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Risk‑adapted treatment reduced 
chemotherapy exposure for clinical stage I 
pediatric testicular cancer
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Abstract 

Background:  Different from adult clinical stage I (CS1) testicular cancer, surveillance has been recommended for CS1 
pediatric testicular cancer. However, among high-risk children, more than 50% suffer a relapse and progression during 
surveillance, and adjuvant chemotherapy needs to be administered. Risk-adapted treatment might reduce chemo‑
therapy exposure among these children.

Methods:  A decision model was designed and calculated using TreeAge Pro 2011 software. Clinical utilities such 
as the relapse rates of different groups during surveillance or after chemotherapy were collected from the literature. 
A survey of urologists was conducted to evaluate the toxicity of first-line and second-line chemotherapy. Using the 
decision analysis model, chemotherapy exposure of the risk-adapted treatment and surveillance strategies were com‑
pared based on this series of clinical utilities. One-way and two-way tests were applied to check the feasibility.

Results:  In the base case decision analysis of CS1 pediatric testicular cancer, risk-adapted treatment resulted in a 
lower exposure to chemotherapy than surveillance (average: 0.7965 cycles verse 1.3419 cycles). The sensitivity analysis 
demonstrated that when the relapse rate after primary chemotherapy was ≤ 0.10 and the relapse rate of the high-risk 
group was ≥ 0.40, risk-adapted treatment would result in a lower exposure to chemotherapy, without any association 
with the proportion of low-risk patients, the relapse rate of the low-risk group, the relapse rate after salvage chemo‑
therapy or the toxicity utility of second-line chemotherapy compared to first-line chemotherapy.

Conclusions:  Based on the decision analysis, risk-adapted treatment might decrease chemotherapy exposure for 
these high-risk patients, and an evaluation after orchiectomy was critical to this process. Additional clinical studies are 
needed to validate this statement.
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Background
Despite the low incidence of pediatric testicular tumors, 
yolk sac tumors are the most common malignant type in 
children, which are very different from their adult coun-
terparts [1–6]. Approximately 70% to 80% of pediatric 

patients have clinical stage I (CS1) disease, and due to its 
hematogenous predilection for metastasis in children, 
primary retroperitoneal lymph node dissection (RPLND) 
is not recommended for CS1 yolk sac tumors [1, 6, 7]. In 
a recent summary of the PDQ Pediatric Treatment Edi-
torial Board and based on the recommendations of the 
POG/CCG, surveillance is recommended for children 
with CS1 testicular cancer after radical inguinal orchiec-
tomy (RIO) [8, 9].

In recent studies, approximately 20% of children with 
CS1 testicular germ cell tumors (GCT) have suffered a 
relapse within 4 years after RIO, and they underwent 3–4 
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cycles of salvage chemotherapy [1, 9]. Advanced analy-
sis demonstrated that an age > 10 years, mixed histology 
and lymphovascular invasion (LVI) were associated with 
disease relapse [10, 11]. In high-risk children, more than 
50% of them suffered a relapse and progression [6, 10]. 
Among their adult counterparts, risk-adapted manage-
ment has achieved a favorable outcome for CS1 testicu-
lar nonseminomatous germ cell tumors (NSGCT) [12, 
13]. This procedure might also be feasible for pediatric 
patients and reduce their exposure to chemotherapy, 
and their outcomes are excellent with surveillance and 
salvage chemotherapy. However, no study has directly 
compared the cost and toxicity between surveillance and 
risk-adapted management.

In this study, using a decision analysis model, we evalu-
ated the chemotherapy burden of CS1 pediatric testicular 
cancer between risk-adapted treatment and surveillance.

Methods
The decision model was designed and calculated using 
TreeAge Pro 2011 Software (http://www.treea​ge.com), 
and the decision trees of the surveillance and risk-
adapted treatment and flowchart of the analysis are listed 
in Figs. 1 and 2.

For these two groups, the cost of radical inguinal orchi-
ectomy and regular follow-up was similar. In China, the 
cost of the operation, drugs, enrollment and so forth were 
generally consistent with the legal regulations in the last 
decade. Generally, chemotherapy toxicity was associated 
with the number of chemotherapy cycles. Therefore, we 

just compared the exposure to chemotherapy between 
the two groups.

Our analysis consisted of the following hypothetical 
clinical scenarios for the two groups: First, patients in 
both groups with CS1 testicular cancer were diagnosed 
with histopathology, serum markers and imaging. Then, 
for the surveillance group, patients who suffered a relapse 
during follow-up received salvage chemotherapy con-
sisting of 3 cycles of PEB (cisplatin, VP-16 and bleomy-
cin) chemotherapy. If a complete response (CR) was not 
achieved after 3 cycles of PEB, second-line chemotherapy 
with 3 cycles of VIP (VP-16, ifosfamide and cisplatin) 
was performed. For the risk-adapted group, the high-
risk group received primary chemotherapy with 1 cycle 
of PEB, and the low-risk group underwent surveillance. 
Then, salvage chemotherapy with 3 cycles of PEB was 
performed when a relapse was detected. If a CR was not 
achieved after 3 cycles of PEB, second-line chemotherapy 
with VIP was performed.

According to recent studies, the overall survival of CS1 
pediatric testicular cancer was nearly 100% with systemic 
chemotherapy, and the progression rates after primary 
and salvage chemotherapy were both approximately 5% 
(2.3–6.8%) (Table 1) [6, 9, 12, 14–20]. The rare cases of an 
operation or radiation after chemotherapy were reported 
as recommended by the guidelines.

Based on these studies, we defined the relapse rates of 
high- and low-risk patients who underwent surveillance 
as 0.60 (0.38–0.73) and 0.15 (0.10–0.20), respectively; the 
proportion of low-risk patients was 0–1, the progression 
rates after primary and salvage chemotherapy were both 
0.05 (0.01–0.10), and second-line chemotherapy was 
the last treatment with a 100% success rate (as shown in 
Fig. 2 and Table 1) [6, 9, 12, 14–20].

To evaluate treatment-related toxicity between first-
line and second-line chemotherapy, digital values were 
obtained in an interview with urological oncologists. 
Before the interview, the consensus about short- and 
long-term toxicity of chemotherapy for testicular cancer 
was acquired. By means of a visual analog scale, com-
pared to surveillance, values of salvage chemotherapy 
and second-line chemotherapy were assessed as 0.841 
(95% confidence interval: 0.811–0.871) and 0.635 (95% 
confidence interval: 0.578–0.697), respectively. There-
fore, we defined the toxicity of second-line chemotherapy 
as approximately 0.814/0.635 = 1.3 times that of salvage 
chemotherapy. The range was defined as 1.0–2.0 in the 
decision analysis.

Results
In all, 24 urologists and oncologists took part in the inter-
view to evaluate the toxicity of chemotherapy for pediat-
ric testicular cancer. As shown in Table  2, compared to 
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Fig. 1  Flowchart of this decision analysis
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orchiectomy without chemotherapy (value = 1.0), the 
value of first-line chemotherapy was from 0.682–1.000, 
and the value of second-line chemotherapy was from 
0.435–0.960. The average number and standard deviation 
were 0.841 and 0.081, and 0.635 and 0.151, respectively. 
We defined the toxicity of second-line chemotherapy 
as approximately 0.814/0.635 = 1.3 times that of salvage 

chemotherapy, ranging from 1.0 to 2.0 in the decision 
analysis.

Our analysis demonstrated that risk-adapted treat-
ment resulted in a lower exposure to chemotherapy 
than surveillance (average: 0.7965 cycles verse 1.3419 
cycles). A 1-way sensitivity analysis demonstrated that 
the differences in chemotherapy exposure between the 

Fig. 2  Decision analysis tree of risk-adapted treatment and surveillance

Table 1  Proportions used in decision model

Point estimate Range References

Relapse of low risk group 0.15 0.10–0.20 [6, 9, 12, 14, 15]

Relapse of high risk group 0.60 0.38–0.73 [6, 9, 12, 14]

Progression after primary chemotherapy 0.05 0.01–0.10 [12, 15–18]

Progression after salvage chemotherapy 0.05 0.01–0.22 [6, 9, 14, 16, 18–20]

Progression after second-line chemotherapy 0

Toxicity of Primary chemotherapy 1

Toxicity of Salvage chemotherapy 3 × 1

Toxicity of Second-line chemotherapy 3 × 1.3 3 × 1.0–3 × 2.0 Interview
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two treatments were associated with the proportion 
of low-risk patients (pLowRisk): when pLowRisk = 0, 
all of the patients were in the high-risk group, and the 
two treatments had significantly different exposures to 
chemotherapy; when pLowRisk = 1, all patients were in 
the low-risk group, and the two groups had the same 
exposure to chemotherapy (Fig. 3a). Similarly, when the 
relapse rate of the high-risk group (pRelapseHighrisk) 
was ≥ 0.40 and relapse rate after primary chemotherapy 
(pRelapsePostPrimChemo) was ≤ 0.25, risk-adapted 
treatment was associated with lower chemotherapy 
exposure (Fig.  3b, c). Risk-adapted treatment was 
associated with lower chemotherapy exposure with-
out association with the relapse rate of the low-risk 
group (pRelapseLowrisk), the relapse rate after salvage 
chemotherapy (pRelapsePostSalvChemo) and the tox-
icity utility of second-line chemotherapy compared to 
salvage chemotherapy (tSecondChemo) (Fig.  3d–f ). 
This means only pRelapseHighrisk and pRelapse-
PostPrimChemo were associated with the utility of 

chemotherapy exposure, so we focused on these two 
factors in the 2-way sensitivity analysis.

In the 2-way sensitivity analysis, we found that when 
the pRelapseHighrisk was ≥ 0.40, risk-adapted treat-
ment was associated with lower chemotherapy exposure 
without an association with pLowRisk, pRelapseLow-
risk, pRelapsePostSalvChemo or tSecondChemo (Fig. 4a, 
Additional file  1: Fig.  1A, B, C). When pRelapsePost-
PrimChemo was ≤ 0.25, and pLowRisk was ≤ 0.90, 
risk-adapted treatment was associated with less chemo-
therapy exposure (Fig.  4b). When pRelapsePostPrim-
Chemo was ≤ 0.25, risk-adapted treatment would result 
in a lower exposure to chemotherapy without an associa-
tion with pRelapseLowrisk, pRelapsePostSalvChemo or 
tSecondChemo (Fig. 4c–e). In the 2-way sensitivity anal-
ysis of pRelapseHighrisk and pRelapsePostPrimChemo, 
when pRelapsePostPrimChemo was ≤ 0.10 and pRelapse-
Highrisk was ≥ 0.40, risk-adapted treatment would result 
in a lower exposure to chemotherapy (Fig. 4f ).

Discussion
Since pediatric testicular cancer is generally universally 
curable, surveillance is recommended for clinical stage 
1 patients, and salvage chemotherapy is given when 
relapsed disease is detected [8, 9]. In their adult counter-
parts, risk-adapted management has favorable outcomes, 
and decision analysis has demonstrated that surveillance 
is the preferred intervention, except for those patients 
with a high risk of relapse [12, 13]. Meanwhile, due to the 
extremely long survival time of these pediatric patients, 
treatment-related toxicity also should be taken into con-
sideration [21]. In some studies, primary chemotherapy 
was associated with an extremely low relapse rate, and 
it decreased the relapse rate in the high-risk group sig-
nificantly [6]. Therefore, we used decision analysis to 
develop a model to evaluate the chemotherapy exposure 
between the two protocols. Risk-adapted management 
might reduce the exposure to chemotherapy by primary 
chemotherapy among high-risk patients.

TreeAge Pro is the leading software for decision analy-
sis, and the decision model was developed based on his-
torical data from the previous literature. Although this 
model is simple, the exposure to chemotherapy could be 
clearly calculated. Several prediction methods based on 
artificial intelligence have been developed, but clouds of 
data or lots of instruments are needed [22–24]. For this 
rare cancer, which is sporadic, big data are not available. 
Therefore, we chose a simple decision model focused on 
chemotherapy exposure.

In this study, risk-adapted treatment resulted in less 
exposure to chemotherapy than surveillance, which is 
not consistent with the clinical decisions made by fol-
lowing the current guidelines. In the 1-way sensitivity 

Table 2  Results of survey for chemotherapy toxicity

No No 
chemotherapy

First-line 
chemotherapy

Second-line 
chemotherapy

Relative value Relative value

1 95 85 0.895 75 0.789

2 95 75 0.789 50 0.526

3 80 70 0.875 65 0.813

4 95 70 0.737 50 0.526

5 95 70 0.737 50 0.526

6 90 70 0.778 50 0.556

7 95 80 0.842 50 0.526

8 100 80 0.8 60 0.6

9 90 85 0.944 60 0.667

10 95 80 0.842 65 0.684

11 90 80 0.889 60 0.667

12 90 70 0.778 50 0.556

13 90 80 0.889 70 0.778

14 85 58 0.682 37 0.435

15 100 90 0.9 87 0.87

16 100 100 1 96 0.96

17 100 99 0.99 93 0.93

18 95 70 0.737 45 0.474

19 100 80 0.8 50 0.5

20 85 70 0.824 50 0.588

21 95 75 0.789 50 0.526

22 90 80 0.889 40 0.444

23 95 85 0.895 60 0.632

24 90 80 0.889 60 0.667

Average 0.841 0.635

SD 0.081 0.151
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analysis, only the relapse rate of the high-risk group 
(pRelapseHighrisk) and the relapse rate after primary 
chemotherapy (pRelapsePostPrimChemo) were associ-
ated with chemotherapy exposure. When pRelapseHigh-
risk was ≥ 0.40 or pRelapsePostPrimChemo was ≤ 0.25, 

risk-adapted treatment resulted in lower chemother-
apy exposure, and these two utilities are reasonable in 
clinical practice (Fig.  3). Within a 2-way analysis, when 
pRelapsePostPrimChemo was ≤ 0.10 and pRelapseHigh-
risk was ≥ 0.40, risk-adapted treatment would decrease 
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Fig. 3  1-way sensitivity analysis. a In any value of pLowRisk (proportion of low-risk patients), surveillance was associated with higher exposure 
of chemotherapy; b When pRelapseHighrisk (relapse rate of high-risk group) > 0.365, surveillance was associated with higher exposure of 
chemotherapy; c When pRelapsePostPrimChemo (relapse rate after primary chemotherapy) < 0.287, surveillance was associated with higher 
exposure of chemotherapy; d in any value of pRelapseLowrisk (relapse rate of low-risk group), surveillance was associated with higher exposure 
of chemotherapy; e in any value of pRelapsePostSalvChemo (relapse rate after salvage chemotherapy), surveillance was associated with higher 
exposure of chemotherapy; f in any value of tSecondChemo (toxicity utility of second-line chemotherapy compared to salvage chemotherapy), 
surveillance was associated with higher exposure of chemotherapy. Red: risk-adapted treatment, blue: surveillance
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chemotherapy exposure, without any association with 
the other four factors. These results implied that with 
the more precise stratification of the high-risk group and 

the higher CR rate of primary chemotherapy, better indi-
vidualized management would be accomplished, and less 
treatment-related toxicity would occur.
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Fig. 4  2-way sensitivity analysis. a In any value of pLowRisk (proportion of low-risk patients), when pRelapseHighrisk (relapse rate of high-risk 
group) > 0.365, risk-adapted treatment was associated with lower exposure of chemotherapy; b in any value of pLowRisk (proportion of 
low-risk patients), when pRelapsePostPrimChemo (relapse rate after primary chemotherapy) < 0.287, risk-adapted treatment was associated 
with lower exposure of chemotherapy; c in any value of pRelapseLowrisk (relapse rate of low-risk group), when pRelapsePostPrimChemo 
(relapse rate after primary chemotherapy) < 0.287, risk-adapted treatment was associated with lower exposure of chemotherapy; d in any 
value of pRelapsePostSalvChemo (relapse rate after salvage chemotherapy), when pRelapsePostPrimChemo (relapse rate after primary 
chemotherapy) < 0.287, risk-adapted treatment was associated with lower exposure of chemotherapy; e in any value of tSecondChemo 
(toxicity utility of second-line chemotherapy compared to salvage chemotherapy), when pRelapsePostPrimChemo (relapse rate after primary 
chemotherapy) < 0.287, risk-adapted treatment was associated with lower exposure of chemotherapy; f when pRelapsePostPrimChemo (relapse 
rate after primary chemotherapy) < 0.1, and pRelapseHighrisk (relapse rate of high-risk group) > 0.4, risk-adapted treatment was associated with 
lower exposure of chemotherapy. Red: risk-adapted treatment, blue: surveillance
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In recent studies, the rate of relapse was approximately 
20% for CS1 pediatric testicular cancer, and most cases 
occurred in the first 2  years [9]. In some limited series, 
the relapse rate of the high-risk group was approxi-
mately 60%, and that of the low-risk group was 15% [6, 
9, 12, 14–20]. The relapse rate of patients with primary 
chemotherapy was less than 5% and the overall survival 
rate was nearly 100%. In our prior study, the relapse rate 
was approximately 33% and the overall survival was 98%. 
Meanwhile, necrosis, a new predictor of tumor relapse, 
when combined with LVI stratified the patients into 2 
groups, and the relapse rates were 73% and 17%, respec-
tively [6]. In other studies, the relapse rate of the high-risk 
group was 0.38–0.55, and the relapse rate of the low-risk 
group was 0.16–0.19 [9, 12, 14–20]. Based on these data, 
we found that the chemotherapy exposure was lower 
in the risk-adapted treatment in our model. Due to the 
favorable outcome of salvage chemotherapy for clinical 
stage 1 patients, primary chemotherapy was not com-
mon in these studies. However, some studies also demon-
strated that primary chemotherapy was associated with 
an extremely low relapse rate [6]. In adult patients with 
CS1 testicular NSGCT, primary chemotherapy achieved 
an excellent oncological outcome and this procedure 
might also be effective in pediatric patients [12, 13].

Actually, based on the contemporary scenario, this 
study revealed that risk-adapted treatment was asso-
ciated with significantly less chemotherapy exposure. 
pRelapsePostPrimChemo and pRelapseHighrisk were 
significant factors that decreased exposure to chemo-
therapy, which implied that the effectiveness of primary 
chemotherapy and the identification of high-risk patients 
were critical to individualized management. For primary 
chemotherapy, the outcome is favorable and a lower-tox-
icity regimen might be available [19]. In a recent study, 
the relapse rate of the high-risk group was > 70% with a 
combination of two high-risk factors (LVI and necrosis), 
and further research into prognostic markers is necessary 
[6]. As precise management of cancers has developed, 
the differentiation of boys with testicular cancer into risk 
groups would allow for more precisely tailored treat-
ment, and risk-adapted treatment would reduce chemo-
therapy exposure substantially [25].

Our study had some limitations worth noting. To 
simplify the analysis of chemotherapy toxicity, we cal-
culated cycles of chemotherapy instead of the detailed 
side effects, such as cardiovascular disease, neurotoxic-
ity, ototoxicity, chronic kidney disease, and infertility. 
The proportions were defined according to recent stud-
ies, but since these cases are rare, bias was present, and 
some of them were included in studies about their adult 
counterparts. Due to the shortage of life-long follow-up 
of this curable disease, quality-adjusted life-years and 

cost-effectiveness analyses were not performed in this 
study. Despite these limitations, we believe this model 
could imply some advantages of risk-adapted manage-
ment in CS1 pediatric testicular cancer. This is the first 
report regarding the chemotherapy burden of CS1 pedi-
atric testicular cancer.

Conclusions
Our decision model of management for clinical stage 
1 pediatric testicular cancer demonstrated that risk-
adapted treatment was associated with a lower exposure 
to chemotherapy. Additional clinical studies are needed 
to validate this statement.
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