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Abstract 

Background:  Accurately predicting patient outcomes in Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) could aid patient management and allocation of healthcare resources. There are a variety of methods which 
can be used to develop prognostic models, ranging from logistic regression and survival analysis to more complex 
machine learning algorithms and deep learning. Despite several models having been created for SARS-CoV-2, most of 
these have been found to be highly susceptible to bias. We aimed to develop and compare two separate predictive 
models for death during admission with SARS-CoV-2.

Method:  Between March 1 and April 24, 2020, 398 patients were identified with laboratory confirmed SARS-CoV-2 
in a London teaching hospital. Data from electronic health records were extracted and used to create two predictive 
models using: (1) a Cox regression model and (2) an artificial neural network (ANN). Model performance profiles were 
assessed by validation, discrimination, and calibration.

Results:  Both the Cox regression and ANN models achieved high accuracy (83.8%, 95% confidence interval (CI) 
73.8–91.1 and 90.0%, 95% CI 81.2–95.6, respectively). The area under the receiver operator curve (AUROC) for the ANN 
(92.6%, 95% CI 91.1–94.1) was significantly greater than that of the Cox regression model (86.9%, 95% CI 85.7–88.2), 
p = 0.0136. Both models achieved acceptable calibration with Brier scores of 0.13 and 0.11 for the Cox model and 
ANN, respectively.

Conclusion:  We demonstrate an ANN which is non-inferior to a Cox regression model but with potential for further 
development such that it can learn as new data becomes available. Deep learning techniques are particularly suited 
to complex datasets with non-linear solutions, which make them appropriate for use in conditions with a paucity of 
prior knowledge. Accurate prognostic models for SARS-CoV-2 can provide benefits at the patient, departmental and 
organisational level.
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has led to healthcare crises in several countries 
and remains disruptive in several others [1]. Accurately 
predicting patient outcomes would aid clinical staff in 
allocating limited healthcare resources and establish-
ing appropriate ceilings of care, thereby mitigating the 
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pressure on hospital departments. It would also allow 
service managers and policy makers to respond efficiently 
to possible future surges of SARS-CoV-2, the magnitudes 
of which may otherwise be difficult to predict [2].

There are a variety of methods which can be used to 
develop prognostic models, ranging from logistic regres-
sion and survival analysis to more complex machine 
learning algorithms and deep learning [3]. As a conse-
quence of the emergent interest in deep learning, a num-
ber of techniques have been developed within this field 
with respect to the diagnosis, treatment and prognosis 
of the COVID-19 disease, including densely connected 
neural networks, recurrent networks and generative 
adversarial networks [4]. There is currently no con-
sensus as to which of these techniques yields the most 
robust prognostic models [5], and whilst several models 
have been developed at a time when they are urgently 
required, there are a number of limitations which have 
impeded their use [6]. Several of the current models have 
been found to be highly susceptible to bias. For exam-
ple, many demonstrate sampling bias as they excluded 
patients with no outcome at the end of the study period, 
leading to reported mortality rates of between 8 and 59% 
[6–9]. Others attempt to predict outcomes based on 
cross-sectional data, suggesting the outcome prediction 
is based on data which is likely collected at a different 
time to that for which the model is intended [10]. One 
model attempts to predict outcomes from the last meas-
urements available in healthcare records [8]. Other limi-
tations include the use of subjective predictors [6], small 
patient numbers [11], and considering suspected and 
confirmed SARS-CoV-2 cases as one group [12].

We aimed to develop and compare two separate pre-
dictive models using regression analysis and an artificial 
neural network (ANN) using the Transparent Report-
ing of a multivariable prediction model for Individual 
Prognosis or Diagnosis (TRIPOD) guidelines [13]. The 
models aim to predict the risk of death during admis-
sion in patients with SARS-CoV-2. We then compare the 
two techniques to establish whether deep learning could 
supplant classical methods in the context of an evolving 
pandemic.

Methods
Participants
All admitted patients with a laboratory diagnosis of 
SARS-CoV-2 during March 1–April 24, 2020 (i.e. 
a high prevalence period) from a single west Lon-
don hospital were identified. Patients were included 
if they were admitted to hospital and diagnosed with 
SARS-CoV-2 based on real-time reverse transcriptase 
polymerase chain reaction (RT-PCR, proprietary 

Public Health England Assay until 10 March 2020, then 
AusDiagnostics®, Australia, assay thereafter). No patients 
were excluded.

Inpatients had their symptoms and clinical course doc-
umented in their electronic healthcare record (EHR) by 
the admitting clinical team (Millennium: Cerner Corpo-
ration, Kansas City, Missouri). Demographic and clini-
cal data were extracted retrospectively from the EHRs 
for all patients included in the analysis by the infectious 
diseases team. Patient outcomes were followed up until 
death or discharge.

Outcome measure
Outcome was defined as death occurring during hospital 
admission for patients who were admitted with a labora-
tory confirmed diagnosis of SAR-CoV-2.

Predictors
Predictors were chosen in concordance with previously 
published literature [10, 14, 15], and included demo-
graphic details (age and sex), comorbidities (chronic 
respiratory disease, obesity, hypertension, diabetes, 
ischaemic heart disease, cardiac failure, chronic liver dis-
ease, chronic kidney disease, and history of a cerebrovas-
cular event), symptomatology (fever, cough, dyspnoea, 
myalgia, abdominal pain, diarrhoea and vomiting, confu-
sion, collapse, and olfactory change), and the number of 
days of symptoms prior to admission. Length of hospital 
stay to discharge, or death, was recorded for all patients 
to allow for survival analysis in the Cox regression model. 
Smoking history and ethnicity data were not included in 
the predictive models due to 28.9% and 23.4% of patients 
having missing data for these fields, respectively.

Age and number of days of symptoms prior to admis-
sion were continuous variables. All other predictors were 
encoded as binary presence features. Sex was converted 
to a binary feature where 0 and 1 represented male and 
female patients, respectively. Predictors were chosen 
such that they can be elicited on first contact with a 
healthcare worker. The intended use, for both models, is 
therefore an outcome prediction based on clinical admis-
sion data.

Statistical analysis
Patient baseline characteristics were described by mean 
and median for continuous variables and frequency and 
proportion for categorical variables. Log rank analysis 
was applied to the whole dataset to report unadjusted 
associations between each predictor and the outcome. 
Age was not normally distributed and was normalised 
by calculating its fractional ranks and then using an 
inverse density function. We then used an independent 
samples t-test to compare age by outcomes. Number of 
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days of symptoms prior to hospital admission (NOD) 
were also not normally distributed and a Mann–Whit-
ney U test was carried out to compare NOD between 
outcome groups. Multivariable Cox regression analysis 
was then applied to contextualise the predictors in rela-
tion to each other.

Cox regression predictive model
To create a predictive model for death in SARS-CoV-2, 
we randomly split the dataset into training (80%) and 
test (20%) sets. As others have demonstrated, the opti-
mal proportion of the dataset partitioned for train-
ing depends on the full dataset size and classification 
accuracy, with higher accuracies and smaller dataset 
sizes requiring a larger majority of the data for train-
ing the model [16]. However, a range of proportions for 
the training set were trialled during the training phase 
of model development for both the Cox regression and 
ANN models. The training/test set portions yielding 
the highest average area under the receiver operator 
curve (AUROC) during training cross-validation were 
used in the testing phase, and their results are reported 
in this analysis. On the training set, we used a parsimo-
nious model building approach using the clinically rel-
evant demographic, comorbidity and symptomatology 
features identified. All predictors were included in a 
Cox regression model irrespective of whether they were 
significant in univariable log-rank analysis. Using k-fold 
cross-validation on the training set, we chose the model 
with the lowest Akaike information criterion (AIC) 
score and highest concordance index (c-index) [17]. 
Subsequently, predictors which were not significantly 
associated with death were removed using backwards 
elimination. This generated a list of predictors making 
up a predictive model. We then assessed the perfor-
mance of the model by calculating the survival function 
at the third quartile of length of stay for patients in the 
test set, as length of stay was not normally distributed. 
Since predicting mortality is a binary classification 
problem, a standard threshold of 0.5 (50%) was used 
to predict mortality. For example, if the model pre-
dicts a patient-specific mortality of 60%, this is inter-
preted as a “positive prediction”, in that the patient is 
likely to die. Accuracy, sensitivity, specificity, positive 
predictive value, and negative predictive value were 
computed. Using k-fold cross-validation on the whole 
dataset allowed for a calculation of a mean c-index 
with 95% confidence intervals (CI). Model calibration 
was assessed graphically using a calibration curve and 
numerically with a Brier score, which represents the 
mean squared error for a probabilistic forecast, with a 

lower score representing more calibrated predictions 
[18].

Artificial neural network predictive model
The dataset was again randomly split into training (80%) 
and test (20%) sets. To maximise network learning effi-
ciency, feature-wise normalisation was used. Each feature 
in the input data was centred around 0 by subtracting the 
mean of the feature, and then dividing it by its standard 
deviation [19]. The open-source TensorFlow machine 
learning library [20] was used to construct the ANN. To 
optimise the model, we adjusted hyperparameters (the 
number and size of layers, batch-size, dropout, and reg-
ularisation) using k-fold cross validation on the training 
set. The ANN was designed to achieve maximal perfor-
mance on cross-validation. Once the model architecture 
was established, we retrained the ANN on the entire 
training set, before finally validating its performance on 
the test set. We calculated the same performance metrics 
and assessed calibration in the same manner as the Cox 
regression model. The performance profiles of the models 
were then compared, and an efficient implementation for 
Delong’s algorithm (which is an algorithm used to com-
pare the area under two or more correlated receiver oper-
ator curves) was used to compare the AUROC between 
both models [21, 22]. Figure  1 illustrates a summary of 
the model development and assessment methodology.

Results
Participants
398 patients were identified, of which 95 died during hos-
pital admission with SARS-CoV-2. 3/398 (0.75%) were 
still inpatients at the end of the follow-up period. There 
were no missing data in the variables used for analysis. 
Table  1 summarises the demographic, comorbidity, and 
symptomatology characteristics of the cohort, with the 
log rank (Mantel–Cox) analysis of all predictors. The 
mean age was 63.2 years and there was a statistically sig-
nificant relationship between age and death (p < 0.001). 
The median number of days of symptoms prior to admis-
sion was 7  days (IQR 2–10). There was no significant 
association between number of days of symptoms and 
death (p = 0.09).

Cox regression model
Development
Table 2 shows the association of all predictors with sur-
vival following multivariable analysis. Following back-
wards elimination on the training set (318/398), the 
remaining variables of significance were: age, sex, obe-
sity, ischaemic heart disease, cardiac failure, chronic liver 
disease, chronic kidney disease, cerebrovascular event 
history, cough, dyspnoea, abdominal pain, confusion 



Page 4 of 11Abdulaal et al. BMC Med Inform Decis Mak          (2020) 20:299 

Fig. 1  Summary of the methodology used in the development and assessment of two prognostic models for patients admitted with SARS-CoV-2 
in a West London population, during March 1–April 23, 2020. ANN artificial neural network, CoxPH Cox regression model
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and collapse (Fig.  2). Goodness of fit testing showed an 
AIC = 572.93 with a c-index of 0.90 on the training set.

Specification
We generated a model that calculates the hazard func-
tion determined by the following significant variables and 
their coefficients:

Median length of stay was 7 days with the upper quar-
tile being 13  days. Therefore, to predict outcomes, the 
survival function was calculated for patients at day 13 in 
the test set.

Performance
K-fold cross validated mean c-index on the training set 
was 89.0% (95% CI 84.2–94.3). When applied to the test 
set, the Cox regression model provided a sensitivity 
of 50.0% (95% CI 28.2–71.8), specificity of 96.6% (95% 
CI 88.1–99.6), positive predictive value of 84.6% (95% 
CI 57.0–95.8) and negative predictive value of 83.6% 
(95% CI 77.0–88.6) with an accuracy of 83.75% (95% CI 
73.8–91.1). The c-index was 86.9% (95% CI 85.7–88.2). 
The final model had a Brier score of 0.13.

ANN model
Development
We applied the ANN to the training set and adjusted 
the hyperparameters (layers, neurones, drop out, batch 
size, regularisation and epoch number) to achieve a 
model architecture providing the highest accuracy, 
AUROC and the lowest loss as measured by binary 
cross-entropy on the validation set. Once architecture 
was optimised, the model was retrained on the entire 
training set and evaluated on the test set. Figure 3 dem-
onstrates the average AUROC by training proportion 
for both the Cox regression and ANN models during 
training cross-validation.

h(t) = h0(t)× exp(
(

0.05× age
)

+ (−0.78× sex)

+
(

1.48× obesity
)

+ (0.93× ischaemicheartdisease)

+
(

0.91× cardiacfailure
)

+ (1.36× chronicliverdisease)

+
(

1.03× chronickidneydisease
)

+ (0.78× cerebrovascularevent)

+
(

1.01× cough
)

+
(

1.54 × dypsnoea
)

+ (−1.45× abdominalpain)

+
(

1.81× confusion
)

+ (1.35× collapse))

Table 1  Summary of  demographics, comorbidities, 
symptoms, and  outcomes of  398 patients admitted 
with  SARS-CoV-2 in  a  West London population, 
during March 1–April 23, 2020

The association of each predictor with death following log rank analysis 
(reported with the Chi-square statistic) is shown

Number (%) Chi-Square p value

Demographics

Age (mean) 63.2 years

Sex (M) 223 (56.0%) 3.54

Comorbidities

Cardiac failure 22 (5.5%) 79.56 < 0.005

Cerebrovascular event 29 (7.3%) 24.14 < 0.005

Chronic kidney disease 33 (8.3%) 49.25 < 0.005

Chronic liver disease 6 (1.5%) 5.915 0.015

Chronic lung disease 84 (21.1%) 6.01 0.01

Diabetes 104 (26.1%) 4.39 0.036

Hypertension 147 (36.9%) 17.88 < 0.005

Ischaemic heart disease 47 (11.8%) 37.63 < 0.005

Obesity 15 (3.8%) 0.015 0.903

Symptoms

Abdominal pain 40 (10.1%) 2.6 0.11

Collapse 37 (9.3%) 55.5 < 0.005

Confusion 59 (14.8%) 117.35 < 0.005

Cough 247 62.1%) 3.05 0.081

Diarrhoea and vomiting 105 (26.4%) 4.64 0.031

Dyspnoea 223 (56.0%) 15.88 < 0.005

Fever 216 (54.3%) 0.12 0.73

Myalgia 68 (17.1) 0.002 0.97

Olfactory change 36 (9.0%) 1.11 0.29

Length of stay (median) 5 days

Number of days of symptoms 
prior to admission (median)

7 days

Outcome

Death 95 (23.9%)
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Table 2  Multivariable Cox regression analysis in 398 patients admitted with SARS-CoV-2 in a West London population, 
during March 1–April 23, 2020

NOD Number of days of symptoms prior to hospital admission

Variable Hazard ratio Lower 95% CI Upper 95% CI p value

Age 1.05 1.03 1.07 < 0.005

Sex (F) 0.6 0.36 1 0.05

Cardiac failure 2.92 1.52 5.62 < 0.005

Cerebrovascular event 2.36 1.28 4.36 0.01

Chronic kidney disease 2.32 1.31 4.1 < 0.005

Chronic liver disease 3.52 1.2 10.35 0.02

Chronic respiratory disease 0.9 0.53 1.53 0.7

Diabetes 1.41 0.86 2.3 0.17

Hypertension 1.02 0.64 1.63 0.93

Ischaemic heart disease 2.09 1.29 3.4 < 0.005

Obesity 2.74 0.97 7.7 0.06

NOD 1.01 0.97 1.05 0.65

Abdominal pain 0.29 0.08 1.02 0.05

Collapse 4.21 2.4 7.41 < 0.005

Confusion 6.03 3.5 10.41 < 0.005

Cough 1.88 1.1 3.2 0.02

Diarrhoea/vomiting 1.32 0.68 2.54 0.41

Dyspnoea 3.49 1.93 6.32 < 0.005

Fever 1.88 1.13 3.13 0.02

Myalgia 1.43 0.69 2.94 0.33

Olfactory change 0.87 0.31 2.47 0.79

Fig. 2  Cox prognostic model of demographics, comorbidities and symptoms, and the log hazard ratio of death in patients admitted with 
SARS-CoV-2 in a West London population, during March 1–April 23, 2020
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Specification
Optimal validation results were achieved with an ANN 
with 21 units in the input layer to match the input dimen-
sion of the dataset, that is, the total number of predic-
tors. Two further hidden layers were used with 8 and 4 
units, respectively. A dropout of 20% was applied to the 
input layer and both hidden layers to prevent overfitting. 
Regularisation did not substantively improve results and 
therefore no regularisation techniques were used. Fig-
ure 4 demonstrates the average impact on model output 
magnitude by each predictor.

Performance
The final ANN architecture provided an accuracy of 
88.1% and AUROC of 90.9% on cross validation. When 
applied to the test set, the model provided a sensitivity 
of 64.7% (95% CI 38.3–85.8), specificity of 96.8% (95% 
CI 89.0–99.6), positive predictive value of 84.6% (95% 
CI 57.4–95.7) and negative predictive value of 91.4% 
(95% CI 84.2–95.1), with an accuracy of 90.0% (95% CI 
81.2–95.6). The AUROC on the test set was 92.6% (95% 
CI 91.1–94.1). The ANN had a Brier score of 0.11. Table 3 
shows the performance metrics of each model. Figure 5 
demonstrates the calibration of each model.

Discussion
Two models were developed in accordance with TRIPOD 
methodology to predict death during hospital admission 
among SARS-CoV-2 patients. Both models demonstrate 
acceptable sensitivity and good specificity. Although both 
have good accuracy, the ANN has significantly greater 
discriminatory ability. Both models demonstrate accepta-
ble calibration. Developing robust prognostic models for 
SARS-CoV-2 has benefits for the patient, medical depart-
ments, and hospital organisations.

Previous literature reports mixed performance of 
machine learning and deep learning techniques when 
compared to regression analysis [5]. Whilst machine 
learning does not obviate the need for classical meth-
ods [23], machine learning techniques have been shown 
to perform significantly better than classical regression 
models in high-dimensionality datasets [24]. Further-
more, ANNs have been shown to perform well on data-
sets of varying size [25–27]. Our results support the use 
of an ANN in a moderate sized, high-dimensional data-
set, whilst having a non-inferior performance profile to a 
Cox regression model.

The Cox regression model used 11 predictors to calcu-
late survival function, whilst the ANN uses all 21 input 
features, and attributes different weightings to each fea-
ture. Both models identify confusion, collapse, dyspnoea, 
cough, chronic kidney disease, heart failure, cerebro-
vascular event history, fever, and sex as more significant 
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Fig. 3  The average area under the receiver operator curve (AUROC) achieved by a Cox regression model and an Artificial Neural Network for a 
range of training set proportions in patients admitted with SARS-CoV-2 in a West London population, during March 1–April 23, 2020. ANN artificial 
neural network, CoxPH Cox regression model
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Fig. 4  Predictor importance as considered by an Artificial Neural Network trained and validated on 398 patients with SARS-CoV-2 in a West London 
hospital, during March 1–April 24, 2020. SHAP value Shapley additive explanations value. This approximates how much each predictor contributes to 
the average prediction for the dataset. NOD number of days of symptoms prior to hospital admission

Table 3  Performance of  the  Cox regression model and  an  ANN on  398 patients with  SARS-CoV-2 in  a  West London 
hospital, during March 1–April 24, 2020

ANN artificial neural network, AUROC area under the receiver operating characteristic curve

Cox regression model (95% CI) ANN model (95% CI) Cox 
regression 
vs ANN 
model

Sensitivity 50.0% (28.2–71.8) 64.7% (38.3–85.8)

Specificity 96.6% (88.1–99.6) 96.8% (89–99.6)

Positive predictive value 84.6% (57.0–95.8) 84.6% (57.4–95.7)

Negative predictive value 83.6% (77.0–88.6) 91.4% (84.2–95.1)

Accuracy 83.75% (73.8–91.1) 90.0% (81.2–95.6)

AUROC 86.9% (85.7–88.2) 92.6% (91.1–94.1) Z = 12.021, 
p < 0.001
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predictors of mortality. The ANN additionally identifies 
ischaemic heart disease and hypertension as important 
features. Abdominal pain is considered to have little 
effect on model output by the ANN, which is a signifi-
cant ‘protective factor’ in the Cox model. In this context, 
abdominal pain may represent a milder form of SARS-
CoV-2. These variables, in particular the comorbidities, 
have been shown to be associated with mortality in the 
current literature, such as the ISARIC protocol, which 
analysed 20,133 SARS-CoV-2 positive patients [28].

The Cox regression model accounts for censored 
patients in the study and therefore no patients were 
excluded on account of not having a recorded outcome at 
the end of the follow-up period. This avoids the introduc-
tion of sampling bias. The predictors chosen for inclusion 
in both models can be accrued from an initial encounter 
with a healthcare worker and relate to the underlying 
clinical condition of each patient. This has a dual benefit. 
Firstly, this standardises the data-collection process and 
ensures both models are compared on a congruent data-
set. Secondly, the nature of the predictors means that the 
intended use of the models is clear in that they both pro-
duce a point-of-admission mortality prediction, which 
is particularly applicable to the development of medical 
calculators. The models analyse the outcomes for labora-
tory confirmed SARS-CoV-2 patients, eliminating poten-
tial bias introduced by including suspected cases who are 
subsequently diagnosed with other conditions.

The predictive models here do have several limita-
tions, however. There are a variety of haematological and 
radiological predictors which have been associated with 
SARS-CoV-2 outcomes which are not included in our 
models [29, 30]. Whilst our current models can produce 

point-of-admission outcome predictions due to the rela-
tive ease of collecting demographic, comorbidity and 
symptom data, additional clinical parameters could be 
introduced in future to improve the predictive accuracy 
of the models. We could not account for patients who 
were admitted for, and diagnosed with SARS-CoV-2, but 
may have died due to another comorbidity. However, this 
likely represents a minority of patient deaths. The Cox 
regression model predicts survival function at day 13; 
whilst this accounts for the majority of hospital admis-
sion lengths, predicting survival in this way may overesti-
mate survival chance for outliers who died at a later date. 
In contrast, the ANN model produces an overall risk 
prediction irrespective of length of admission. However, 
given the median length of stay of 7 days with an upper 
quartile of 13 days, predictions from the ANN should be 
used cautiously for longer lengths of hospital stay. There 
may be a delay between patient presentation and obtain-
ing a laboratory diagnosis. Therefore, whilst it is pos-
sible to use either model at the point of admission, the 
prediction should only be applied to patients who have 
a confirmed diagnosis of SARS-CoV-2. Finally, data was 
collected at a single site during a period of high preva-
lence, and therefore results should be generalised with 
caution to other populations and those with a different 
SARS-CoV-2 prevalence.

A prospective, multi-centre analysis is required to fur-
ther validate the model and improve generalisability of 
results. Machine learning techniques are ideal for fluc-
tuating environments as they can adapt to new data. For 
example, using online/active learning, an ANN can train 
incrementally by being fed data instances sequentially. 
Each step is relatively fast and cheap, meaning the sys-
tem can continuously learn as more data is available. This 
represents a major advantage relative to static statistical 
models [31]. Future research should focus on implement-
ing adaptive workflows to allow for multi-site data collec-
tion, cross-population train/test modelling, and flexible 
systems which learn incrementally. Additionally, mul-
timodal data (such as encoded radiographic data), and 
other potentially important parameters such as hospital 
capacity, testing capacity/rate and income versus com-
modities (poverty) can all be incorporated to produce 
more generalisable, highly-performant models [32, 33]. 
Furthermore, deep learning techniques such as recur-
rent neural networks can be used for time-series analysis, 
and therefore account for important events such as ICU 
admission as they occur. This may represent an additional 
avenue for further research. Finally, other decision points 
in SARS-CoV-2 patient journeys need to be predicted, 
and adapting the models to predict need for antibacterial 
agents for secondary infection [34], or for steroids where 
indicated [35], are clear avenues for exploration.

Fig. 5  Calibration of a Cox regression model and ANN on 398 
patients with SARS-CoV-2 in a West London hospital, during March 
1–April 24, 2020. ANN artificial neural network, CoxPH Cox regression 
model
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Conclusion
Accurate prognostic models for SARS-CoV-2 can pro-
vide benefits at the patient, departmental and organisa-
tional level. Such models could optimise the response to 
possible future surges of SARS-CoV-2. We demonstrate 
an ANN which is non-inferior to a Cox regression model 
but has the potential for further development such that 
it can learn as new data becomes available. Deep learn-
ing techniques are particularly suited to complex datasets 
with non-linear solutions, which make them appropriate 
for use in conditions with a paucity of prior knowledge, 
such as in SARS-CoV-2 infection.
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