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Predicting patient outcomes in psychiatric
hospitals with routine data: a machine
learning approach
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Abstract

Background: A common problem in machine learning applications is availability of data at the point of decision
making. The aim of the present study was to use routine data readily available at admission to predict aspects
relevant to the organization of psychiatric hospital care. A further aim was to compare the results of a machine
learning approach with those obtained through a traditional method and those obtained through a naive baseline
classifier.

Methods: The study included consecutively discharged patients between 1st of January 2017 and 31st of
December 2018 from nine psychiatric hospitals in Hesse, Germany. We compared the predictive performance
achieved by stochastic gradient boosting (GBM) with multiple logistic regression and a naive baseline classifier. We
tested the performance of our final models on unseen patients from another calendar year and from different
hospitals.

Results: The study included 45,388 inpatient episodes. The models’ performance, as measured by the area under
the Receiver Operating Characteristic curve, varied strongly between the predicted outcomes, with relatively high
performance in the prediction of coercive treatment (area under the curve: 0.83) and 1:1 observations (0.80) and
relatively poor performance in the prediction of short length of stay (0.69) and non-response to treatment (0.65).
The GBM performed slightly better than logistic regression. Both approaches were substantially better than a naive
prediction based solely on basic diagnostic grouping.

Conclusion: The present study has shown that administrative routine data can be used to predict aspects relevant
to the organisation of psychiatric hospital care. Future research should investigate the predictive performance that
is necessary to provide effective assistance in clinical practice for the benefit of both staff and patients.
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Introduction
The individual needs of patients are central to decision
making in hospital care [1]. Nevertheless, reducing com-
plexity of individual episodes through the identification
of common patterns of needs facilitates an efficient or-
ganisation of care [2].

The identification of common patterns of needs and
the prediction of relevant aspects of patient care were
found to be more complex in hospital psychiatry than in
other medical disciplines [3–5]. Reasons put forward for
this were less distinct diagnostic concepts [6–8], less
standardisation of care [9] and a broader spectrum of ac-
ceptable therapeutic regimes [10].
Machine learning is a potent approach to identify and

quantify multidimensional patterns in patient and hos-
pital service data [11]. It has gained increasing attention
in health care by achieving impressive results, for in-
stance, in early prediction and diagnosis of breast cancer
[12], acute kidney injury [13], skin cancer [14], prostate
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cancer [15], diabetic retinopathy [16] and depression
[17]. Other studies applied machine learning to aspects
relevant to the organisation of hospital care, such as pre-
dicting patient volume in emergency departments [18–
20], the management of acute sepsis [21–23] and the
daily costs per psychiatric inpatient [24].
The actual use of machine learning applications in

routine clinical care often lags behind prominent
achievements in research projects. Most published clin-
ical prediction models are never used in clinical practice
[25]. A common problem is the availability of useful data
at the point of decision making [26, 27].
Previous research has often included a broad set of

medical, psychometric and sociodemographic variables
of which many should usually not be available at admis-
sion of patients at many hospitals [3, 28]. High adminis-
trative workload in clinical staff and overall time
constraints are prevalent in many health care systems
[29]. Therefore, required feature variables should be rou-
tinely available at the point of decision making without
further curation.
There is currently a lack of evidence informing the

performance and usefulness of machine learning applica-
tions based on routine data [30]. Our study addresses
this lack of evidence by restricting predictive modelling
to a set of routinely available feature variables.
The aim of the present study was to use routine data

readily available at admission to predict aspects relevant
to the organization of psychiatric hospital care. A further
aim was to compare the results of a machine learning
approach with those obtained through a traditional
method and those obtained through a naive baseline
classifier.

Methods
The present study included all inpatient episodes that
were admitted to one of nine psychiatric hospitals in
Hesse, Germany, and that were discharged between 1st of
January 2017 and 31st of December 2018. An inpatient
episode was defined as a patient’s stay at the hospital be-
tween admission and formal discharge. We excluded pa-
tients that were not in the billing class of adult psychiatry
of the German lump-sum payment system for psychiatric
hospital care, such as child and adolescent psychiatry and
patients with mainly psychosomatic ailments. Missing data
in outcome variables was addressed with listwise deletion.
The study was approved by the ethics commission of the
Medical Council Hesse, record number FF116/2017.
Three different modelling approaches were compared:

The chosen machine learning approach was a stochastic
gradient boosting algorithm implemented in the CARET
package in R based on the gradient boosting machine
(GBM) by Friedman [31–33], The traditional method was
logistic regression with the full set of feature variables used

in the machine learning approach. The naive baseline clas-
sifier was obtained by using only basic diagnostic groups in
a logistic regression. The basic diagnostic groups were F0/
G3 Organic mental disorders, F1 Substance-related mental
disorders, F2 Schizophrenia, schizotypal and delusional dis-
orders, F3 Affective Disorders and Others.
The required data were obtained from routinely docu-

mented information in the electronic medical records
and patient administration databases. A restricted set of
feature variables was used that should be available in
most hospitals at admission of patients. These were 1.
the one-dimensional Global Assessment of Functioning
Scale (GAF) [34], 2. age, 3. gender, 4. mode and time of
admission and 5. a basic diagnostic grouping (F0/G3 Or-
ganic mental disorders, F1 Substance-related mental dis-
orders, F2 Schizophrenia, schizotypal and delusional
disorders, F3 Affective Disorders and Others).
We used these features to predict the probability of 1.

non-response to therapy as defined by failing to reach
the next ten-point-interval of the GAF-scale at discharge
(e.g. from 21 to 28 was considered as non-response and
from 28 to 31 was considered as response), 2. the need
for coercive treatment, 3. the need for 1:1 observation, 4.
the need for crisis intervention, 5. long length of stay
(LOS) above the 85th percentile and 6. short LOS below
the 15th percentile.
We divided data into a training set, i.e. patients dis-

charged in the first three quarters of 2017, a validation
set, i.e. patients discharged in the last quarter of 2017
and a test set, i.e. patients discharged in 2018. We engi-
neered features and tuned hyperparameters on the basis
of the trained models’ performance in the validation data
set. The continuous features, i.e. the GAF sore at admis-
sion and patients’ age at admission, were standardised to
a mean of zero and a standard deviation of one by sub-
tracting the mean of respective variables from each value
and dividing the results by the respective standard devi-
ation. The hyperparameter tuning was carried out using
the built-in tuning process in the Caret package, modify-
ing each of the four tuning parameters, i.e. boosting iter-
ations, max depth of trees, shrinkage and minimal
terminal node size, until a maximum performance was
reached in the validation sample. The performance of
the final models was assessed in the held-out test data
(patients discharged in 2018) to assess performance in
future episodes. Thereby, we had trained nine different
models, each holding-out one study-site, and used these
models to predict the outcomes of patients from the
held-out study site to restrict assessment of performance
to hospitals not involved in the training process.
We used the area under the Receiver Operating Char-

acteristic curve (ROC) and Precision and Recall plots
(PR-Plots) to compare predictive performance. We cal-
culated 95% DeLong confidence intervals for the area
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under the ROC [35]. Furthermore, we defined different
cut-off values for the operationalisation of the models
that maximised sensitivity at a minimum precision of
0.2, 0.25 and 0.33, representing 4, 3, and 2 false positives
for each true positive prediction, respectively. We chose
a threshold of 0.2 to be the minimum for a clinically
meaningful application based on previous work of
Tomašev et al. [13]. Furthermore, we defined a sensitiv-
ity of 0.2 as the minimum threshold for clinically mean-
ingful application.

Results
The study included 45.388 inpatient episodes. After ad-
dressing missing data in outcome variables with listwise
deletion, 40.614 episodes were included in further ana-
lyses (89.5%). There were no missing data in feature var-
iables after this step. Table 1 shows the characteristics of
included episodes.

Figure 1 compares the possible combinations of sensitiv-
ity, i.e. the proportion of correctly predicted actual positives,
and specificity, i.e. the proportion of correctly predicted ac-
tual negatives, that were reached by the different classifica-
tions. The area under the curve is provided for each
outcome and classification and 95% confidence intervals
were estimated. Furthermore, Fig. 1 shows the operational
points at the curves that maximize sensitivity at a minimum
precision of 0.2, 0.25 and 0.33, respectively. Measured by
the area under the curve, the models for coercive treatment,
1:1 observation, long LOS and crisis intervention achieved
a relatively good performance between 0.83 and 0.74.
Figure 2 compares the possible combinations of recall,

a synonym for sensitivity, and precision, i.e. the propor-
tion of actual positives among all positive predictions.
Despite a relatively high area under the curve in Fig. 1,
the models for the outcomes 1:1 observation and crisis
intervention showed a poor performance in the compari-
son of precision and recall without clinically meaningful
combinations. Table 2 provides additional measures of
classification performance for the remaining outcomes
based on the potentially meaningful operational points.
As mentioned above, we trained each final model on

patients discharged in 2017, leaving out one site in each
training round, and evaluated each model’s predictive
performance in patients discharged in 2018 only from
the study site not included in the training. Figure 3
shows the differences in predictive performance mea-
sured by the area under the curve between the study
sites. The models for coercive treatment, long LOS,
short LOS and non-response to treatment showed rela-
tively low variance in predictive performance. The
models for crisis intervention and 1:1 observation per-
formed very well in some study sites and very close to
pure random classification, or worse, in others.
Figure 4 shows the top ten feature variables ordered by

their importance in predicting the outcome variables in
the GBM model. Variable importance is a dimensionless
measure that represents the influence of each feature on
the predictive performance relative to the other variables
(the method is described in detail in 31). GAF at admis-
sion, age at admission and a basic diagnostic grouping at
admission were important variables in most outcomes.

Discussion
Key findings
A common problem in the application of machine learn-
ing is availability of data at the point of decision making.
The present study aimed at using routine data readily
available at admission to predict aspects relevant to the or-
ganisation of psychiatric hospital care. A further aim was
to compare the results of a machine learning approach to
those obtained using a traditional method and those ob-
tained using a naive baseline classifier.

Table 1 Characteristics of inpatient episodes

2017 2018

Number of Episodes (n) 20,283 20,331

Age (years, mean & SD) 48 19 48 19

Female (n & %) 8872 44 8869 44

GAF Admission (mean & SD) 35 12 35 12

Length of Stay (days, median & IQR) 16 8–29 16 8–29

Basic Diagnostic Grouping (n & %)

F0/G3 2044 10.1 2099 10.3

F1 7485 36.9 7649 37.6

F2 2929 14.4 3047 15.0

F3 5566 27.4 5365 26.4

Others 2259 11.1 2171 10.7

Study site (n & %)

Site 1 3564 17.6 3716 18.3

Site 2 1313 6.5 1502 7.4

Site 3 2436 12.0 2548 12.5

Site 4 2115 10.4 1983 9.8

Site 5 2159 10.6 2284 11.2

Site 6 3854 19.0 3656 18.0

Site 7 1493 7.4 1446 7.1

Site 8 1636 8.1 1662 8.2

Site 9 1713 8.4 1534 7.5

1:1 Observation (n & %) 265 1.3 265 1.3

Crisis Intervention (n & %) 219 1.1 192 0.9

Non-Response (n & %) 5108 25.2 4617 22.7

Coercive Treatment (n & %) 1306 6.9 1382 6.8

SD Standard deviation, GAF Global Assessment of Functioning, IQR
Interquartile range, F0/G3 Organic mental disorders, F1 Substance-related
mental disorders, F2 Schizophrenia, schizotypal and delusional disorders, F3
Affective Disorders
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The models’ performance, as measured by the area
under the ROC, varied strongly between the predicted
outcomes, with relatively high performance in the predic-
tion of coercive treatment and 1:1 observations and rela-
tively poor performance in the prediction of short LOS
and non-response to treatment. The GBM performed
slightly better than logistic regression. Both approaches
were substantially better than a naive prediction based
solely on basic diagnostic grouping.
The present results confirm previous studies suggesting

inadequacy of the area under the ROC as a measure for
predictive performance in unbalanced data, in our case
data with many more negatives than positives [36]. The
area under the ROC gave a misleadingly positive impres-
sion of the models for 1:1 observation and crisis interven-
tion, while the precision and recall plots revealed a lack of
sufficient precision for a clinically meaningful application.
Furthermore, we found relatively large differences in the

areas under the ROCs between different hospital sites
(Fig. 3). As described in the methods section, we trained
each model in 8 hospital and used it to predict outcomes
of patients from the left-out ninth hospital. Therefore, if
the remaining ninth hospital had very different patients or
provided care in a different way, the model would perform
worse in this hospital than in the other hospitals that were
more common to each other. This was probably the rea-
son for the very low performance of the naive baseline

classifier in predicting 1:1-observations in two study sites
with areas under the curves below 0.5 (0.4 and 0.1, re-
spectively), where the incidences of this event were very
low (0.3 and 0.07%).
It is still unclear, which predictive performance is suf-

ficient for beneficial application in routine clinical prac-
tice and this was out of the scope of the present study
[37, 38]. Furthermore, different clinical applications
might require their own trade-off decisions between re-
ducing false alerts and increasing coverage of actual pos-
itives. We have chosen different configurations for
comparison of model performance, borrowing from
Tomašev et al. in their prediction of acute kidney injur-
ies [13]. For instance, our GBM model for the prediction
of coercive treatment, operationalised with a precision of
at least 0.2 (see Table 2), gave a warning for 26% of all
episodes at admission. Thereof, four false alerts were
caused for each true alert and warnings were given in
advance for 73% of all actual positive cases. The same
model could be operationalised at a precision of 0.25,
which gave a warning for 13% of all episodes, resulting
in three false alerts for each positive alert and a warning
for 48% of all actual positive cases.
Just because we can predict future events does not

mean we should [39]. Very few clinical prediction
models have undergone formal impact analysis, i.e.
studying the impact of using the predictions on patient

Fig. 1 Receiver Operating Characteristic Curves, A = Precision at least 33%, B = Precision at least 25%, C=Precision at least 20%, CI = 95%
Confidence Interval. Crossed circles show cut-off values that maximise sensitivity at different minimum thresholds of precision. Grey areas are not
clinically meaningful because of a sensitivity of less than 0.2. Cut-off points in grey areas are not shown
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Table 2 Perfomance Measures

Sensitivity /
Recall

Specificity Positive Predictive Value /
Precision

Negative Predictive
Value

Prevalence Detection
Prevalence

Balanced
Accuracy

Precision at least 20%

Non-Response 1.00 0.00 0.23 1.00 0.23 1.00 0.50

Coercive
Treatment

0.73 0.78 0.20 0.97 0.07 0.26 0.76

Long LOS 0.98 0.28 0.20 0.99 0.16 0.76 0.63

Short LOS 0.83 0.37 0.20 0.92 0.16 0.66 0.60

Precision at least 25%

Non-Response 0.96 0.15 0.25 0.93 0.23 0.87 0.56

Coercive
Treatment

0.48 0.89 0.25 0.96 0.07 0.13 0.69

Long LOS 0.94 0.48 0.25 0.98 0.16 0.58 0.71

Short LOS 0.61 0.65 0.25 0.90 0.16 0.39 0.63

Precision at least 33%

Non-Response 0.52 0.69 0.33 0.83 0.23 0.36 0.61

Coercive
Treatment

0.23 0.97 0.33 0.94 0.07 0.05 0.60

Long LOS 0.49 0.82 0.33 0.90 0.16 0.23 0.65

Short LOS 0.41 0.84 0.33 0.88 0.16 0.20 0.62

Outcomes without clinically meaningful operational points are not shown (Crisis Intervention & 1:1 Observation). Actual precision could be more than minimum
precision. TP True Positive, FP False Positive, TN True negative, FN False Negative, Sensitivity = TP/(TP+ FN), Specificity = TN/(TN + FP), Positive Predictive Value = TP/
(TP + FP), Negative Predictive Value = TN/(TN + FN), Prevalence = (TP + FN)/(TP + FP + TN + FN), Detection Prevalence = (TP + FP)/(TP + FP + TN + FN),
Balanced Accuracy = (Sensitivity+Specificity)/2

Fig. 2 Precision and Recall Plot, A = Precision at least 33%, B = Precision at least 25%, C=Precision at least 20%. Dashed horizontal line shows the
prevalence of the outcome. Crossed circles show cut-off values that maximise sensitivity at different minimum thresholds of precision. Grey areas
are not clinically meaningful because of a precision or recall of less than 0.2. Cut-off points in grey areas are not shown. Actual precision could be
more than minimum precision
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Fig. 4 Importance of variables in predictions. F0/G3 = Organic mental disorders, F1 = Substance-related mental disorders, F2 = Schizophrenia,
schizotypal and delusional disorders, F3 = Affective Disorders. GAF = Global Assessment of Functioning, Adm. = Admission,
GP = General Practitioner

Fig. 3 Performance in different study sites. One point represents one study site. The diamond represents the mean using the sites as units.
ROC = Receiver operating characteristic. AUC = Area under the curve. LOS = Length of stay
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outcomes [40]. Patients’ benefit depends on how predic-
tions are translated into effective decision making [41].
Predictions must be reasonably included in the clinical
processes to create an actual benefit from better in-
formed decisions. This requires a range of steps at the
individual hospital level, such as integration into current
IT, human resources and financial investment systems.
Even a perfectly integrated model must be used respon-

sibly in clinical practice, and the exact framework for such
application is currently under a broad discussion [42–44].
For instance, caregivers have to be trained in using the
provided results, patients‘access to care has to remain
equitable, real-world performance must be constantly
scrutinised and responsibilities in case of errors have to be
clear. Furthermore, predictions must not become self-
fulfilling. Instead, a warning at admission for coercive
treatment could be used to intensify non-invasive care
with the aim to avoid coercive approaches, for instance.

Our study in comparison to previous research
Less distinct diagnostic concepts [6–8], less standardization
of care [9] and a broader spectrum of acceptable thera-
peutic regimes [10] make the prediction of outcomes in
psychiatry more complex than in other medical disciplines
[3–5]. An infamous example for these difficulties was the
failure of the Medicare DRG system for psychiatry due to
the inability to predict length of stay and associated hospital
costs [45, 46]. Recent studies have often used a broad range
of feature variables in studies restricted to specific settings
and patients. Leigthon et al. [47] predicted remission after
12months in 79 patients with first episode of psychosis
with a wide range of demographic, socioeconomic and psy-
chometric feature variables and reached an area under the
ROC of 0.65. Koutsouleris et al. [48] also investigated re-
mission in first episode of psychosis and reached a sensitiv-
ity of 71%, a specificity of 72% and a precision of 93% in
108 unseen patients with their top ten demographic, socio-
economic and psychometric predictor variables. Lin et al.
[49] tried to distinguish treatment responders from non-
responders prior to antidepressant therapy in 455 patients
with major depression. They used single nucleotide poly-
morphisms from genetic analyses and other clinical data
and reached an area under the AUC of 0.82. Common
traits of these studies were the restriction to specific patient
groups and the relatively small sample sizes. Furthermore,
they mainly used data that might not be available during
routine patient admission.

Strengths and weaknesses of our study
A strength of this study was the large sample size over
two distinct years and at nine study sites. This allowed
us to include a broad range of the present spectrum of
psychiatric inpatients and to develop models that should
be applicable in most hospitals. Furthermore, we were

able to test our models in patients that were treated in
another calendar year and a different hospital and
thereby reduce information leakage. A further strength
of the present study was the restrictive inclusion of only
feature variables that should be available at admission in
most hospitals. Therefore, it should be possible to imple-
ment the present models in many hospitals without add-
itional documentation effort.
A potential weakness of our study was the retrospective

use of administrative routine data which entails potential
validity concerns. The validity of routine hospital data for
health services research is a frequently discussed topic [50,
51], and studies found both low [52] and high validity of
such data [53]. However, the development of models for ap-
plication in routine clinical practice necessitated the use of
routinely generated data including the inherent caveats. A
further limitation was the lack of time stamps for the diag-
nostic groupings. Patients were grouped in one of five basic
diagnostic groups at admission and these groupings
remained stable during an episode. However, we were not
able to entirely rule out that these groupings might have
been changed during the stay by staff in rare cases. A further
limitation was the restriction to hospitals from one large
provider of inpatient psychiatric services in the region of
Hesse, Germany, which raises the question whether the pre-
dictive performance of our models would remain stable if
applied in psychiatric hospitals with different circumstances.

Conclusion
The present study has shown that administrative routine
data can be used to predict aspects relevant to the organ-
isation of psychiatric hospital care. Such predictions could
be applied to efficiently support hospital staff in their very
own decision making and thereby increase quality of care.
Future research should investigate the predictive perform-
ance that is necessary for a tool to be accepted by care
givers and provide an effective assistance in the care
process for the benefit of both staff and patients.
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