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Abstract 

Background:  Atrial fibrillation is a type of persistent arrhythmia that can lead to serious complications. Therefore, 
accurate and quick detection of atrial fibrillation by surface electrocardiogram has great importance on further 
treatment. The practical electrocardiogram signals contain various interferences in different frequencies, such as 
myoelectricity interference, power interference and so on. Detection speed and accuracy largely depend on the atrial 
fibrillation signal features extracted by the algorithm. But some of the discovered atrial fibrillation features are not well 
distinguishable, resulting in poor classification effect.

Methods:  This paper proposed a high distinguishable frequency feature—the frequency corresponding to the maxi-
mum amplitude in the frequency spectrum. We used the R–R interval detection method optimized with the math-
ematical morphology method and combined with the wavelet transform method for analysis. According to the two 
features—the maximum amplitude in the frequency spectrum and R–R interval irregular, we could recognize atrial 
fibrillation signals in electrocardiogram signals by decision tree classification algorithm.

Results:  The data used in the experiment come from the MIT-BIH database, which is publicly accessible via the web 
and with ethical approval and consent. Based on the input of time-domain and frequency-domain features, we classi-
fied sinus rhythm signals and AF signals using the decision tree generated by classification and regression tree (CART) 
algorithm. From the confusion matrix, we got the accuracy was 98.9%, sensitivity was 97.93% and specificity was 
99.63%.

Conclusions:  The experimental results can prove the validity of the maximum amplitude in the frequency spectrum 
and the practicability and accuracy of the detection method, which applied this frequency-domain feature. Through 
the detection method, we obtained good accuracy of classifying sinus rhythm signals and atrial fibrillation signals. 
And the sensitivity and specificity of our method were pretty good by comparison with other studies.
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Background
Atrial fibrillation (AF) is the most common arrhythmia, 
with a prevalence rate of 1.5% to 2% in developed coun-
tries [1]. When AF occurs, the regular order of atrial 

electrical activity disappears, replaced by the fast and dis-
orderly tremor waves, and the atrial electrical activity is 
seriously disordered. Patients with AF are often accom-
panied by symptoms such as palpitations, arrhythmia, 
shortness of breath, and chest pain. The incidence of AF 
increases with age, and the most serious complication 
is stroke. Early diagnosis can effectively reduce the inci-
dence of complications caused by AF.
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An electrocardiogram (ECG) is a technique that uses a 
medical device to collect and record a pattern of changes 
in activity produced by the heart. Compared with other 
bioelectrical signals, ECG signals are easier to monitor 
and have morphological regularity. Typical ECG signals 
mainly include P wave, Q wave, R wave, S wave, and T 
wave, as shown in Fig. 1. When AF occurs, the original 
normal P-waves disappear and are replaced by a series of 
irregular high-frequency oscillations called F-waves; the 
distance between R waves varies irregularly. The above 
two features have become the basis of the current auto-
matic detection AF technology [2].

The current diagnosis of AF relies primarily on the 
presence of some typical symptoms of the patient and 
the characteristics of the ECG recording. However, early 
and accurate detection of AF remains a challenge. The 
detection of asymptomatic paroxysmal AF needs about 
72-h ECG signals [3]. Therefore, it is valuable to develop 
an automatic detection algorithm that can diagnose 
AF quickly, accurately and reliably [2]. It is also of great 
significance to explore effective and high distinguish-
able features of atrial fibrillation to realize the automatic 
detection of atrial fibrillation.

Moody et al. proposed an automatic method for detect-
ing AF based on the difference between the AF signal 
and the sinus rhythm signal in the RR interval [4]. Tateno 
et al. proposed a method based on the coefficient of vari-
ation and density histograms of RR and ΔRR intervals 
[5]. They identify the difference between sinus rhythm 
signal and AF signal by using the Kolmogorov–Smirnov 
test. These studies based on the RR interval achieved 97% 

accuracy of automatic detection. Using empirical mode 
decomposition, Uday Maji et al. found significant differ-
ences in the fourth layer intrinsic mode function (IMF4), 
with an accuracy of 96% [6].

Recently, some scholars have regarded AF as an abnor-
mal phenomenon and analyzed it as a signal abnormal-
ity. Paolo Massimo Buscema et al. [7] proposed to apply 
an improved Back Propagation neural network for the 
diagnosis of AF. This method used a Supervised Con-
tractive Map neural network structure and achieved the 
diagnosis of AF with an accuracy rate of 95%. He Run-
nan et  al. [8] proposed a way of detecting AF based on 
Continuous Wavelet Transform(CWT) and two-dimen-
sional convolutional neural network by analyzing ECG’s 
overall time–frequency features. Asgari et al. [9] applied 
wavelet transform to extract peak-to-average power ratio 
and logarithmic energy entropy as feature vectors for AF 
detection.

Common methods to extract F wave include the QRST 
cancellation method, ICA analysis method based on 
principal component analysis, etc. The QRST cancella-
tion method is very sensitive to the change of waveform 
and greatly depends on the quality of F-wave extraction. 
The method in this paper focused on the ECG signals’ 
frequency-domain feature. By analyzing the decomposi-
tion results of each layer of the wavelet transform, we got 
an effective frequency-domain feature and used the fea-
ture as one of the bases for detecting AF. This method did 
not depend on the extraction of F waves. Simultaneously, 
our detection results had good accuracy, sensitivity, and 
specificity.

a

b

Fig. 1.  5 s original ECG signal in AF (a) and sinus rhythm (b). It can be seen that P waves are replaced by irregular F waves in the AF signals. Other 
waves are not very different between the AF signal and sinus rhythm signal
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Methods
Outline of ECG processing methods
First of all, we removed the high-frequency noise and 
baseline drift of the ECG signal by filtering. Then the 
ECG signal was segmented by 5  s to detect the R wave 
peaks of each period. In this way, we could extract the 
mean and variance of the R–R interval, which could 
identify the degree of regularity of the R–R interval and 
obtain the time domain characteristics of the ECG sig-
nals. Next, the filtered signal was segmented according to 
R peak to obtain a single-period signal waveform. Then 
we decomposed the single-period signal waveform by 
wavelet transform. And we reconstructed the character-
istic waveform by the approximate decomposition coef-
ficients of the fourth layer. Furthermore, we obtained the 
frequency corresponding to the maximum amplitude in 
the frequency spectrum (MAiFS) by fast Fourier trans-
form of the characteristic waveform. Thus we gained the 
frequency domain feature of the ECG signals. The above 
two types of features were used as the finally extracted AF 
signal features. And using the decision tree classification 
algorithm to detect AF. Finally, we proved the validity of 
the extracted frequency-domain features and obtained 
the accuracy, sensitivity, and specificity of the detection 
method of AF through the MIT-BIH AF dataset. The pro-
cesses of the method are shown in Fig. 2.

Time‑domain features extraction method
Mathematical morphology filtering
Mathematical morphology [10] is an image analysis dis-
cipline based on lattice theory and topology. The basic 
operations include corrosion and expansion.

Let f(n), (n = 0, 1, ..., N− 1) and 
g(m), (m = 0, 1, . . . ,M− 1) , among them N ≫ M . g(m) 
is the structural element of the morphological filter. 
The selection of g(m) should be similar to the shape of 
the preserved waveform and different from the shape of 
the filtered waveform. To preserve the R-wave and filter 
out other waveforms, we chose the structural element 
g(m) = {1, 1, 1}.

Corrosion operation is defined as

Expansion operation is defined as

Because of corrosion operation and expansion oper-
ation have time sequence, mathematical morphol-
ogy gives two different morphological operations. 

(

f�g
)

(n) = min
m=0,1,...,M−1

{

f(n+m)− g(m)
}

(

f⊕ g
)

(n) = max
m=0,1,...,M−1

{

f(n−m)+ g(m)
}

Corrosion first followed by expansion is defined as an 
open operation and expansion first followed by corro-
sion as a closed operation. Defining f(n) on g(n) open 
operation

f(n) on g(n) closed operation is defined as

Through mathematical analysis, it can be proved that 
the morphological opening operation can flatten the 

(1)f ◦ g =
(

f�g
)

⊕ g

(2)f • g =
(

f⊕ g
)

�g

Fig. 2  Procedures of extracting features
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peak and the closed operation can fill the trough. For 
ECG signals, the waveforms except the R wave can be 
flattened by the mathematical morphology operation.

Shannon energy envelope
Considering that the ECG signal fluctuates greatly near 
the R wave and according to the Shannon energy func-
tion [11], the response to the low amplitude is weak in 
the range of (0,1), and the response to the high amplitude 
is strong. We performed derivative and normalization 
on the filtered signal. Then the resulting function values 
were smoothly enveloped by a moving average method. 
The range of (0,1) means the normalized amplitude and 
is unitless.
d(n) is the derivative of the ECG signal. The Shannon 

energy operation is defined as

To prevent signal signature delays during smoothing, 
we used a sliding mean filter without phase shift

If window overflow occurs in the head or tail seg-
ment of the signal, making min(1, n− N−1

2 ) and 
max(L

(

signal
)

, n+ N−1
2 ) do some appropriate changes. 

The N in the denominator of the formula should be 
appropriately adjusted. L is the length of the signal.

Through the Shannon energy envelope, we obtained 
the specific position of R peak. Simultaneously, the 
refractory period is set after each R peak detection. In the 
refractory period, even if there is a peak in the signal, it 
is not considered to be an R peak. In this test model, the 
refractory period was set to 200 ms.

Frequency domain feature extraction method
Wavelet transform (WT) [12] is a powerful technology 
for representing a signal in different translations and 
scales. In practical applications, since the ECG signal is 
a short-term non-stationary random process, the Fourier 
transform based on the stationary stochastic process can-
not reflect the essential characteristics of AF. The wave-
let transform analysis method provides the possibility of 
extracting non-stationary random signal features.

Wavelet transform theory
For any signal f (t) ∈ L2(T ) , the wavelet transform is

(3)y1(n) = −
∣

∣d(n)
∣

∣

2
× ln(

∣

∣d(n)
∣

∣

2
)

(4)y(n) =
1

N

(

y1

(

n−
N− 1

2

)

+ y1

(

n−
N− 1

2
+ 1

)

+ · · · + y1

(

n+
N− 1

2

))

(5)Wf(a, b) =
〈

f,ψa,b

〉

= |a|−
1
2

∫

R

f(t)ψ

(

t− b

a

)

dt

where ψ(t) is a mother wavelet, a is the dilation factor 
and b is the translation factor. Different frequency and 
time localizations can be achieved by adjusting a and b.

Since the ECG signal is stored in the form of discrete 
finite-length signals, continuous wavelet changes must 
be discretized for ease of calculation. Usually, the discrete 
formula of the dilation factor and the translation factor 
in the continuous wavelet transform is taken as: a = am0  , 
b = nam0 b0 , where m, n ∈ Z , a0  = 1 . The corresponding 
discrete wavelet function can be expressed as

At this point, the discrete wavelet transform of f(t) is

Its reconstruction formula is

Mallat algorithm
Multi-resolution analysis constructs a series of orthogonal 
function spaces to decompose the sequence into a low-
frequency signal and a series of high-frequency signals (the 
number of high-frequency signals depends on the number 
of decomposition layers). As for discrete-time signals, the 
dyadic discrete wavelet transform (DWT) can be imple-
mented by low-pass, h(n), and high-pass, g(n), filters [13]. 
The Mallat algorithm is a fast algorithm for constructing 
orthogonal wavelets. The recursive formula of the decom-
position can be expressed as

where CAj and CDj are respectively column vector forms 
of wavelet coefficients, and H and G are respectively a 
matrix composed of low-pass filtering and high-pass fil-
ter coefficients of the corresponding filter. j is the number 
of decomposition layers of the wavelet transform.

The signal reconstruction process can be expressed as

(6)

ψm,n(t) = a
−m

2
0 ψ

(

t− nam0 b0

am0

)

= a
−m

2
0 ψ

(

a−m
0 t− nb0

)

(7)WTf(m, n) =

∫

R

f(t)ψm,n(t)dt

(8)f(t) = C

∞
∑

−∞

∞
∑

−∞

WTf(m, n)ψm,n(t)

CAj+1 = H*CAj

CDj+1 = G*CDj

(9)CAj = H∗CAj+1 +G∗CDj+1
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It can be seen that the essence of the wavelet transform 
is a filtering process. The obtained approximate coeffi-
cients represent the low-frequency characteristics of the 
signal, and the detail coefficients represent the high-fre-
quency characteristics of the signal. Through the wavelet 
transform, we can focus on the frequency characteris-
tics of a certain frequency band of the ECG signal. We 
decomposed the ECG signal by wavelet, and reconstruct 
signals by using the data of each frequency band after 
decomposition. Then we analyzed the frequency domain 
characteristics of ECG signals by reconstructed signals. 
Therefore, the wavelet transform can be used to analyze 
the ECG signal and extract the frequency domain fea-
tures of AF.

Results
Data source and preprocessing
The data used in the experiment comes from the MIT-
BIH database [4], which is publicly accessible via the 
web and with ethical approval and consent. The dataset 
contains 23 annotated ECG records, each of which is 
approximately 10 h with a sampling rate of 250 Hz and a 
12-bit resolution with a range of 10mv. Each record con-
tains two signals, ECG1 and ECG2. In this study, we used 
ECG1 to do these experiments. The preprocessing was 
divided into two steps: splitting the signal and filtering. 
The splitting signal was to divide the input ECG signal 
into segments of 5  s for subsequent processing. Filter-
ing was to design an FIR digital filter by using a window 
function method and filtering the ECG signal. Its cut-
off frequency was set to 0.5 Hz and 30 Hz. The purpose 
of setting a cutoff frequency to 30  Hz was to eliminate 

electromyography interference and 50  Hz frequency 
interference. The purpose of setting a cutoff frequency of 
0.5 Hz was to eliminate human respiration, movement of 
the electrode and other low-frequency interference. The 
results were shown in Fig. 3.

Time‑domain feature extraction
As the mean and variance of R–R interval can represent 
the regularity of ECG signal in different conditions, the 
mean and variance of R–R interval in sinus rhythm and 
AF were taken as time-domain features in this paper. The 
processes can be divided into three steps: mathematical 
morphological filtering, determining the R-wave posi-
tion by using the fragrance energy envelope, extracting 
R-wave waveform and analyzing time-domain features.

Firstly, the preprocessed ECG signal is filtered by math-
ematical morphology. The result is shown in Fig. 4.

Then we used Shannon energy calculation for further 
activation and zero phase shift envelope to extract the 
envelope curve peak and get R wave position, as shown 
in Fig. 5.

After the detection of R waves from sinus rhythm and 
AF signal segments, we carried on a statistical analysis 
of mean value, variance and number of R waves of R–R 
interval. The results were shown in Fig. 6.

Frequency domain feature extraction
The processes of extracting frequency-domain feature 
can be divided into three steps: performing four-layer 
wavelet decomposition, reconstructing based on the 
fourth layer, performing Fast Fourier Transform and 

a

b

Fig. 3  Comparation of original filtered signal and band pass filtered signal. The images show that original signal have some kinds of frequency 
interference and the band pass filtered signal is more regular than original signal
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marking the maximum amplitude in the frequency 
spectrum (MAiFS).

The fourth layer discrete wavelet transform is per-
formed on a single waveform. And we obtained the 
sub-band signal bandwidth (as shown in Table 1) after 
decomposition. The sampling frequency is 250 Hz.

After using the Fast Fourier transform, the sub-band 
signals of this waveform were shown in Fig.  7 and it 
could be seen that the frequency distribution of each 
sub-band signal was consistent with that shown in 
Table 1.

Then we decomposed the AF signal and sinus rhythm 
signal according to the frequency range of each sub-band. 
The results were shown in Figs. 8 and 9.

Next, we used approximate decomposition coefficients 
of the fourth layer to reconstruct the sinus rhythm signal 
and the AF signal. As shown in Fig. 10.

Finally, we performed Fast Fourier transform to analyze 
the two kinds of the reconstructed signals. As shown in 
Figs. 11 and 12.

Thus we obtained the frequency corresponding to the 
maximum amplitude in the spectrum(MAiFS), which 

a

b

Fig. 4  Compare band-pass filtered signal with morphological filtered signal. The image shows that the morphological filter can further eliminate 
interferences than band-pass filter so that we can obtain the needful signal to do experiments

Fig. 5  Detecting R wave. The image shows “*” is the result of detection—R peak and indicates the method to be of high accuracy. There is the 
Shannon energy envelope curve
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can be used as the frequency domain characteristic of 
the ECG signals. The statistical results of the frequency-
domain feature of sinus rhythm signals and AF signals 
were shown in Fig. 13 (partial data).

Classification using decision tree algorithm
The classifier used a decision tree algorithm [14]. Based 
on the principle of minimizing the Gini index, a decision 
tree was generated using the CART (classification and 
regression tree) algorithm. The data obtained from the 

Fig. 6  Time-domain features. There are three kinds of features in the image. For the mean of RR interval, sinus rhythm signals were larger than AF 
signals. For the variance of RR interval, AF ECG signals were a little larger than sinus rhythm signals. For the number of RR intervals, AF signals were 
more than sinus rhythm signals

Table 1  Frequency range of  fourth layer discrete wavelet 
transform

The table shows the results of the four-layer discrete wavelet transform

Sub-band Frequency range ( Hz)

CA4 0–7.813

CD4 7.813–15.625

CD3 15.625–31.25

CD2 31.25–62.5

CD1 62.5–125

Fig. 7  Frequency ranges of sub-band signals. It can be seen that different sub-band has a different spectrum and contains different information in 
a single waveform
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above experiments were classified using the generated 
CART decision tree. And the confusion matrix of the 
classification results was obtained. As shown in Fig.  14. 
From the confusion matrix, we knew that the accu-
racy of classification reaches 98.9%. Sensitivity(SE) and 
specificity(SP) are calculated as

where true positive (TP): AF is classified as AF; true neg-
ative (TN): sinus rhythm is classified as sinus rhythm; 

(10)SE =
TP

TP + FN

(11)SP =
TN

TN + FP

false negative (FN): AF is classified as sinus rhythm; false 
positive (FP): sinus rhythm is classified as AF. According 
to the confusion matrix, the sensitivity and specificity of 
our method were 97.93% and 99.63% respectively. The 
comparison results were shown in Table 2.

Discussion
Through the extraction of the time-domain feature, 
we found that sinus rhythm signal and AF signal’s R–R 
interval, the mean of R–R interval, the variance of R–R 
interval and the number of R waves had significant dif-
ferences. Therefore, these features could be considered as 
time-domain features in the ECG signal.

Fig. 8  Decomposing single AF signal waveform

Fig. 9  Decomposing single sinus rhythm signal waveform
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Through the extraction of the frequency-domain fea-
ture, we found that the frequency corresponding to the 
maximum amplitude was intensively located in 1 Hz in 
the spectrum of the reconstructed sinus rhythm sig-
nal. However, in the spectrum of the reconstructed AF 
signal, the frequency corresponding to the maximum 
amplitude was discretely located from 2 to 8 Hz, which 
could be regarded as the dominant frequency in ECG 
signals with AF. Therefore, the frequency correspond-
ing to the maximum amplitude of the spectrum can be 
used as the frequency-domain feature to detect AF.

Through the decision tree classification algorithm, we 
classified the sinus rhythm signals and AF signals with 
high accuracy. Besides, we also got great sensitivity and 
specificity compared with other studies.

Conclusion
The frequency corresponding to the maximum ampli-
tude of the frequency spectrum in the sinus rhythm sig-
nal was concentrated and the fluctuation was weak. But 
the frequency corresponding to the MAiFS in the atrial 
fibrillation signal is divergent and irregular. Therefore, 

Fig. 10  Reconstruction of single AF signal waveform and sinus rhythm signal waveform. The two reconstructed waveforms are largely similar with 
the extracted single waveforms

Fig. 11  The FFT of AF reconstructed signal
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the experimental results can prove the validity of the 
frequency corresponding to MAiFS and the practicabil-
ity and accuracy of the detection method, which applied 
this frequency-domain feature. Through the detection 

method, we obtained good accuracy of classifying sinus 
rhythm signals and AF signals. And the sensitivity and 
specificity of our method were pretty good by compari-
son with other studies.

Fig. 12  The FFT of sinus rhythm signal

Fig. 13  Frequency domain features of AF and sinus rhythm. The frequency-domain feature of AF signals had volatility while sinus rhythm signals 
had stability
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the number in pink rectangle means failed classification

Table 2  Comparison with other conclusions

The table shows a comparison with other studies about sensitivity and 
specificity

Method Sensitivity(SE)
(%)

Specificity(SP)
(%)

Eric Helfenbein et al. [15] 76 97

S Dash et al. [16] 94 95

Tran Thong [17] 89 91

Francisco Rincón [18] 96 93

Proposed algorithm 97.9 99.6

https://www.physionet.org/content/afdb/1.0.0/
https://www.physionet.org/content/afdb/1.0.0/
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