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Abstract

Background: An effective approach to containing epidemic outbreaks (e.g., COVID-19) is targeted immunization,
which involves identifying “super spreaders” who play a key role in spreading disease over human contact networks.
The ultimate goal of targeted immunization and other disease control strategies is to minimize the impact of
outbreaks. It shares similarity with the famous influence maximization problem studied in the field of social network
analysis, whose objective is to identify a group of influential individuals to maximize the influence spread over social
networks. This study aims to establish the equivalence of the two problems and develop an effective methodology for
targeted immunization through the use of influence maximization.

Methods: We present a concise formulation of the targeted immunization problem and show its equivalence to the
influence maximization problem under the framework of the Linear Threshold diffusion model. Thus the influence
maximization problem, as well as the targeted immunization problem, can be solved by an optimization approach. A
Benders’ decomposition algorithm is developed to solve the optimization problem for effective solutions.

Results: A comprehensive computational study is conducted to evaluate the performance and scalability of the
optimization approach on real-world large-scale networks. Computational results show that our proposed
approaches achieve more effective solutions compared to existing methods.

Conclusions: We show the equivalence of the outbreak minimization and influence maximization problems and
present a concise formulation for the influence maximization problem under the Linear Threshold diffusion model. A
tradeoff between computational effectiveness and computational efficiency is illustrated. Our results suggest that the
capability of determining the optimal group of individuals for immunization is particularly crucial for the containment
of infectious disease outbreaks within a small network. Finally, our proposed methodology not only determines the
optimal solutions for target immunization, but can also aid policymakers in determining the right level of
immunization coverage.
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Background

The containment of infectious disease outbreaks has been
an important issue over decades. In the 21st century,
there have still been major epidemics which posed seri-
ous global health threats, such as coronavirus disease 2019
(COVID-19), severe acute respiratory syndrome (SARS),
dengue fever, middle east respiratory syndrome (MERS),
and Ebola virus disease. This study was motivated by a
project initiated at the Prince of Wales Hospital (PWH)
of Hong Kong [1, 2], a major hospital in the city. The
project aimed to investigate solutions for effective and
timely responses to possible severe infectious disease out-
breaks. PWH suffered from SARS in 2003; there were at
least 138 suspected SARS cases potentially acquiring the
disease at the facility, where 69 of them were healthcare
workers (HCWs) [3]. After SARS, there were reviews of
the causes of the hospital outbreak and the effectiveness
of the intervention strategies. It was believed that contact
tracing was a critical step to identify potential infected
cases, as the disease could be spread through person-
to-person contact. The recent advancements of informa-
tion and communication technologies offered a possible
and more effective way to establish the contact trace-
bility, instead of conducting a survey after the outbreak.
In the project, a radio-frequency identification (RFID)
system was developed to locate individuals (including
patients and HCWSs) within the facility. While the indi-
viduals’ contact activities could be captured through this
system, our next question is: what is an effective way
to containing the disease? This motivated our current
research.

Targeted immunization (TI) is a popular and effective
approach to containing epidemic outbreaks. The essence
of TI is to identify and immunize at-risk individuals or
groups who have higher chances of spreading the disease
to a larger population. There are several stages for the con-
tainment of infectious disease outbreaks. The very first
stage is disease outbreak detection [4—6]. When an out-
break is identified, effective modeling of disease outbreaks
and responsive actions for TI would be essential to the
containment of the disease spread [7, 8]. The identifica-
tion of the individuals or groups for immunization aims
to mitigate the impacts of the disease spread as far as
possible. T1 provides protection for not only the targeted
individuals but also other members within the same com-
munities, e.g., those who cannot be vaccinated themselves
such as infants and pregnant women. When vaccines are
scarce with limited budgets, it is especially important
to develop effective immunization strategies and to allo-
cate resource optimally for containing infectious disease
outbreaks. In the case of healthcare-facility outbreaks of
infectious diseases such as SARS and MERS (e.g., [2]), it is
essential to protect the healthcare workers (HCWs) who
are the frontline medical staff against the outbreak. In this
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research, we focus on T1I for infectious disease outbreaks
spread by person-to-person contact [9], where the optimal
resource allocation decisions are determined based on the
contact network topology.

We consider an equivalent problem which could deter-
mine the TT solutions. TI shares similarity with the influ-
ence maximization (IM) problem which has been exten-
sively studied in the field of social network analysis. In
the IM problem, a user can influence others through
social connections, making influence spread over social
networks. The IM problem thus is to target a certain num-
ber of influential individuals, called “seed” nodes in the
social network. These seed nodes are activated at the ini-
tial stage, such that the expected influence spread, usually
associated with the expected number of nodes that even-
tually get activated, is maximized. While TI is to identify
a set of individuals to minimize the effects of an epidemic
spread, the IM problem is to identify a set of individuals to
maximize the influence spread. It is natural to see that by
considering the population protected from the epidemic
outbreak as a reward, target immunization can be trans-
formed to maximizing the reward, which is equivalent to
the IM problem [10].

In this work, we first formulate TI as an optimization
problem and show that it is equivalent to the standard for-
mulation of the influence maximization problem under
the framework of the Linear Threshold (LT) diffusion
model. e aim to answer the following research question:
can we achieve more effective IT solutions by an opti-
mization approach for the IM problem, as compared with
existing methods? To be specific, our research achieves
the following contributions:

1 We show that the TI problem is equivalent to the
famous IM problem.

2 We provide an explicit and concise formulation of
the IM problem under the framework of the LT
diffusion model.

3 We develop optimization approaches based on
Linear Programming (LP) Relaxation and Bender’s
Decomposition.

4 We examine the solutions for the IM problem on
real-world large-scale networks and show that the
proposed optimization approach achieves more
effective solutions, as compared with existing
methods.

5 Insights into infectious disease outbreak containment
are derived from the computation experiments.

Related work on the technical tools

We first provide an introduction to the technical tools we
adopted in this research — influence maximization, lin-
ear threshold model, and Benders’ Decomposition — and
review the related work.
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Influence maximization

The IM problem, originating from the area of viral mar-
keting, was first studied in [11]. Later, an optimization
problem was formulated and presented in [12]. After
that, their work became the standard approach to solving
the IM problem. They proposed an approximate solu-
tion based on the greedy algorithm. They also proved
that it guarantees a (1 — 1/e — €) bound to the optimal
solution for diffusion models with submodular objective
functions, such as the Independent Cascade model and
the LT model. There are three assumptions in the stan-
dard IM model: random activation thresholds, monotonic
diffusion functions, and submodular diffusion functions
[13]. Mossel and Roch [13] showed that the submod-
ularity holds for the network-level propagation at the
global structure if the above three assumptions are satis-
fied. Soma et al. [14] defined a submodular function on
the integer lattice, which extends submodular set func-
tions, and introduced a maximization problem for mono-
tonic submodular function under Knapsack constraints
that no longer requires uniform costs. They proposed
a polynomial time algorithm with (1 — 1/e) bound to
solve the budget allocation problem and compared sev-
eral strategies for selecting seed sets. Khanna and Lucier
[15] proved through bond-percolation-based probabilistic
analysis that, on undirected networks, the greedy algo-
rithm could achieve a (1 — 1/e + ¢) bound.

There are two main directions which are extended from
Kempe’s work. One is to improve the effectiveness of the
solution, as the greedy algorithm gives only (1 — 1/e)
approximation to the optimal solution. The other direc-
tion is to increase the efficiency of the solution algorithm
because the standard solution using Monte Carlo sim-
ulations to calculate the expected spread of a seed set
requires a significant computation time. However, as far
as we know, there is no work in the first direction that
aims to improve the effectiveness of the solution. Almost
all research work remains in the second direction focusing
on speeding up the calculation of expected spread within
the framework of a greedy algorithm, e.g., [10, 16—18].

Linear threshold model

The IM problem on the LT model is NP-hard [12], and
the standard greedy algorithm based on Monte Carlo
simulations is computationally expensive. Thus, extensive
research has been carried out to advance the performance
of approaches to computing the IM process on the LT
model. Leskovec et al. [10] proposed a lazy-forward opti-
mization to accelerate the simple greedy algorithm by
reducing the number of spread estimation calls, based
on the idea that the marginal gain of a node in previ-
ous iterations is always larger than (or at least equal to)
its marginal gain at the current iteration. Chen et al. [17]
proved that calculation of the expected spread on Directed
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Acyclic Graphs (DAGs) can be completed in linear time.
Their algorithm constructs a local DAG for each node.
It then iteratively selects a seed using the classic greedy
algorithm, which achieves maximum incremental influ-
ence spread at each iteration. Goyal et al. [18] proposed an
approximation algorithm that utilizes simple paths to cal-
culate the influence for a node and treats the influence for
a set as the sum of the influences for all nodes in the set. In
this way, the calculation of expected spread is decoupled
and becomes additive. Since enumerating all simple paths
between a pair of nodes is computationally intractable,
they speed up the algorithm by introducing a threshold to
prune paths which have little influences.

Benders’ decomposition

Benders’ decomposition is a technique in mathemati-
cal programming that allows solving some huge mixed
integer linear programming (MILP) problems of certain
structures. Classical Benders’ decomposition approaches
separate a MILP problem into a master problem, usu-
ally a MILP problem, and LP subproblems whose dual
solutions are used to derive new cuts for the master prob-
lem [19]. Hooker and Ottoson [20] proposed Logic-Based
Benders’ decomposition where cuts are obtained through
the inference dual rather than from the dual formulation
of the subproblem. Later, Codato and Fischetti [21] devel-
oped and applied Combinatorial Benders’ decomposition,
which is a particular case of Logic-Based Benders’ decom-
position, to MILP problems involving large numbers of
conditional constraints or so-called the big-M constraints.
A combinatorial Benders’ cut is derived whenever the
solution for the master MILP problem leads an infeasi-
ble subproblem. Combinatorial Benders’ decomposition
has been successfully applied to various real-world appli-
cations such as those related scheduling and assignment
problems. Bai [22], for instance, used Combinatorial Ben-
ders’ decomposition to solve an optimal allocation prob-
lem that tollbooths are allocated to roads for covering the
entire road network such that the number of tollbooths
required is minimized. By combinatorial decomposition,
a large number of logic implications (big-M constraints)
can be avoided.

To address the issue that existing IM methods are based
on the greedy algorithm, which guarantees only (1 —
1/e) approximation on submodular diffusion functions,
we present a novel and concise formulation of the IM
problem on the LT model so that it can be solved by
more effective optimization techniques. Our approach no
longer suffers the limitation of (1 — 1/e) approximation,
thus providing solutions with higher quality.

Methods
We first show the equivalence of the TI problem and the
famous IM problem. Then we introduce the LT model and
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present the proposed Time Aware Influence Maximiza-
tion (TAIM) model, which takes the temporal nature of
influence propagation into the LT model. Notations used
in the paper are summarized as follows:

G=(,€) = thegraph representing the social
network;

N = number of nodes on the graph, i.e.,
Vi;

S = seed set;

K = number of seed nodes |S|;

N* (1) = in-neighbor set of node ;

NOHE (1) = out-neighbor set of node u;

Wiy = influence weight of node u on v;

(S) = expected penalty incurred by S;

i (S) = penalty incurred by S under
scenario i;

o(S) = expected number of nodes
influenced by S;

or(S) = expected number of nodes
influenced by S within T time
units;

Aph, = delta influence of node v at time ;
and

M = A sufficiently large number.

Targeted immunization and influence maximization
In the TI problem, a subset of nodes (i.e., individuals) is
selected for immunization such that effects of the infec-
tious disease outbreak can be minimized. Let set I repre-
sent all possible scenarios of the outbreak. An event i € 1
represent a scenario that starts from a node s’ € V and
spreads through a network G = (V, £). When it reaches
a protected node s € S C V), the transmission subtree
rooted at node s is cut off. Thus, a penalty function 7;(s),
dependent on the scenario i, is incurred for the popula-
tion affected before a contaminant reaches the protected
node s. The affected population is defined as the expected
number of people who get infected. The goal of TI is to
minimize the expected penalty over all possible scenarios,
that is, to minimize the expected number of individuals
that would be affected by the outbreak. The TI problem is
formulated as:
min  7(S) = Y P(i)mi(S)
iel

s.t. c(S) <B

where P is a probability distribution over the events, c(S)
is a cost function for set S, and B is a limited budget which
the total cost cannot exceed.

The IM problem is to determine a seed set such that the
expected influence spread is maximized. Different choices
of seed nodes lead to different influence spreads that are
measured by spread scores. Generally, the spread score is
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a set function o that maps every seed set S to a real num-
ber o (S). This set function o is the objective to maximize
in the problem. With this notion of expected influence
spread, the IM problem can be formulated as the following
optimization problem:

max o(S) = ZP(i)Gi(S)

iel

s.t. c(S) <B

where B is a budget which cannot be exceeded for select-
ing the seeds.

Following the argument in [10], we show the equiva-
lence between the TI problem and the IM problem. In
the TT problem, a maximum penalty 7 (c0) is set for not
protecting any node in scenario i. We consider a scenario-
specific penalty reduction 0;(S) = m;(c0) — 7;(S) instead
of the penalty m;(S), which can be viewed as a reward
for protecting nodes in S. Thus the expected penalty
reduction

o(8) =) P()oi(S) = n (1) — 7 (S),

1€l

describes the expected reward obtained from providing
protection for set S. Thus the TI problem and the IM
problem become equivalent.

Linear threshold model

The LT model is defined as follows. In an LT influence
graph G = (V,€), an arc (u,v) is assigned weight w,,,
if (u,v) € £, where )", .\, Wy, < 1, Vv. In other words,
a node v is affected by its neighbor u with an influence
weight w,,. A condition of having the sum of influ-
ence weights for all in-neighbors to v no more than one
is imposed to ensure that such influence is normalized.
When a seed set S € V is selected, influence originates
from S and spreads through the network in discrete steps.
Each node v independently chooses a threshold A, uni-
formly at random from [0, 1]. At each time step ¢, an
inactive node v becomes active at time step £+ 1 if the total
weights from its active in-neighbors reaches its threshold
Ay, i,

Y bupdwt) = Ay,
ueN"(v)

where I(i,t) = 1 if u is active at time step £, otherwise
I(u,t) = 0. Let 0 (S) denote the expected number of nodes
activated by seed set S over all 1, values from uniform
distributions. o (S) is referred as the influence spread of
seed set S on network G under the LT model, which is the
objective to maximize in the model.
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Problem definition

The standard formulation of the IM problem is general
but requires the enumeration of all possible spreading sce-
narjos. Such problem has been shown NP-hard. In this
work, we aim to provide a concise formulation to char-
acterize the IM process under the framework of the LT
model. To this end, we exploit the discrete propagation
nature of the LT model. Consider a local network, e.g.,
Fig. 1 in which v; and v, are in-neighbors of vy and
they are all non-seed nodes. Let p denote the proba-
bility that node v; is active at time ¢. It is obvious that

pgﬂ = Pﬁwl,o +p§w2,0 and p6+2 = p'iHWLo +P§+1W2,0~
Let Api™ = pi™ — pt, then
Ap6+1 = Ap'iwLo + APEWZ,O 1)
T
ps =Y Ap (2)
=1

where w, , is influence weight from u to v. The above
equations mean that the influence on a node can be
obtained through its delta influence at each time step
which is determined by delta influences of its in-neighbors
only. We define delta influence as follows.

Definition 1 (Delta Influence) The delta influence Ap!,
is the influence increment on node v at time t, where the
influence on v means the probability of v being activated.
The sum of delta influences for a node over time periods
[0, T'] gives the influence on the node at time T.

Problem 1 (Time Aware Influence Maximization Prob-
lem) Gvien a directed network G = (V, E) with influence
weight wy,, € (0,1] for each arc (u,v) € &, and a budget K
restricting the size of seed set, the objective is to determine

Vi V2

Vo

V3

Fig. 1 An example of a local network
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a seed set S € V such that the expected influence within T
time steps induced by S, o1 (S), is maximized under the LT
model.

Formulation of time aware influence maximization
problem

By Definition 1, we formulate the TAIM problem explicitly
as a MILP problem in a concise form:

N T
max o(S) = Zyi + Z b (3)
i=1

t=1 i=1

A
®

N
s.t. Z Yi
i=1

i —MQA—-y) <0 Vit>1 (5
xil— Z wiiy; <0 Vi (6)
JEN (i)
K- Y wirl Tt <0 Vit=2  (7)
JEN (i)
yi € {0,1} Vi (8)

where xf = ALi € V,t € T. The MILP prob-
lem has two sets of decision variables: {y; : Vi € V} and
{«6:VieV,teT}. yii € V, is binary: 1 if node i
is selected or 0 otherwise. Continuous variable x} :=
Ap',i € V,t € T, denotes the delta influence of node i
at time £. Objective Function (3) maximizes the expected
degree of influence spread initiated by a seed set S. That s,
the size of the seed set S plus the sum of activation prob-
abilities over all nodes and all time periods. Constraint
(4) imposes the restriction on the budget. Constraints (5)
ensure that the activation probability of any seed node is
zero for all time periods. Constraints (6) and (7) establish
the relationships among the delta influences of the nodes
between consecutive periods according to the LT model.

To solve this MILP problem, a simple approach is pro-
posed to solve its LP Relaxation (and use a heuristic
to round LP solutions to generate seed sets that sat-
isfy budget constraint). Another approach to solving the
large-scale MILP problem is the Benders’ Decomposition
algorithm, which we will elaborate later in this paper.
In the experiments, we evaluate solutions obtained from
both the LP Relaxation and the Benders’ Decomposition
algorithm and compare their performance with popular
IM algorithms. The computational experiments suggest
that both approaches are effective in solving the TAIM
problem, i.e., obtaining high-quality solutions.

Introduction to Benders’ Decomposition

The original MILP formulation of the TAIM problem is
difficult to solve, especially for large-scale instances. For-
tunately, for optimization problems in certain forms, Ben-
ders’ decomposition techniques, introduced by Benders
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[19], can be used to obtain an optimal or a near-optimal
solution by an iterative procedure. It is an algorithm
that decomposes a difficult problem into two manageable
parts, the master problem and subproblems. The master
problem obtains values for a subset of the variables by
solving a relaxed version of the original problem. A sub-
problem accepts the variables of the master problem and
solves for the remaining variables. The subproblem solu-
tion is then used to form new constraints or cuts which
are added to the master problem and cut off the master
problem solution. Master problems and subproblems are
solved iteratively in such procedure until no more cuts
can be generated. Finally, an optimal solution for the orig-
inal problem is obtained by combining the solutions of the
master problem and subproblem from the last iteration.
The classic Benders’ Decomposition algorithm solves
the master problem to optimality at each iteration, which
often results in a significant amount of rework and a sig-
nificant amount of time. In the modern approach, the
algorithm solves only a single master MILP problem.
Whenever a feasible solution for the master problem is
found, it fixes the variables of the master problem to
the feasible solution and solves the subproblem. This
procedure can be realized using callbacks provided by
off-the-shelf MILP solvers such as CPLEX and Gurobi.

Applying Benders’ Decomposition to TAIM problem

We apply the Benders’ Decomposition algorithm to the
TAIM problem, resulting in a master problem and sub-
problems that are solved iteratively. In this way, part of
the complexity of solving the original problem is shifted to
two separated simpler problems.

The master problem determines which nodes are
selected as seed nodes at the initial stage, the delta influ-
ence for each non-seed node at the first period, and
the estimate of the delta influence for each node at the
remaining periods. Subsequently, the subproblem verifies
the estimated delta influence after accepting the solutions
to the master problem. Whenever the subproblem iden-
tifies an overestimated expectation of the delta influence,
an optimality cut is generated and added to the master
problem. Since any seed set with size no more than |S] is a
possible candidate seed set, the subproblem is always fea-
sible whatever a seed set is passed to the master problem,
meaning that the subproblem never generates a feasibility
cut in this problem. The master problem and subproblems
are discussed in detail in the following discussion.

The following MILP problem defines the master prob-
lem. Solving the master problem alone leads to a solu-
tion that selects seed nodes with the maximum weighted
degree. This solution is adopted as the initial solution for
the decomposition algorithm, that is the root node of the
single solution tree of the master MILP problem. Thus the
final solution generated by the decomposition algorithm
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is at least as good as the heuristic method of choosing the
nodes with maximum weighted degrees.

N
max Z (yi + xll) +z )
i=1
s.t. Constraints(4), (6), and (8)
x +My; < M Vi (10)
z < N (11)
(yx',2) € O (12)

The master problem has three sets of variables, binary
variables y;,i € V denoting whether node i is selected as
a seed node, continuous variables x},i € V denoting the
delta influence of each node at the first period, and an
auxiliary continuous variable z representing an estimate of
the delta influence at remaining periods. Objective Func-
tion 9 maximizes the influence spread until the first period
and the expected incremental influence afterwards. Con-
straints (4), (6), and (8) containing only master decision
variables become part of the master problem. Constraints
(10) are a subset of Constraints (5) for £ = 1. Constraint
(11) is used to bound the auxiliary variable z to initial-
ize a feasible solution of the master problem. Constraint
(12) represents the optimality cuts generated from the
subproblem:s.

The subproblems are defined as follows. Once the mas-
ter problem has determined the seed nodes that are
activated at the initial stage, a subproblem is solved to
test whether the expected influence spread in the mas-
ter problem violates the actual influence spread. That is,
the optimality of the solution for this seed set is verified.
Whenever an expectation overestimates the actual influ-
ence spread, an optimality cut is generated and added
to the master problem to correct the estimation. On the
other hand, if an expectation is consistent with the actual
influence spread, the subproblem determines whether the
current feasible integer solution is accepted or not.

T N
max Z Z xf (13)
=2 i=1
N
s.t. xlz < Z w,',-xj1 Vi (14)
j=1

N
< > wirl ™' Vit>3(15)
j=1

< M1 —y;) Vit>2 (16)

2

The continuous variables xlt.,i € V,t > 2 denote the
delta influence of node i after the second period. Objec-
tive Function (13) identifies the actual influence spread at
remaining periods. Constraints (14) are formed separately
because master variables x},i € V are now fixed, and
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Constraints (15) are subsets of Constraints (7), which cor-
respond to t = 2 and ¢ > 3 respectively. Constraint (16)
is a subset of Constraints (5) for £ > 2. Since a subprob-
lem is always feasible, the optimality cut is dependent on
only the objective function of the dual subproblem, which
is defined in the following form.

N N T N
z < Z Z w;,x}ui + Z ZM (I — ) W(T+t—3)N+i

i=1 j=1 j=2 i=1
(17)

where u is the optimal solution for the dual problem.

The primal subproblem contains conditional con-
straints (“big M” coefficients) in Constraints (16), which
in general may lead to loose bounds for the master prob-
lem due to the weak optimality cuts (12) generated with
“big M” coefficients. Here the introduction of “big M” is
to impose a constraint such that the subproblem variable
xt = 0,i € V,t > 2 only when the corresponding mas-
ter variable y;,i € V is 1. In this case, we approximate the
exact Benders’ Decomposition by modifying Constraints
(16) into the following form:

<0 VieSt>2

where S is seed set with y; = 1 for i € S. This means that
the conditional constraints are added literally. Another
approach to speed up the algorithm is the Combinatorial
Benders’ Cuts, which can be generated in addition to the
optimality cuts to provide stronger cuts that tighten the
master problem.

Benders’ Decomposition algorithm
The approximate Benders’ Decomposition algorithm for
the TAIM problem is presented as follows.

Whenever a candidate solution is found for the master
problem during the optimization process, a subproblem is
solved after fixing the master variables (y*, x1*, %) accord-
ing to this candidate solution. Since the subproblem is
always feasible with such master variables, no feasibility
cuts will be generated in this decomposition procedure.
Instead, optimality cuts are generated and added to the
master problem through the following verification. Let z
denote the optimal objective value of the subproblem and
u denote the optimal solution for the dual subproblem.
If z; < z*, meaning that the influence spread is overes-
timated by the master problem, the optimality cut z <
fil Zj\il wﬂ-x}ui is added to the master problem, and
the algorithm continues by solving the master problem
again. If z; = z%, the solution is accepted. The Benders’
Decomposition algorithm continues by searching for an
incumbent solution for the master problem. The solution
process ends after the master MILP problem is solved or
when a feasible integer solution has been proved to be
within a certain optimality gap.
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The above algorithm can be modified to seek cuts more
aggressively at every node in the master solution tree.
Instead of waiting for a new candidate incumbent to add
cuts, the algorithm can simply pass a fractional master
solution to the subproblem or use a rounded master solu-
tion in the subproblem, which may tighten the master
problem quickly to prune nodes high in the master search
tree.

Algorithm 1 outlines the approximate Benders’ Decom-
position algorithm applied to the TAIM problem.

Algorithm 1 Benders’ Decomposition Algorithm for
TAIM

1: // Initialization

2: Find the initial feasible solution (3,,,, %x);

3: Find the corresponding optimal z*;

4: while gap > stopping criteria do

5 Solve subproblem (Dual subproblem);

6 Feed (¥,,, %) to subproblem;
7: Get the optimal solution z;
8: Zs = Zf\il Z]Ail Wji(xm)jui;
9: ifz; < Z* then
10: Add Optimality Cut: z < YN | ,Ai 1 Wiixj;
11: end if
12: ifz; > z* then
13: Get the optimal solution (x, Z;);
14: Accept an incumbent (¥,,,, X1, Xs);
15: end if
16: // Solve the master problem for next node;
17: Feed X, to master problem;
18: Get a new incumbent (3,,; ¥,,) and z*;

19: end while

Computational environment

We conduct a comprehensive computation study to exam-
ine the performance of our proposed solution method-
ology. We present our findings, such as the effectiveness
of the methodology, obtained from the computational
experiments on three real-world datasets of human net-
works. The proposed method is implemented using the
optimization software CPLEX 12.6. All the experiments
are performed on a Linux server running Ubuntu 12.04
with four Intel Xeon CPU E5-2420 processors (1.9GHz)
and 193GB memory. The performance of our solution
methodology is compared with those resulting from pop-
ular IM algorithms and generic heuristic methods.

Datasets

The characteristics of the datasets are listed in Table 1.
Influence weights are obtained by normalizing the original
arc weights for incoming arcs of a node, which is simi-
lar to the method used in [18]. Specifically, an arc (u,v)
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Table 1 Descriptive statistics of the datasets for the
computational experiments

Dataset NetPWH HepCollab SocEpinions
# of nodes 166 15,233 131,828

# of arcs 3,974 62,796 841,372
Diameter 4 22 14

Average degree 24 4 6

Maximum out-degree 57 64 2,070
Average clustering coefficient  0.7384 0.3137 0.1279

# of components 5 1,781 88,609

# of nodes in largest SCC 64 6,794 41,441

# of arcs in largest SCC 1,792 38,142 693,737

is assigned with a weight b(u,v) = w(u,v)/ W (v), where
w(u, v) is the original weight of arc (u#,v) and W(v) is a
normalization factor with W (v) = 3_,  rrin(, w(u, v). This
assignment of values ensures that the sum of incoming
weights for node v equals 1.

Below provides a brief description of the datasets used
in this computational study.

e NetPWH A person-to-person contact network of
patients and HCWs in two main wards of PWH [1],
constructed with the data collected during the project
introduced in the “Background” section. The dataset
covers activities from December 2011 to March 2012.
The network contains 166 nodes, including 56
patients and 110 healthcare workers. Arcs are
weighted proportionally to contact frequencies.

e HepCollab A collaboration network of scientists on
High Energy Physics - Theory section at arXiv.org,
from the year 1991 to 2003. The graph contains 15K
nodes and 62K arcs. Arcs are weighted based on the
number of common papers and the number of
authors of the papers.

e SocEpinions A who-trust-whom online social
network collected from a general consumer review
site Epinions.com [23]. An arc indicates whether a
member of the site decides to “trust” the other. All
the trust relationships interact and form the Web of
Trust. The network contains around 132K nodes and
841K arcs.

The computational experiment on the dataset Net-
PWH aims to examine the effectiveness of our proposed
methodology in a realistic healthcare facility setting. In
particular, we aim to investigate how the person-to-
person contact network topology can be integrated into
the optimization framework for mitigating the risk of
nosocomial diseases outbreaks. To test the scalability of
our approach, the two large datasets HepCollab and
SocEpinions are used. The three networks NetPWH,
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HepCollab, and SocEpinions, respectively, can be con-
sidered as small, moderate, and large instances in our
computational experiments.

Algorithms for comparison

We compare our proposed solution methodology with
several popular IM algorithms and some generic heuristic
methods.

e Maximum weighted degree (MAXWEI -DEGREE).
Similar to selecting nodes with highest degrees, this
heuristic method selects nodes with the K highest
total out-weights, i.e., Y, rin(,) w1, v) for node u.

e Monte-Carlo based cost-effective lazy forward
algorithm (GREEDY). This is a greedy algorithm
with CELF optimization proposed in [10, 12].
Monte-Carlo simulations are run to estimate the
influence spread of a seed set, and the CELF
optimization is to accelerate the spread computation.

e Local directed acyclic graph (LDAG). This is the
algorithm proposed in [17] that constructs a local
DAG for each node to estimate the influence spread.
The influence parameter 6 is set to 1/320, as
recommended in [17], to control the size of a local
DAG.

e Simple path algorithm (SIMPATH). This is the
algorithm proposed in [18] that uses simple paths to
estimate the influence spread for each node. We set
the pruning threshold 7 = 1073 and the look-ahead
value / = 4 as recommended by the authors.

e Solution of LP relaxation with the highest
probabilities (HIGHPROB-LPR). To satisfy the
integer constraints, we select k nodes that have the
highest values in the solution for the LP relaxation.
This can be considered as the selection of the nodes
with the K highest probabilities to be activated at the
initial stage.

e Approximate Benders’ decomposition
(APPROX-BENDERS). This is the approximate
Benders’ decomposition algorithm, in which
optimality cuts are generated based on the
approximate form of the Benders’ subproblem and
the conditional constraints are passed to the
subproblem literally.

e Exact solution of LP relaxation (EXACT-LPR).
The seed set is obtained by solving the LP relaxation
of the MILP-TAIM problem. Since the binary
decision variables are relaxed to continuous values,
the solutions obtained by this approach are not
feasible but provide an upper bound for the
optimization problem. More specifically, the number
of seed nodes with non-zero values of the associated
decision variables may not be equal to K; but the sum
of these variables is K. The solutions to EXACT-LPR
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can be used as a benchmark to measure the quality of
solution (i.e., proximity of solutions to optimality).

Results

In this section, we report the computational results
and examine the performance of the proposed solu-
tion methodology, in terms of computational effective-
ness and efficiency. The more detailed insights derived
from the computational results will be given in the
“Discussion” section.

Computational effectiveness

We first evaluate the performance of the algorithms
on the dataset NetPWH. This experiment can be con-
sidered as a test on the effectiveness of the control
of an infectious disease outbreak in a healthcare facil-
ity setting. This experiment also illustrates the fea-
sibility of utilizing person-to-person contact network
topology in the optimization framework for influence
maximization, or equivalently, outbreak minimization.
Figure 2 shows the percentage of active nodes achieved
by different methods against the size of the seed set
under the time-aware influence diffusion constraints.
The higher the percentage, the more effective an algo-
rithm is. As shown in the figure, APPROX-BENDERS
achieves the highest percentage of active nodes for all
set sizes. Note that there are gaps between the per-
centages of active nodes achieved by EXACT-LPR and
APPROX-BENDERS. However, as the objective values
achieved by EXACT-LPR are upper bounds for the opti-
mal percentages of active nodes, the actual gaps are
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expected to be smaller than those presented in Fig. 2.
While APPROX-BENDERS gives the most effective solu-
tions, the algorithms MAXWEI-DEGREE, GREEDY, and
SIMPATH are quite comparable to APPROX-BENDERS.
LDAG and HIGHPROB - LPR gave the worst solution effec-
tiveness in this experiment.

NetPWH is a relatively small dataset used to assess the
effectiveness of the proposed methodology in a healthcare
facility setting. To examine its performance on large-scale
datasets, experiments on HepCollab and SocEpinions
are conducted. In this set of experiments, we report
the expected influence spread on these large-scale net-
works, as shown in Fig. 3. We have similar observations
as in the experiments on NetPWH; EXACT-LPR and
APPROX-BENDERS are the two most effective method-
ologies. However, the differences in the effectiveness of
the seed sets become smaller, as compared with those
from the experiments on NetPWH.

Computational efficiency and scalability

This experiment is to evaluate the efficiency and
scalability of our optimization-based approaches -
APPROX-BENDERS, EXACT-LPR, and HIGHPROB-LPR
— which are expected to be the more computationally
expensive. The running time is reported against the
size of the seed set on the three datasets, as shown in
Fig. 4. For the experiments on NetPWH and HepCol-
lab, as the size of the seed set increases, the running
time of APPROX-BENDERS increases. We believe
that it is due to the fact that when the size of the
seed set increases, the solution space for the master
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Fig. 2 Percentage of active nodes v.s. number of seed nodes on the NetPWH instance
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problem of the Benders’ Decomposition problem
increases. Thus, more subproblems have to be solved
and more optimality cuts are needed to be generated.
On the contrary, EXACT-LPR and HIGHPROB-LPR are
rather stable as the size of the seed set is only a parameter
in the MILP, which does not increase the problem size.
As for the scalability, EXACT-LPR and HIGH-LPR are
efficient when dealing with the larger-scale datasets.
They finish on the moderate dataset HepCollab within
70 min and on the large dataset SocEpinions within 10
min to determine the optimal set of 50 seeds. By com-
parison, APPROX-BENDERS is able to manage the large
dataset SocEpinions. The computation finish in 110
min for the selection of 50 seeds, while it is not efficient
on the moderate dataset HepCollab. It completes the
experiments on HepCollab in around 1000 min for the

selection of 30 to 50 seeds. This finding is non-trivial
since all methods appear to be more efficient on the
large network SocEpinions than on the moderate dataset
HepCollab. The reason is that the experiments are run
on a global DAG extracted from SocEpinions; however,
for HepCollab, the algorithms are run on the original
network, which contains more loops. We also measure
the running time of MAXWEI - DEGREE, which is expected
to be highly efficient. In all instances, MAXWEI -DEGREE
returns the solution in second.

Discussion

From the computational experiments, regarding the effec-
tiveness of the seed set identified, we observe that
APPROX-BENDERS outperforms other approaches. The
quality of the solutions obtained by APPROX-BENDERS
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is illustrated by the small optimality gaps derived from
EXACT-LPR. We observe that the optimality gaps and
differences in effectiveness between algorithms are larger
on a smaller network, by comparing Figs. 2 with 3. This
suggests that an exact method for solving the IM prob-
lem is particularly important when dealing with small
networks. The rationale is that in a smaller network, an
influential node plays a more crucial role in maximiz-
ing the influence. In other words, the identification of an
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optimal group of individuals to immunize is more impor-
tant for containing outbreaks of infectious diseases in
a closed environment, for example, a nosocomial infec-
tious disease outbreak. Thus, the contact frequencies of
individuals and the contact network topology would be
particularly helpful information in a healthcare facility
setting. Hospital administrators may wish to investigate
possible solutions for effective contact tracing, e.g., by the
adoption of indoor tracking technologies. Existing studies
also demonstrate that network topology constructed from
surveillance data is useful for the control of disease trans-
mission [24-26]. This study illustrates the feasibility and
the significance of utilizing such person-to-person con-
nectivity in the optimization framework for the control of
infectious disease outbreaks.

Not surprisingly, there is a tradeoff between computa-
tional effectiveness and computational efficiency. A more
effective set of seeds requires a more computationally
expensive algorithm. In the experiment on the dataset
NetPWH collected from a hospital, the solution time of
the most effective algorithm APPROX-BENDERS is less
than 100 minutes. In a practical setting, such solution
time is still acceptable. However, for larger-scale instances
HepCollab and SocEpinions, solution times could take
almost a day. In cases when quick decisions are needed,
heuristics, such as MAXWEI-DEGREE (which requires
only to identify individuals of the K highest contact fre-
quencies), can be adopted to provide responsive, yet high
quality, recommendations for TI.

We also observed that the curves in Figs. 2 and 3 both
exhibit concave shapes. This observation is in line with
findings from other resource allocation problems; the
marginal benefits of adding resources are more signifi-
cant at a lower resource level. Beyond a certain size of
the seeds, the effect of increasing the immunization level
becomes mild. Thus, our proposed optimization frame-
work not only identifies optimal solutions for T1, but also
helps assess the benefits of expanding the immunization
coverage and determine the right immunization level in a
cost-effective manner.

Conclusions
In this work, we study the outbreak minimization prob-
lem, which is essential for developing epidemic control
strategies. In general, the goal of outbreak control is to
minimize the effects of the spread of infectious disease by
targeting and preventing “super spreaders” who have sig-
nificant influences on disease spread over human contact
networks. This problem is similar to the famous influence
maximization problem studied in social network analy-
sis, which aims to identify a set of influential people to
maximize the influence spread through social networks.
Specifically, we show the equivalence of the outbreak
minimization and influence maximization problems and
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present a concise formulation for the influence maximiza-
tion problem under the LT diffusion model. We then
develop optimization approaches based on LP Relaxation
and Benders’ Decomposition algorithm, which take into
account the contact network topology, to solve the prob-
lem. A comprehensive computation study is conducted
to evaluate the performance of our proposed solution
methodology. Computational results show that the Ben-
der’s Decomposition approach provide more effective
solutions for maximizing the influence spread (i.e., min-
imizing the adverse consequences of infectious disease
outbreak).

Our findings suggest that the capability of determining
the optimal solutions is particularly important when con-
taining infectious disease outbreaks in smaller networks,
e.g., outbreaks of nosocomial infectious diseases. Thus,
there is a potential to establish effective contact tracing
methods, for example, by indoor tracking technologies,
in healthcare facilities and utilize such information for
optimal vaccination strategies.

We also illustrate a tradeoff between effectiveness and
efficiency of the algorithms. Timely response is key to
the success of infectious disease containment. For larger
networks which require a long solution time with an
exact method, heuristics for good-quality solutions could
be a more appropriate alternative to facilitate responsive
actions in practice.

Finally, our proposed methodology not only determines
the optimal set of individuals for immunization, but
also assists the policymakers in assessing the benefits of
expanding the immunization coverage and in determining
the right immunization level.
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