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Abstract

Background: With cardiovascular disease increasing, substantial research has focused on the development of
prediction tools. We compare deep learning and machine learning models to a baseline logistic regression using
only ‘known' risk factors in predicting incident myocardial infarction (Ml) from harmonized EHR data.

Methods: Large-scale case-control study with outcome of 6-month incident MI, conducted using the top 800, from
an initial 52 k procedures, diagnoses, and medications within the UCHealth system, harmonized to the
Observational Medical Outcomes Partnership common data model, performed on 2.27 million patients. We
compared several over- and under- sampling techniques to address the imbalance in the dataset. We compared
regularized logistics regression, random forest, boosted gradient machines, and shallow and deep neural networks.
A baseline model for comparison was a logistic regression using a limited set of 'known’ risk factors for MI. Hyper-
parameters were identified using 10-fold cross-validation.

Results: Twenty thousand Five hundred and ninety-one patients were diagnosed with Ml compared with 2.25
million who did not. A deep neural network with random undersampling provided superior classification compared
with other methods. However, the benefit of the deep neural network was only moderate, showing an F1 Score of
0.092 and AUC of 0.835, compared to a logistic regression model using only ‘known’ risk factors. Calibration for all
models was poor despite adequate discrimination, due to overfitting from low frequency of the event of interest.

Conclusions: Our study suggests that DNN may not offer substantial benefit when trained on harmonized data,
compared to traditional methods using established risk factors for MI.
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Introduction been dramatic improvements in public health that have
Cardiovascular disease (CVD) has long been a leading cause ~ spurred a decline in CVD related deaths over the past sev-
of death in the United States, with more than 900,000 eral decades, incidence of CVD mortality has remained
deaths in 2016, a substantial portion of which were attribut-  steady in recent years. As a result, considerable effort has
able to myocardial infarction (MI) [1]. Although there have  been placed in improving risk prediction of CVD-related
events [2, 3]. Despite this, clinical practice has remained
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"Division of Internal Medicine, University of Colorado School of Medicine, such as Thrombolysis in Myocardial Infarction (TIMI) Risk
é\g_rqr_a, €O, UsA: _ _ o Score [4] for risk stratification.
ivision of Cardiology and Cardiac Electrophysiology, University of Colorado Machine learning (ML) has risen as a contemporary
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that contrasts with typical statistical tools to extract rela-
tionships between variables in a training dataset to pre-
dict various outcomes, including mortality. Numerous
studies have applied these techniques to predicting car-
diac events primarily in patients presenting with acute
coronary syndrome (ACS), in some cases showing out-
performance of traditional risk methods and statistical
techniques [4—10]. A specific class of these techniques,
deep learning, has received significant interest in recent
years. A form of representation learning, deep learning
allows a machine to learn patterns based on raw input of
data without any prior variable engineering [11]. Suc-
cessful applications of deep learning have been diverse,
from playing poker [12] to detecting mammographic le-
sions [13]. Studies have demonstrated deep learning can
improve upon traditional ML methods in predicting
mortality, by capturing non-linear relationships among
predictor variables [14] and through the incorporation
of ‘unstructured’ data such as word embeddings in dis-
charge summaries [15].

Use of Electronic Health Record (EHR) data has in-
creasingly been the focus of such prediction efforts.
EHR data offers numerous advantages such as longi-
tudinal follow up and large, more generalized cohorts
for study [16]. Applications in cardiology have in-
cluded prediction of lifetime costs associated with
CVD, phenotyping patients most likely to benefit
from lipid pharmacotherapy, and estimating 1 year
mortality risk in the ICU setting. Perhaps most excit-
ing is the use of EHR data to facilitate the develop-
ment of learning healthcare systems, where data can
be shared across institutions and used to enhance
models for real-time clinical prediction. Prior work
has demonstrated that clinical ‘phenotypes’ can be de-
veloped that describe institutional patient populations
and are stable from institution to institution [17].
Harmonization is a method of sharing these represen-
tations across institutions in a way that is translatable
and preserves patient privacy [18].

Here we explore the application of ML methods to
a harmonized dataset to predict incident MI at 6
months. Prior work, particularly studies that have
used deep learning, have largely limited the popula-
tions studied for MI prediction to those patients that
present to the ED or cath lab for ACS [14, 15, 19,
20]. And while prior studies have used EHR data for
MI prediction, none to our knowledge have used har-
monized datasets [5, 21-23]. We aim to test the effi-
cacy of ML methods in this context compared to
more traditional statistical approaches. Our end goal
is to develop a prediction system that not only mean-
ingfully predicts MI incidence over a clinically-
relevant time horizon in an undifferentiated patient
but also can be integrated with EHR systems across
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institutions to facilitate the advent of learning health-
care systems. Among the characteristics we examined
in this developmental process includes identification
of the appropriate data resampling to manage dataset
imbalance, and development of a classification algo-
rithm based on training time and accuracy.

Methods

We conducted a systematic examination of EHR data sam-
pled from over 2 million individuals, in whom we have har-
monized 52,000 features, including diagnoses, medications,
and procedures under the Observation Medical Outcomes
Partnership common data model (OMOP-CDM). The code
used for the analyses, as well as the model weights and
mapping (OMOP-CDM input codes) for the final model,
are available in the supplemental material. This investiga-
tion was approved by the University of Colorado Multiple
Institutional Review Board (COMIRB), with permission for
data access under the Health Data Compass honest-broker
agreement. De-identified data was used for all analyses; no
individual patient information was accessed in conduct of
this investigation.

Study population and case ascertainment

The UCHealth hospital system includes 3 large re-
gional centers (North, Central, South) over the front
range of Colorado that share a single Epic instance,
which allows data from all centers to be pooled into
a single data warehouse, a copy of which is located
on the Google cloud platform. This warehouse of data
was queried using Google BigQuery to create a data-
set and conduct analyses directly on the Google cloud
platform, where an array of machine-learning tools
can be run on virtual machines. To create our study
dataset, we applied a classification approach based on
predicting risk of incident MI over a 6-month period.
We performed a SQL query on the UCHealth EHR
for subjects, first extracting patients that had MI, ex-
cluding patients who had a prior diagnosis of MI. For
these patients with incident MI, the index date was 6
months prior to the MI event and all data prior to
this date was used for medical history. For the cohort
of control patients without MI, the index date used
was 6 months prior to the last recorded encounter
date in our dataset and all data prior to this date was
again used for medical history. Data was gathered
during the time period 2003 to 2018.

Common data model and data splitting

We used a common data model for EHR data, based on
the Observational Health Data Sciences and Informatics
(OHDSI) collaboration, which uses OMOP-CDM [24-26)].
The OMOP CDM is a mapping of the raw EHR data to a
harmonized dataset; we used this CDM with 52 k variables
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(ie., features) from the EHR, including age, sex, diagnoses,
procedures, and medications. The missing data assumption
for this study was that if a given feature, other than age or
sex, was absent then this feature was assumed to not be
present for that person. Preliminary studies identified a sub-
stantial decrease in analytical time using the top 8500 most
common (across the entire EHR) concepts, which were
used as input into prediction models. The final dataset was
composed of 2.27 million records, which was then split into
training (80%), dev for hyperparameter tuning (0.3%), and
testing (19.7%) sets to compare the models developed in
this investigation.

Model development

For all models, hyperparameter tuning was performed
using iterative random sampling of 10,000 records for
manual grid search (neural networks), and 10-fold cross
validation for automated grid search (for other machine
learning approaches).

Due to the relative infrequency of the outcome (6-
month incident MI) across the dataset (0.91%), there is
substantial imbalance between the cases and controls in
this investigation. The presence of such imbalance can
produce classifiers that default to assigning new cases to
the majority class, thus having very poor accuracy overall
[27]. Re-sampling techniques have increasingly been
studied as a potential solution to this, with both over-
sampling techniques - which increase frequency of rare
cases relative to controls - and undersampling tech-
niques - which reduce frequency of controls relative to
cases - used. We examined several strategies for resam-
pling, including random oversampling, synthetic minor-
ity oversampling technique (SMOTE) [27], random
undersampling, and cluster centroid. To identify the best
resampling approach, we used a deep neural network
(DNN) (7 layers x 100 neurons/layer), as pilot analyses
using a smaller dataset suggested this approach might be
superior to other ML approaches. We also compared
with a model using no resampling (imbalanced).

Once we identified an optimal resampling approach, we
compared several classification algorithms, including naive
Bayesian classification, regularized logistic regression, ran-
dom forest classification, boosted gradient classification,
one-layer fully connected neural networks (shallow) and
multiple layer fully connected neural networks (deep). Pa-
rameters for the DNN were obtained by hyperparameter
tuning using manual grid search, with including the number
of layers, number of neurons, activation function (tanh, rely,
sigmoid and elu), learning rate, dropout and batch-size.
Tuning yieleded a final DNN size of 7 layers and 100 neu-
rons per layer. Model comparison was based on area-under-
curve and F; statistic. Loss function applied in this analysis
was the cross-entropy loss. Computation time includes all
prior data sampling and algorithm performance. Once an
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optimal model and resampling approach were identified, we
conducted sensitivity analysis using several alternative re-
sampling and modeling approaches in combination to en-
sure that the combination (dimensionality reduction,
resampling, and classification algorithm) identified was in-
deed optimal. Precision-recall and receiver-operator charac-
teristic curves, as well as feature importance plots, were
created for the optimal model for manual inspection. Platt
re-scaling and isotonic regression was employed to better
calibrate predicted probabilities to expected distributions of
the observed probabilities in the data.

Validation of developed model

The optimal model was then compared with a simple lo-
gistic regression model without regularization based on
presence of known clinical predictors of MI, using diag-
nosis codes (ICD-10; ICD-9) to obtain inputs of diabetes
(ICD 9: 250, ICD10 EO8 - E13), hypertension (I10x;
401.x), age, sex, smoking status (ICD 9305.1, ICD 10
F17.210), and fasting lipid level.

Computation and analysis

All analyses were run on Google Cloud Platform, using
96 CPUs and 620 GB of RAM. Scripts were composed in
Python (version 3) and were run on Jupyter Notebook
with Tensorflow platform on the Google Cloud Plat-
form. Machine learning packages included scikit-learn
and keras. Confidence intervals were calculated using
Wald method [28, 29], although almost all were within
the rounding error of the estimates due to the large test-
ing sample size (N = ~ 2.27 M), and are not displayed.

Results

Across the entire dataset of ~2.27 million cases, ap-
proximately 21 thousand cases of MI (Table 1) were re-
corded. Among this group, the prevalence of
cardiovascular risk factors was, as expected, significantly
greater than controls. Patients with a first-MI within 6
months were older with higher rates of coronary artery
disease, diabetes, hypertension, chronic kidney disease,
obesity and heart failure.

We next examined various re-sampling methods to ad-
dress the substantial degree of imbalance in the dataset
of cases compared to controls. Using a 7-layer DNN
algorithm with hyperbolic tangent activation and 20%
dropout, we found that random undersampling had the
overall best performance by AUC and F1 (Table 2) and
shortest time for algorithm time-to-completion. All re-
sampling methods, including random oversampling,
SMOTE, random undersampling and undersampling
with cluster centroid, substantially outperformed the
DNN model with no re-sampling methods used to
address class imbalance (AUC 0.51, F1 0.01).
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Table 1 UCHealth Population by MI diagnosis

No MI 6-month Incident MI
Number (%) 2.25 million(%) 20,591 (%)
Age (Mean £ SD) 43324 22.56 7036+ 14.02

1,228,689 (54.5%) 7880 (37.7%)
376,371 (16.72%) 12,314 (59.8%)
Coronary artery disease (%) 59,199 (2.63%) 6700 (32.53%)
30,251 (1.34%) 1668 (8.1%)

Female sex (%)

Hypertension (%)

Mitral valve disease (%)

(

(
Heart failure (%) 44,999 (2%) 3038 (14.75)
Diabetes mellitus (%) 131,059 (5.82%) 5432 (26.38%)
Obesity (%) 127,575 (567%) 2343 (11.37%)
Chronic kidney disease (%) 42,759 (1.9%) 2128 (10.33%)

Legend: Baseline demographics and relative frequency of typical Ml risk
factors. Diagnoses based on presence of diagnosis code (ICD-10; ICD-9) for
each. Hypertension: 110x; 401.x, Coronary artery disease: 125.1; 414.01, Mitral
Valve disease: 134.2, 134.0, 394.0, 424.0, Heart failure: 150.9, 428.0, Type ||
Diabetes Mellitus: E11.9, 250.00, Obesity: E66.9, 278.0, Chronic kidney disease:
N18.9, 585.9

Next, using random undersampling on the training
data, we tested the accuracy of various classification
models on the held-out dataset and found a DNN out-
performed Naive Bayes, logistic regression with
regularization, shallow NN, random forest, and boosted
gradient descent models (Table 3). Model accuracy,
measured by AUC, was quite similar between the DNN
and a logistic regression with regularization (AUC 0.835
vs. 0.829). The final model had a sensitivity of 0.82, spe-
cificity of 0.733, precision of 0.05 and recall of 0.82
(Fig. 1).

Finally, the optimal model, a DNN, was compared to a
logistic regression using only the known risk factors for
MI listed above. The baseline model’s AUC, 0.79, and F
score 0.06, both were near that of the optimal model.

Calibration plots for both the optimal DNN (Fig. 2)
and simple logistic models (Fig. 3) were poor, with sub-
stantial discrepancy between observed distributions and
predicted probabilities. Both models, however, appear to
adequately discriminate positive cases of incident MI
from controls. Both Platt’s rescaling and isotonic regres-
sion were employed with no improvement in model
calibration.

Table 2 Comparison of Resampling Strategies

F1 Score AUC Training time

Oversampling

Random 0.105 0.816 22 min

SMOTE 0.109 0.786 34 min
Undersampling

Random 0.091 0.839 2min

Cluster centroid 0.057 0.78 78 min
None 0.01 0.51 3min

Sampling comparison from deep learning model
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Discussion

In this investigation of using harmonized EHR data
for prediction of incident MI at 6 months, we found
a DNN with random undersampling had the most
accurate classification, although a simpler logistic re-
gression using a more limited set of ‘known risk fac-
tors’ performed nearly as well. All models were
poorly calibrated. While our study was ultimately
negative a variety of useful insights emerged that
would help guide future research in integrating ML
methods with real-world clinical decision-making.
Our study with over 2 million subjects and 52,000
features has the largest sample size and feature space
for MI prediction to date [4-6, 8-10, 14, 15, 19, 20,
23]. As prior studies that have applied deep learning
to MI prediction have focused on predicting recur-
ring events or mortality risk in patients that pre-
sented to the ED or cath lab with ACS [14, 15, 19,
20], to our knowledge, this is the first investigation
to attempt to use deep learning to predict ‘first-MI’
events in an otherwise undifferentiated patient popu-
lation. It is well established that after an initial MI,
rates of subsequent MI are markedly higher, up to
30%, compared to the general population [30]. The
population of those with ‘first-time MI’ represents a
different phenotype than has been assessed in prior
studies, with expected lower rates of MI and overall
improved survival outcomes. Despite the DNN’s per-
formance, with an AUC in range of prior studies,
the degree of improvement in accuracy was not sub-
stantial compared to a logistic regression with a
handful of ‘known’ predictors of MI. A key explan-
ation for this is likely the data input itself, harmo-
nized EHR data. Prior studies have shown advanced
ML methods and even DNN improve in performance
relative to controls when the numbers of features in-
crease specifically when using EHR data [5, 15].
These studies, however, did not use harmonized data
[31]. While harmonized data offers many benefits in
real world applications, such as integration immedi-
ately with healthcare systems and allowing for direct
application and validation to data mapped from a
separate EHR, there are substantial challenges to
successfully deploying complicated ML methods to
learn from this data. Numerous variables have not
been harmonized across datasets via the OMOP-
CDM, many of which are more granular, ‘unstruc-
tured’ data that may specifically benefit deep learn-
ing methods. Payrovnaziri et all, in fact, noted that
word embeddings derived from discharge summaries
were critical training inputs to improve DNN'’s pre-
dictions compared to controls when using EHR data
[15]. Novel biomarkers [32, 33] and features of both
echo [34] and cardiac MRI [35] imaging modalities
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Table 3 Comparison of machine learning approaches
F1 Score AUC Training time
Naive Bayes 0.060 0.73 1 min
Logistic regression with L2 regularization 0.084 0.829 1 min
Logstic regression with no regularization 0.06 0.79 1 min
RF 0.084 0.765 3min
Shallow NN 0.101 0.83 1 min
Deep NN 0.092 0.835 2min
GBM 0.077 0.83 9min

Comparison of various models using Random Undersampling technique and all features. F1 and AUC calculated from model applied to held-out testing set (20%);

training time is for training of training set (80%)

are being developed as markers of acute MI and
again, represent ‘unstructured data’ not currently in-
cluded in OMOP-CDM. While it is not new that a
logistic model can perform similarly to ML methods
in the context of MI mortality prediction [8, 10], it
is striking and distinct from prior studies that a lo-
gistic model with a feature space substantially re-
duced to only known risk factors performed similarly
to the DNN trained on the full feature set. This re-
flects that most of the risk prediction ‘content’ of
the harmonized dataset is already captured by known
risk factors for MI. Deep learning, which thrives on
uncovering complex, nonlinear relationships between
variables, may ultimately show improved perform-
ance with more granular data, but such granular
data would limit the key benefit of harmonization in
that it allows models developed at individual institu-
tions to speak to each other in the same global
space [18]. This trade-off between use of data inputs
that can be replicated across populations such as
harmonized data with data types that are more
granular and thus likely to be more predictive, is re-
flective of the bias-variance trade-off in ML. More-
over, as harmonization is a crucial step towards
incorporating prediction models in real-world EHR
systems at scale, these limitations of advanced ML
methods, specifically DNN, are a very significant
consideration for practical development of risk pre-
diction tools deployed at scale across institutions.
An interesting observation from our analysis is
that predicting an outcome over a short time frame
appears to be poorly calibrated regardless of which
predictive approach is used, even for models having
good discrimination. Despite considerable efforts to
improve calibration of the final model, including
Platt rescaling and isontonic regression [36, 37], the
final model’s calibration, or measure of how well
predicted probabilities align with observed distribu-
tions of events, was extremely poor (Fig. 2). Calibra-
tion was similarly poor for the simpler logistic

regression, despite its discrimination also appearing
to be adequate (Fig. 3). The pattern of these calibra-
tion plots, while having good discrimination, sug-
gests each of the models overpredicts events at all
probabilities. This is consistent with the extremely
high degree of imbalance in our dataset - as our ap-
proach aimed to be a screening mechanism inte-
grated into EHR systems, the size of the dataset was
substantially larger than any prior study, and as a
result, the event of interest, i.e., a ‘first’ MI in 6
months, was very rare. Prior studies that have expli-
citly evaluated calibration when using ML methods
for risk stratification [5, 38], for instance, had
events of interest with 5-10 fold higher occurrence
than in our study. Our prior study, another study
with significant dataset imbalance in predicting a
rare event, noted similar limits with accuracy and
calibration of models in the context of prediction of
first time occurrence of atrial fibrillation [39]. As all
models in this investigation were poorly calibrated,
regardless of complexity, it may be that the use of
prediction methods has inherent limitations when
applied as a screening tool for MI prediction in un-
differentiated patients. Alternatively, it may simply
be that the time horizon of 6 months, although a
clinically relevant window, may be too short for
such methods to show utility. In addition to
highlighting these limitations, our study demon-
strates the necessity of systematically evaluating
model calibration. Few prior studies in MI predic-
tion using ML have done so, despite calibrated
models ultimately providing more interpretable
probabilities that could be used as individual-level
predictions and thus meaningfully impact clinical
practice.

Limitations and future considerations

Our study has several limitations. For one, our study
included a very simple method for the temporal rela-
tionships between features in our dataset, which did
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not account for time-varying effects or censoring. For
instance, a diagnosis or medication that was given
one month before a first MI event was weighted the
same as one given 4 years prior. While we suggest a
6-month time frame is reasonable for short-term pre-
diction, we did not rigorously test this assumption
and additional information about temporal risk will
be needed for more accurate prediction approaches.

More sophisticated methods, such as recurrent neural
networks or parametric survival functions could pro-
vide more accurate prediction in future investigations.
Assessing the stability of model predictions across a
range of time intervals would not only help with
model selection but also provide clinically relevant
stratification of patients that may not have immediate
but do have heightened risks for MI.
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Another weakness of our study, already noted above,
is that we necessarily excluded some data elements, in-
cluding lab values, diagnostic tests, imaging and even re-
ports that may have proven useful for MI prediction. In
part this is due to the lack of harmonization of some
variables via OMOP-CDM.

A final limitation of our study is we necessarily lim-
ited the event of interest to first-MI. As MI events
were obtained using ICD codes, it was impractical for
us to obtain and model repeat MI events. Repeat
MI’s, however, are of substantial clinical interest as

risk and likelihood for MI heighten substantially after
an initial event.

Conclusion

We studied the development of an ML model to
predict 6-month occurrence of incident MI using
harmonized EHR data and found that the combin-
ation of random undersampling and a DNN classifi-
cation provided superior prediction than other
models. However, a logistic model using a much
smaller set of only ‘known’ risk factors for MI was
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nearly as accurate in prediction, while all final
models remained poorly calibrated. ML methods,
specifically DNN, may have limited benefit over
more traditional MI risk prediction tools when using
harmonized data until more granular data can read-
ily be incorporated. Our methodology and use of
harmonized data is an important step for developing
prediction tools that can be scaled into real-world
clinical practice. Future studies should also address
prediction of varying time horizons, assessing for im-
provements in model calibration with more extended
prediction intervals.
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