when the predic-
tion time is closer to the AKI time, and the (BUN,
Last) is an important pair at 2 to 5-days prior to AKI
events. In addition, the most effective (laboratory test,
type) pairs for different prediction times are slightly
different.

In order to relax the requirement for the prediction,
we also consider other lengths of the data collection
window and show the performance in Table 8. We have
the best prediction performance at 2 days prior to AKI
events when we set the data collection window to 5 days.
Although the performance of the “3days” is slightly
worse than that of the “5days,” it can predict the AKI
for the inpatients with shorter hospital stays.

Table 4 The F1-score of different ratios for dividing the dataset
for selecting the (laboratory test, type) pairs and doing
prediction

Prediction Time 8:2 ratio 5:5 ratio
AKI_Time-0 0.875 0.854
AKI_Time-1 0.759 0.752
AKI_Time-2 0.695 0.696
AKI_Time-3 0.654 0.649
AKI_Time-4 0.659 0.66
AKI_Time-5 0.646 0.645
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Table 7 The most effective (laboratory test, type) pairs for 0 to

events 5-days prior to AKI events

Prediction Time SFS SBS Prediction Time Type Laboratory Test

AKI_Time-0 0.875 0.740 AKl Time - 0 Trend Blood Urea Nitrogen (BUN)

AKI_Time-1 0.759 0.734 AKI Time - 1 Trend Serum Creatinine

AKI_Time-2 0.695 0.660 Trend Lactic Acid

AKI_Time-3 0.654 0.594 AKl Time - 2 Last Blood Urea Nitrogen (BUN)

AKI_Time-4 0.659 0.606 Trend Blood ammonia

AKI_Time-5 0.648 0.601 AKI Time - 3 Last Blood Urea Nitrogen (BUN)
Trend Blood ammonia

Discussions Trend Calcium (Ca)

Kate et al. [18] focus on the older inpatients over the age Trend Total Protein

of 60. It uses the demographic information, comorbidity, _ o

family history, medication and laboratory test of the in- AKITime - 4 Last serum Creatinine

patients as the predictive variables to predict whether a Last Blood Urea Nitrogen (BUN)

patient will develop AKI during hospitalization. For each Trend Lactic dehydrogenase (LDH)

of these variables, only the last recorded value is used. Trend Albumin (ALB)

There are two different prediction times in the study, i.e. Trend Lactic Acid

24h.af‘ter admission and when the AKI happens.‘ The Trend Phosphorus (°)

prediction performance always drops after removing a _ _

predictive variable. When the laboratory test is removed, AKITime =5 ast Blood Urea Nitrogen (BUN)

the prediction performance drops dramatically when the Last serum Creatinine

AKI happens. However, it only incurs a small drop for Trend Blood ammonia

predicting at 24 h after admission. It means that the la- Trend Lactic dehydrogenase (LDH)

boratory test plays a more significant role when the pre- Trend Calcium (Ca)

diction time is closer to the AKI event. In addition, Kate Trend Phosphorus (P)

et al. [26] present a continual prediction model which
predicts AKI at the time of a change in the feature
values instead of at a particular time. In the training
process, the last changed feature value before AKI is
used to generate positive examples, and the last changed
feature value after AKI is used to generate negative ex-
amples. Therefore, it can be used to predict whether an
inpatient acquires AKI at any time during the
hospitalization. Furthermore, Cheng et al. [19] use the
demographic information, laboratory test, vital, medica-
tion, and comorbidity as predictive variables to predict
the inpatients aged 18—64. For the laboratory test, 14 la-
boratory tests are selected as the prediction features, and
only the last recorded value before the prediction time is
used, which is categorized as either “present and normal,

Table 6 The F1-score of using the most effective (laboratory
test, type) pairs and only using the serum creatinine at 0 to 5-
days prior to AKl events

» o«

present and abnormal,” and “unknown” according to
standard reference ranges. Three machine learning
methods (Logistic Regression [27], Random Forest [28],
and AdaboostM1 [29]) are then used with 10-fold cross
validation for evaluating the performance. The study
predicts the AKI at O to 5-days prior to the AKI event
and assesses how early and accurately AKI can be pre-
dicted. It shows that lengthening the prediction time will
reduce the performance.

We compare our method with Kate et al. [18] and
Cheng et al. [19] and it shows that our method outper-
forms the others. Our study is first to consider the last
value and the trend of the sequence for each laboratory
test. The methods of existing works only use the last

Table 8 The F1-score of different lengths of the data collection
window at 0 to 5-days prior to AKI events

Prediction Time Most Effective Pairs Serum Creatinine  Prediction Time 1 day 3 days 5 days
AKI Time-0 0.875 0.792 AKI Time-0 0.837 0.868 0.875
AKI Time-1 0.759 0.750 AKI Time-1 0814 0.792 0.759
AKI Time-2 0.695 0.541 AKI Time-2 0.609 0.664 0.695
AKI Time-3 0.654 0.566 AKI Time-3 0.584 0.669 0.654
AKI Time-4 0.659 0498 AKI Time-4 0.583 0.622 0.659
AKI Time-5 0.646 0.509 AKI Time-5 0523 0.648 0.646
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recorded value before the AKI event. The trend of the
sequence contains more information than the last re-
corded value, which makes our method perform better.

In addition, we implemented the method of Cheng
et al. [19] using our dataset, which also shows our
method has a better performance. Cheng et al. [19]
shows the precision and recall using random forest at 1-
day prior to AKI event to be 0.587 and 0.211, respect-
ively, that is, Fl-score =0.31. The Fl-score using our
dataset at 1-day prior to AKI events is 0.686. Using our
dataset achieves a much better performance. This is be-
cause in our dataset we define the exclusion criteria to
identify the inpatients who develop AKI during
hospitalization and we set the length of the data collec-
tion window to 5 days.

Finally, we individually select the most effective (la-
boratory test, type) pairs to do the prediction for differ-
ent days of early prediction. The existing works select
the fixed laboratory tests for different days prior to AKIL
Therefore, we can have the better performance.

Conclusions

AKI is a common clinical event among inpatients and it
can result in significant mortality, especially for older in-
patients. Early identification of the high-risk older inpa-
tients to prevent them from acquiring AKI is therefore
important. In this study, we proposed an approach to
early predict AKI, which shows a better performance
compared with the existing works. In addition, we found
that the earlier the AKI is predicted, the more (labora-
tory test, type) pairs are required, and the BUN is an im-
portant laboratory test in the prediction. However, more
studies are needed to determine if early prediction of
AKI decreases the development of AKI and decreases
the AKI associated adverse outcomes.

In the future, we will consider to incorporate other
data types such as demographic information, comorbidi-
ties, family history, and medications to increase our pre-
diction performance. Furthermore, we will extend this
approach and develop a system for early prediction of
other major complications to help better disease man-
agement for inpatients.
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