
Mensa et al. BMCMedical Informatics and DecisionMaking          (2020) 20:263 
https://doi.org/10.1186/s12911-020-01237-4

RESEARCH ARTICLE Open Access

Violence detection explanation via
semantic roles embeddings
Enrico Mensa1†, Davide Colla1†, Marco Dalmasso2, Marco Giustini3, Carlo Mamo2, Alessio Pitidis3,4

and Daniele P. Radicioni1*†

Abstract

Background: Emergency room reports pose specific challenges to natural language processing techniques. In this
setting, violence episodes on women, elderly and children are often under-reported. Categorizing textual descriptions
as containing violence-related injuries (V) vs. non-violence-related injuries (NV) is thus a relevant task to the ends of
devising alerting mechanisms to track (and prevent) violence episodes.

Methods: We present VIDES (so dubbed after VIOLENCE DETECTION SYSTEM), a system to detect episodes of violence
from narrative texts in emergency room reports. It employs a deep neural network for categorizing textual ER reports
data, and complements such output by making explicit which elements corroborate the interpretation of the record
as reporting about violence-related injuries. To these ends we designed a novel hybrid technique for filling semantic
frames that employs distributed representations of terms herein, along with syntactic and semantic information. The
system has been validated on real data annotated with two sorts of information: about the presence vs. absence of
violence-related injuries, and about some semantic roles that can be interpreted as major cues for violent episodes,
such as the agent that committed violence, the victim, the body district involved, etc.. The employed dataset contains
over 150K records annotated with class (V,NV) information, and 200 records with finer-grained information on the
aforementioned semantic roles.

Results: We used data coming from an Italian branch of the EU-Injury Database (EU-IDB) project, compiled by
hospital staff. Categorization figures approach full precision and recall for negative cases and .97 precision and .94
recall on positive cases. As regards as the recognition of semantic roles, we recorded an accuracy varying from .28 to
.90 according to the semantic roles involved. Moreover, the system allowed unveiling annotation errors committed by
hospital staff.

Conclusions: Explaining systems’ results, so to make their output more comprehensible and convincing, is today
necessary for AI systems. Our proposal is to combine distributed and symbolic (frame-like) representations as a possible
answer to such pressing request for interpretability. Although presently focused on the medical domain, the proposed
methodology is general and, in principle, it can be extended to further application areas and categorization tasks.
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Introduction
Explanation is acknowledged to be an epistemologically
relevant process [1] and a precious feature to build robust
and informative systems. It is a matter of fact that arti-
ficial explanation has a long tradition in the AI field,
and some areas such as case-based reasoning seem to
be intrinsically connected to explanatory needs [2, 3].
In machine learning, decision trees [4] and sparse linear
models [5] are popular examples of techniques that pro-
duce interpretable models. Also in the AI field, some sort
of lexical resources have been employed to assist in the
construction of the explanation of semantic similarity rat-
ings between word pairs [6, 7]. Many sorts of explanation
can be drawn, responding to diverse needs underlying the
general aim at providing more transparency to algorithms
and systems. For example, the role of explanation in AI
systems and its relevance w.r.t. systems accountability is
debated in the EU General Data Protection Regulation
[8, 9]. On a different side, the tight relation between
automatic explanation and trust has been individuated in
many contexts as a central issue (think, e.g., to the role
of explanation in the field of information security), in its
interplay with ethical and sociological issues [10]. Besides,
together with the impetuous surge of work on explainable
AI, some attempts have been carried out at investigat-
ing what constitutes a good explanation, and how the
contributions from different disciplines such as psychol-
ogy and cognitive science can enrich the quality of the
explanations being provided by systems [11].
Areas where intelligent systems and agents are currently

deployed are as different as personal assistants, logis-
tics, scientific research, law and health care. While in
some cases (e.g., some kinds of chatbots) users are not
interested in explanations, for sensitive tasks involving
“critical infrastructures and affecting human well-being or
health, it is crucial to limit the possibility of improper,
non-robust, and unsafe decisions and actions” [12]. One
chief motivation for building explainable AI systems is
thus the need to check systems behavior, to ensure that
systems perform as expected. This need has become par-
ticularly relevant in the last few years, that have witnessed
the spread of deep learning based neural networks, in
that these are featured by strong predictive power, at the
expense of the interpretability of their output [13, 14].
In this work we investigate one such critical application
domain: the categorization of electronic medical records
(EMR) data, where an Information Extraction approach
has been devised to complement the output of the deep
neural network performing the categorization step.
In particular, our system is aimed at categorizing tex-

tual descriptions from Emergency Room Reports (ERRs)
as containing violence-related injuries vs. non-violence-
related injuries, to the ends of devising alerting mech-
anisms to track violence episodes. The early detection

of violence in general, and specifically against women,
elderly and childhood is a serious concern for our soci-
eties. However, interestingly enough, such phenomena
are to date underestimated and not even fully recorded
in statistics. Let us consider, for example, that violence
against women is seldom reported from its inception due
to many reasons, such as the fact that this sort of violence
is performed by familymembers or acquaintances [15, 16].
Likewise, and due to similar reasons, according to the rec-
ommendations by Centers for Disease Control and Pre-
vention (CDC), violence on children is largely acknowl-
edged to be under-reported [17]. Additionally, hospital
staff may have practical difficulties in properly annotating
violence episodes (e.g., complex user interfaces, or lack of
time to fully describe the medical history of patients), so
that violence and its effects are to date not fully grasped.
This determines the necessity to devise automatic sys-
tems to automatically detect violence in electronic med-
ical records (EMR) data, so to allow timely intervention
and design policies to contrast the phenomenon of vio-
lence. From a technical viewpoint, a desideratumwould be
that of building a classifier to individuate EMRs contain-
ing descriptions of violent events in the medical history
along with its effects in the physical examination. In order
to generate an explanation of the obtained categorization,
one would also be able to make explicit the more relevant
elements associated to events: by whom the violence was
exercised, in what ways, what trauma was produced on
the victim, which are the involved body parts, when and
where the event has occurred.
This is the focus of the work: we face the problem of

extracting meaningful pieces of information to the ends
of justifying the categorization performed by the system.
We present the VIDES system, so dubbed after ‘VIOLENCE
DETECTION SYSTEM’: the designed approach provides
violence events with a formal characterization in terms
of semantic frames [18]. Additionally, the control strategy
devised to fill the frame slots employs a hybrid strat-
egy exploiting distributed word representations together
with morphological (on part-of-speech tags) and seman-
tic (on super-senses) information. Experimental results on
an annotated dataset containing real ER data are reported
and discussed in depth.

Related work
The closely related task of frame identification has been
addressed by [19]: in this work distributed representations
of predicates and their syntactic context were exploited,
paired with a general purpose set of word embeddings.
Our work differs from the mentioned approach, in that
we do not make use of syntactic information (since our
input is very noisy, which would completely undermine
parsing accuracy and reliability). Additionally, we retrain
our embeddings on a set of EMR data, to acquire specific
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descriptors (we are concerned with a very specific appli-
cation domain, that of first aid medical records) for the
Italian language; and finally we are concerned with a more
restricted task, that is extracting the fillers for the slots
from a single frame, the violence frame.
As regards as acquiring distributed representations to

describe verb dependents and semantic frames, word
embeddings have been employed also to investigate cross-
language misalignment, such as related to polysemy, syn-
tactic valency (i.e., the number of dependent arguments
of verbs), and lexicalization [20]. In particular, the authors
of the cited work build different embeddings for a given
frame, one for each language of interest. Since such
embeddings lie in the same semantic space, this approach
is used to automatically measure the cross-lingual similar-
ity of language-specific frames to the ends of investigating
the possibility of frame transfers across languages. Frame-
based approaches have been also adopted, paired to deep
syntactic analysis, to elaborate documents from the legal
domain through a template-filling approach [21, 22].
Word embeddings have been used also to perform

semantic role labeling (SRL); this task is to discover the
relations between predicate and its arguments, so it basi-
cally amounts to discovering “who” did “what” to “whom”,
“when”, “where”, and “how”. This line of research was
started in [23], where the distributions over verb-object
co-occurrence clusters were used to improve coverage
in argument classification. The work by [24] proposes a
distributional approach for acquiring a semi-supervised
model of argument classification preferences, that is used
to reduce the complexity of the employed grammatical
features in combination with a distributional representa-
tion of lexical features. Additionally, in [25] a selectional
preference model has been proposed providing a single
additional feature to classify potential arguments based
on distributional similarity. The neural network architec-
ture described in [26] relies on the intuition of embedding
dependency structures, and jointly learns embeddings for
dependency paths and feature combination. The work
by [27] proposes to tackle the SRL task by assigning
semantic roles through a feedforward network that uses
a convolution function over windows of words; interest-
ingly enough, this system does not make use of syntactic
information.
With respect to this line of research using word embed-

dings to perform the SRL task, we face a slightly different
problem. First, we are not really concerned with SRL:
we are interested in a variant of SRL, where we need
to extract salient information (to generate an explana-
tion) associated to a single semantic frame (describing
violent events). Additionally, different from the surveyed
approaches, our input texts are very challenging and can-
not undergo a standard parsing process, as almost any
sentence contains typos, acronyms, domain-specific (at

times, hospital-specific) abbreviations, and clauses well-
formedness
is mostly violated. Such features prevented from design-

ing a suitable sequence of preprocessing steps, and our
system deals with all mentioned phenomena without per-
forming rewriting of the input text. This implies that our
system substantially differs from those concerned with
the SRL task. In fact, most SRL modules perform two
main steps, argument identification and argument clas-
sification, with the former basically grounded on syntac-
tic parsing, and the latter requiring additional semantic
knowledge to solve the task. Instead, our approach puts
together word embeddings, supersense tags, and simple
part-of-speech (PoS) filtering techniques to the ends of
collecting enough information to explain why an Emer-
gency Room Report describes a violence event.

The system
Before describing in full details the software modules
implementing the VIDES system, we provide a high level
overview, also depicted in Fig. 1.
First element of our pipeline is the data cleaning step,

necessary to deal with this sort of input, that for several
reasons appears as intrinsically noisy [28, 29]. Then the
categorization module performs the classification of the
medical records in order to assign a label (V if violence
related injuries were detected, NV otherwise), determin-
ing whether the record exhibits traits of violence or not.
Records that have been categorized as containing injuries
resulting from violent episodes are further processed
to extract salient information on the violence episode
available in the text. Finally, the categorized records are
returned, enrichedwith themost salient elements describ-
ing the violence event. To these ends, we devised a hybrid
approach that exploits distributional, semantic and syn-
tactic information.
The input to the VIDES system is compliant to an EU-

level standard, as defined within the Injury DataBase (EU-
IDB) framework [30]. Each record in the dataset contains
various types of information, such as the age and gen-
der of the patient, the type of trauma, the medical report
describing the trauma in detail and a narrative report
describing the events that led the patient to the emergency
room. The schema is however differently implemented in
various countries of the Union [31]; therefore, in order
to possibly extend the system to handle further coun-
tries’ medical records, we decided to use as few record
fields as possible. In particular, in our experimentation
we only consider the narrative report, since this is the
field providing the most relevant information to build the
explanation.

Input data cleaning
Emergency room reports are often very noisy, to such
an extent that most of the records contain at least one
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Fig. 1 The system outline. A complete outline of the VIDES system. The medical records initially undergo a cleaning step, they are then categorized
into violent and non violent ones; subsequently records deemed to contain violence-related injuries are selected for further processing, in order to
obtain an explanation of such categorization

word which cannot be found in a standard dictionary. This
fact has several causes. Personnel compiling the entries
is often in a hurry, which may explain misspellings and
typos; also, in this kind of text the usage of abbreviations
is by far more frequent than in general language; addition-
ally, as it mostly happens in technical settings, domain-
specific terms are also recurrent. As a result, this mixture
of errors, abbreviations, acronyms and domain-specific
terms makes dealing with such documents a challenge for
artificial systems.
The input data cleaning phase fixes multiple spaces

and punctuation errors by applying regular expressions
[32], and then it applies a rewriting technique: based
on a medical dictionary, the most frequent abbreviations
and acronyms are expanded while also correcting recur-
ring typos. For instance, the word ‘destra’ —‘right’ in
English— is rarely used in the corpus, while its abbrevia-
tion ‘dx’ is widely adopted. Purpose of this phase is then
to replace each occurrence of ‘dx’ with the corresponding
‘destra’. The medical dictionary contains 248 entries, and
it has been manually compiled by medical experts, focus-
ing on the most frequent abbreviations, acronyms and

typos found in the corpus. Figure 2 illustrates the distribu-
tion of the 50 most frequent abbreviations, acronyms and
typos found in the dataset. The curve represents a very
steep Zipfian distribution, therefore, despite its simplic-
ity, the medical dictionary is very effective. Specifically,
over the 150K records a total of 178,111 substitutions are
applied during the input data cleaning phase. As expected,
abbreviations and acronyms are used consistently, while
typos appear to be more diverse and varied through the
dataset. The design of a more complete and robust solu-
tion, also able to take into consideration a wider variety of
typos, is currently under active development and it will be
addressed in future work.

Neural model to track violence related injuries
As regards as the categorization of the medical records,
a neural model has been devised to discriminate among
violent and non-violent entries. Such architecture is illus-
trated in Fig. 3.
Input to the model is the rewritten text contained in the

ER record; such text is first tokenized and then mapped
onto a numerical vectorial representation. The mapping
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Fig. 2 Distribution of out-of-vocabulary terms. Distribution of the 50 most frequent acronyms, abbreviations and misspelled terms in the dataset

from terms to vectors 〈term, numerical id〉 was acquired
from the considered dataset. More specifically, the weight
matrix has been initialized with 300-d fastText word vec-
tors trained on the whole dataset by adopting the Skip-
Gram architecture [33]. The input layer is then connected

to a single dimension convolutional layer, composed of 64
filters; the kernel consists of 5 units and adopts the Rec-
tified Linear Unit (ReLU) activation function. A dropout
rate of 20% was set between the input layer and the con-
volutional layer in order to reduce the overfitting of the

Fig. 3 The neural network architecture. The neural architecture employed for the categorization task
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model. A max pooling layer with a window size set to 4
units was adopted to reduce the dimension of the input,
and is followed by an LSTM layer built with 100 mem-
ory units. Finally, a fully connected layer —adopting the
sigmoid activation function— is used to predict the class
of the medical record: V for violent episodes, and NV for
non-violent episodes. In this setting the role of the con-
volutional layer is twofold: i) to learn abstract features
coming from medical reports; and ii) to reduce the train-
ing time. The training phase employs Adam stochastic
optimization [34] and binary cross entropy loss function.
The output of this module is the categorized ER record.

Building explanations by frame elements embedding
The secondmodule is fed with the entries that were recog-
nized as violent by the network, and is intended to extract
information relevant to describe a violence episode: this
amounts to filling the slots (that can be thought of as
object fields) of a violence frame.
The frame is a popular representational device in the

fields of lexical semantics and knowledge representation
[35]; a frame is a “system of concepts related in such a way
that to understand any one of them you have to under-
stand the whole structure in which it fits; when one of the
things in such a structure is introduced into a text, or into
a conversation, all of the others are automatically made
available” [36, p. 373]. One chief assumption of this work
is that violence related injuries can be recognized not by
starting from scattered words, but rather when the core
elements of that ‘violence frame’ are extracted. Individu-
ating such elements (when available in the ER report) is
of the utmost importance to the ends of explaining and
deepening the binary output provided by the neural cat-
egorization model. Explaining the categorization involves
filling the semantic components of the violence frame.
The violence frame contains the most salient informa-

tion ordinarily associated to violence events, and it is thus
defined as follows.

– AGENT: The agent performing the violence. Example
phrases may be ‘known person’, ‘husband’, ‘wife’, etc.;

– MODE-INSTRUMENT: The mode or the instrument
adopted while performing the violence. Examples of
this field are ‘punch’, ‘aggression’, ‘knife’, etc.;

– TIME: Temporal information regarding when the
violence occurred. Examples are ‘evening’, ‘night’,
‘today’, etc.;

– LOCATION: The physical place in which the violence
took place. Examples are ‘home’, ‘workplace’, ‘bus
station’, etc.;

– BODY-PART: Body part harmed by the violent act.
Examples are ‘arm’, ‘head’, etc.;

– LESION-TYPE: Type of injury produced by the violent
act. Examples are ‘fracture’, ‘contusion’, ‘trauma’, etc..

All of the mentioned fields may have zero or multi-
ple fillers, depending on the content of the considered
entry. Also, attached to each field f we have two lists: PoSf
and SSTf , indicating the part-of-speech (PoS) tags and
SuperSense tags (SST) that a filler for f can assume.
PoS tags are grammatical categories associated to

words, such as noun, verb, pronoun, preposition, adverb,
conjunction, adjective, and article. Knowing the PoS asso-
ciated to a given word is a noun or a verb provides
relevant information about likely neighboring words (e.g.,
in English nouns are preceded by determiners and adjec-
tives, verbs by nouns and adverbs, etc.) and syntactic
structure. PoS tagging is thus an important enabling task
for natural language processing. PoS tagging is not directly
mapping words onto their PoSs, because a given word can
be possibly tagged with different PoSs, based on the dif-
ferent contexts where it occurs [37]. Also, PoS taggers are
featured by high accuracy when both training and test data
are drawn from the same corpus, while performances typ-
ically drop in front of words unseen in the training set
[38]. In domain-specific applications, this effect is limited,
so that PoS tags can be considered as providing reliable
information.
Whereas PoS tagging is concerned with the grammatical

level of linguistic processing, super-sense tagging (SST)
targets the semantic category of words in their context
of occurrence, performing a basic form of word sense
disambiguation [39]. Super-senses can be thought of as
a set of semantic categories; although in principle dif-
ferent sets of such tags can be adopted, the tagset from
the online dictionary of WordNet [40] is customarily
employed, containing overall 41 semantic categories, 26
super-senses for nouns and 15 for verbs. Super-senses are
actually the roots of as many trees partitioning noun and
verb senses in WordNet. Each super-sense represents a
broad semantic category, such as SST.NOUN_PERSON or
SST.NOUN_LOCATION, which can be exploited to either
accept or rule out candidates for our frame slots.
The two sets PoSf and SSTf are used to match the

semantic needs (intended as the set of semantic limita-
tions and requirements) of each frame slot f with the
morphological and semantic information available in the
actual input text. For example, the AGENT field can only
be filled by a SST.NOUN_PERSON or POS.NOUN. Table 1
reports the two sets designed to rule out possibly inappro-
priate arguments.
In the extraction step, after a basic preprocessing con-

sisting of the punctuation removal, we identify locutions
(hereafter referred to as extended tokens) whose elements
are common multi-word expressions found in the dataset
that should be processed as a whole (e.g., known_person).
Finally, the sentences are tokenized.
We then proceed to the construction of a candidate

set of fillers for each field: given a field f, we initialize
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Table 1 Compatibility table illustrating the allowed PoSs and
SSTs for each explanation frame field

Field Part Of Speech SuperSense Tags

AGENT Noun Noun_Person

MODE-INSTRUMENT Noun

Noun_Object

Noun_Artifact

Noun_State

Noun_Substance

Noun_Feeling, Noun_Act

TIME Noun Noun_Time

LOCATION Noun Noun_Location

BODY-PART Noun Noun_Body

LESION-TYPE Noun, Adjective
Noun_State, Adj_all

Noun_Phenomenon

its set of candidates C to all terms in the input record.
Then, we prune from C all terms whose PoS or SST is
not compatible with the needs of the semantic field f.
More precisely, for each term t ∈ C we retrieve its PoS
and its most frequent SSTs. Namely, PoS tagging is com-
puted through the Tint parser, an Italian porting [41] of
the Neural Network Dependency Parser [42]. Supersense
tags are computed by accessing WordNet and retrieving
the most frequent sense, among all senses possibly under-
lying a given input term. Although this may seem a rough
simplification, the most frequent sense is experimentally
acknowledged as a competitive baseline [39], and used
as a core feature in more sophisticated SST systems [43],
ensuring limited computation time and effort. Given the

rather narrow semantic domain for the present applica-
tion, thus featuring a reduced problem space, we opted for
this simple heuristics. The term t is retained only if its PoS
is included in PoSf and at least one of its SSTs is included
in SSTf . Extended tokens bypass this process, and they are
all included as candidates by default.
Once we have filtered C so that it contains only terms

that are allowed as fillers for f, we rank them by leveraging
the fastText embeddings acquired through the first mod-
ule. Namely, for each field we build a synthetic vector by
averaging the most frequent terms that can possibly act as
fillers. In this way we build a vector f̂ containing a syn-
thetic description for each semantic role f of the frame; all
candidate words c ∈ C are then ranked based on their dis-
tance from f̂ . The last of the algorithm consists in building
the final answer provided by the system. Here, we apply
two strategies: 1) all candidates c in the ranking whose
similarity with a given field vector is lower than a certain
threshold are discarded (this parameter has been opti-
mized and set to .5); and 2) if, after the pruning, a term is
still a candidate for more than one field, it is assigned to
the closest field.
Figure 4 provides an example translated from Italian

into English to illustrate the whole process. We consider
a record that has already been recognized by the Neu-
ral module as containing a violence related injury. The
sentence herein is extracted from the medical record and
preprocessed. Every word in the sentence is considered as
a potential candidate for each frame field; i.e., each field
is initially assigned to the whole set of candidates. These
sets of candidates are then pruned by taking into consider-

Fig. 4 Example of frame extraction for a sentence. The sentence extracted from the medical record is initially preprocessed, and then given in input
to the frame extraction process. Every word in the sentence is considered as a potential candidate for each role. Candidates are then filtered and
ranked, and the top scoring one is selected in order to obtain the final filler for each frame element
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ation the semantic needs of each frame element (Table 1).
Finally, the best candidate for each semantic role is chosen
by exploiting the similarity calculated via fastText vectors.

RUNNING EXAMPLE. In order to recap the pipeline of
the VIDES system, let us consider the following example
sentence taken from an ER record, and its processing all
throughout the described pipeline:

OGGI POMERIGGIO DIVERBIO CON PERSONA NOTA

SUBISCE TR DIST AASS DX E TR CONT REG

OCCIPITALE ((PUGNO),

NEGATA PERDITA DI COSCIENZA.

The sentence can be translated into ‘This afternoon
brawl with a known person, suffers from tr dist aass dx
reg occipital ((fist), loss of consciousness denied’ (abbre-
viations were not translated, and the mismatch of the
brackets was left unaltered). The cleaning step allows
us to fix the punctuation, to perform the lowercase con-
version of the sentence, and most importantly to rewrite
some of the abbreviations. Namely, ‘tr’ is replaced with
‘trauma’ (‘injury’), ‘dx’ is replaced with ‘destro’ (‘right’),
‘cont’ is replaced with ‘contusivo’ (‘blunt’), ‘reg’ is replaced
with ‘regione’ (‘region’, ‘body district’). However, since
‘aass’ (standing for ‘arti superiori’, ‘upper limbs’) is not
present in the medical dictionary, it is not rewritten thus
remaining unchanged.
The resulting sentence —‘this afternoon brawl with a

known person suffers from distorting trauma aass right
and blunt trauma in occipital region (fist), loss of con-
sciousness denied’— is then used as input to the neu-
ral network, which performs its own preprocessing by
removing the punctuation and tokenizing the text. The
system correctly categorizes the record as a violent one.
Finally, since the record has been recognized as V, the

explanation module is executed. It initially recognizes
extended words, such as known_person, and it then com-
putes the best candidate for each field. The result of the
extraction process is the frame below. For each semantic
role in the frame, we report the filler (the top ranked term)
along with the associated cosine similarity score, com-
pactly expressing its compatibility with the event frame:

TIME => pomeriggio (00.65)

AGENT => persona_nota (00.80)

LOCATION =>

MODE_INSTRUMENT => pugno (00.72)

BODY_PART =>

LESION_TYPE => contusione (00.68),

trauma (00.63)

The final result is: TIME (afternoon), AGENT (known
person), MODE-INSTRUMENT (fist) and LESION-TYPE
(contusion and trauma). Fillers are successfully extracted
and assigned to the appropriate frame element, with the

only exception of the body part. The body parts involved
in the violent act are the upper limbs and the occipital
region. The first one cannot be correctly extracted since
it was not rewritten from its abbreviation ‘aass’, while
the similarity between the embeddings of ‘occipital’ and
BODY-PART does not reach the required threshold.

Evaluation
Dataset and procedure
The data used in the experimentation are real-world
emergency room reports (ERRs) collected in Italian Hos-
pitals, and then made available by the Italian National
Institute of Health in the frame of the SINIACA project
[44]. The SINIACA project (so dubbed after ‘Sistema
Informativo Nazionale sugli Incidenti in Ambiente di
Civile Abitazione’, National Information System on Acci-
dents in Civil Housing Environment) is the Italian branch
of the European Injury Database (EU-IDB) [30], an EU-
wide surveillance system concerned with accidents, col-
lecting data from hospital emergency department patients
according to EU recommendation. SINIACA is a data col-
lection on home injuries, based on a sample of hospital
emergency departments, in implementation of the recom-
mendation of the Council of the European Union no. C
164/2007/01 on injury prevention and safety promotion.
For our experimentation we have used 153,823 records

from the SINIACA-IDB, which were originally annotated
by hospital staff as containing injuries descending from
either violent (V in the following) or non violent acts (NV
in the following). The dataset is very unbalanced, as it con-
tains 5,168 records that were tagged as violent, while the
remaining 148,655 (96.64%) were labeled as not caused
by violent acts. The dataset has been randomly split into
2 equal parts: the former one was used for training and
parameters tuning (80:20 the ratio between training and
validation set, respectively); the rest was used as our test
set. The dataset is indeed very unbalanced, since records
annotated as V amount to 3.36% of the whole data. The
two partitions —for training and testing, respectively—
were designed so to preserve the same distribution in both
training and test set.
As regards as the two modules of our system, we have

then recorded the classification accuracy obtained on half
the dataset (about 76,900 records) by the classifier imple-
mented through the neural network. As regards as the
evaluation of the explanation generated, we annotated 200
randomly sampled records among those returned as vio-
lent (V) at categorization time. We were concerned with
detecting descriptions of violence related injuries, so we
did not use a finer-grained annotation schema, e.g. dis-
criminating among violence against women, the elderly
and minors. Each such record was associated to a frame,
whose fields were filled with the information available in
the text document. Provided that each frame contains 6
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fields, overall 1200 slots were annotated: in 729 cases a
filler was annotated from the accompanying text, whilst
in 471 cases no value could be set. More specifically, the
available information associated widely varied across the
slots, as follows: AGENT was filled in the 60% of cases;
MODE-INSTRUMENT was filled in the 97% of cases; TIME
was filled in the 23.5% of cases; LOCATION was filled
in the 8% of cases; BODY-PART was filled in the 89.5%
of cases; LESION-TYPE was filled in the 86.5% of cases.
Since multiple annotations were allowed (according to the
information available in the input text), we recorded over-
all 5.53 fillers annotated for each record (e.g., the lesion
type can be both ‘trauma’ and ‘wound’; the involved body
part can be ‘shoulder’, ‘leg’ and ‘arm’): more specifically
AGENT was filled on average with 0.66 elements; MODE-
INSTRUMENT was filled on average with 1.44 elements;
TIME was filled on average with 0.28 elements; LOCATION
was filled on average with 0.09 elements; BODY-PART was
filled on average with 1.77 elements; LESION-TYPE was
filled on average with 1.29 elements.
Such annotated data was set as our ground truth anno-

tation, against which the frame computed by the explana-
tion module was compared.

Results
Categorization results
The categorization is aimed at detecting medical records
containing violence by employing the neural model. The
training and validation of the model was performed on
76,911 records randomly sampled from the whole dataset;
the test involved as many items.
The results of the categorization step are reported in

Table 2: we obtained a 99% F1 score for the non-violence
class. The F1 score for the V class is 86%. The neu-
ral model identified 2,291 entries as violence (V) cases;
regarding the V class, the true positives amount to 2,073
out of 2,584 items, thereby yielding a .92 precision and a
.80 recall. Overall, 218 false positives were detected (i.e.,
such data was labeled as V by the system, but annotated as
NV by hospital staff ).
The precision of the categorization module on the V

class ensures that the explanation module (taking as input
the records labeled as V at categorization time) is mostly
executed on records describing injuries related to vio-
lence events. The set of records labeled by the neural
model as V has then been used to assess the accuracy
of the explanation module, concerned with extracting the
relevant information to fill the violence frame slots.

Table 2 Precision, Recall and F1 scores for violence (V) and
non-violence (NV) classes on the test set

Class P R F1

midrule NV .99 1.0 .99

V .92 .80 .86

Frame elements extraction results
The frame element extraction was validated by comparing
the extracted elements against human annotations ear-
lier illustrated in the “Dataset and procedure” section. In
order to evaluate the quality of the extracted fillers we
have analyzed each field separately. The following metrics
(standard in Information Retrieval tasks) were recorded to
assess the output of the system:
- Mean Average Precision (MAP): the mean of the

average precision obtained over all dataset, where the
average precision is the precision of each element
given as result;

- Success at 1 (S@1): the percentage of cases in which
the first value was correct;

- Success at 5 (S@5): the percentage of cases in which
among the first five values the correct value was
returned.

- Recall at 5 (R@5): how many of the correct values
were returned among the first five values.

Additionally, we developed a baseline against which
we compared the output of the proposed approach. The
baseline adopts the same pre-processing as the main algo-
rithm, with the difference that it only employs semantic
similarity to rank the results; the similarity threshold
was also preserved, but no PoS tag/SST filtering was
employed. The detailed results are provided in Table 3.
The whole control strategy always favorably compares

to the baseline, thereby showing that PoS tagging and SST
information are helpful to extract the information to fill
the frame slots.

Discussion
As regards as the neural network module, the VIDES sys-
tem showed satisfactory accuracy in categorizing both NV
records (.99 F1 score) and V records (.86 F1 score).

Table 3 Results for the explanation algorithm along with the
baseline

Run Field MAP S@1 S@5 R@5

Baseline

AGENT .12 .12 .14 .13

MODE-INSTRUMENT .24 .22 .29 .27

TIME .73 .74 .74 .73

LOCATION .50 .51 .51 .50

BODY-PART .15 .18 .26 .18

LESION-TYPE .30 .36 .37 .31

Main algorithm

AGENT .58 .59 .60 .58

MODE-INSTRUMENT .28 .31 .32 .29

TIME .80 .82 .82 .80

LOCATION .90 .90 .90 .90

BODY-PART .49 .57 .57 .49

LESION-TYPE .40 .45 .47 .41
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The output of this module can thus be considered as
reliable, to such an extent that it has been used to check
and to correct, although in supervised fashion, the infor-
mation collected in real-word, hospital records. In fact,
a closer inspection of the false positives revealed that in
65% of cases (that is, 141 out of 218 false positives) the
system had predicted V, mistakenly annotated by the hos-
pital staff as NV. For example, the record with text ‘[...] the
patient reports that he had been beaten by known person,
all over his body but especially on the right shoulder [...]’
had been annotated as NV, while the VIDES system had
predicted it as a violent case (V). In such cases the annota-
tion is wrong. After manually correcting such errors, the
precision obtained by the VIDES system raises to 97% for
the V class. The updated figures are reported in Table 4,
where we observe a consistent +5% improvement in the
precision w.r.t. results in Table 2.
Similarly, we have further investigated the false negative

cases. The system classifies 74,621 entries as NV, 74,110 of
which are annotated as NV (true negatives) and 511 as V
(false negatives). A closer inspection of these 511 records
reveals that most records (namely 367, amounting to 72%
of cases) are wrongly annotated. In most cases (211 out
of 367) no description is available, and also in the remain-
ing cases too little information is present, so that neither
domain experts would be able to discriminate between V
and NV cases. Different from the aforementioned cases
regarding false positives, here we did not overwrite the
experts’ annotation which we use as ground truth, since
we had absolutely no cues to determine whether an item
was V or NV. Records with lacking or insufficient infor-
mation to make a decision deserve further inspection, by
resorting to their annotators, and by focusing specifically
on this phenomenon. This will be done in future work.
Presently, we simply dropped poorly informative records,
thereby obtaining a consistent improvement in the recall
of the VIDES system, as illustrated in Table 5, whose
results can be compared to those in the previous tables to
complete the assessment on the categorization task.
The task of extracting the relevant pieces of informa-

tion to fill the violence frame confirms to be a challenging
and stimulating one. Different degrees of difficulty feature
the recognition of the relevant frame elements. TIME and
LOCATION of the violence event were individuated to a
greater extent than other elements, such as the MODE-
INSTRUMENT, LESION-TYPE and BODY-PART. As regards

Table 4 Precision, Recall and F1 scores for violence (V) and
non-violence (NV) classes on the test set, after correction of the
mistakenly annotated false positives

Class P R F1

NV .99 1.0 .99

V .97 .81 .88

Table 5 Precision, Recall and F1 scores for violence (V) and
non-violence (NV) classes on the test set, after correction of the
mistakenly annotated false positives and deletion of false
negatives

Class P R F1

NV 1.0 1.0 1.0

V .97 .94 .95

as such fields, we note that on average more information
was available (e.g., MODE-INSTRUMENT was filled in 97%
of cases, with 1.445 fillers, on average, over the 200 con-
sidered records), that may have been detrimental to the
exact identification of such elements.
A closer inspection at the errors in the generation of the

explanation may be beneficial for future improvements
and for similar applications grounded on the adoption of
distributed word representations paired with the filling of
semantic frames.
Some errors in the recognition of the AGENT originate

from the fact that further persons can be mentioned in
the ER report (e.g., in a sentence like ‘the father reports
that the patient was punched by her husband’). In such
cases neither PoS nor SST information are helpful in fil-
tering out the father as the author of the violence: this sort
of errors should be dealt with through syntactic parsers
(at least to individuate the dependent clause ‘the patient
was punched by her husband’), thus permitting to rule out
‘father’ as the agent.
Further errors stem from the SST filtering step: in some

cases even such basic disambiguation performed through
supersense tags fails, thereby undermining the filtering
step. This determines a too crowded set of candidates, and
these elements are not properly ranked in the subsequent
stage. Errors in the SST are in principle equally distributed
across all classes, but their impact is worse on frame ele-
ments having more general semantic types as admissible
candidates, such as MODE-INSTRUMENT and, of course,
for terms with a higher degree of polysemy. The primary
role of SST information is also confirmed by the com-
parison between the baseline and the fully fledged VIDES
system.
Many errors were caused by typos: even the trivial lack

of a space between two words may prevent the tokenizer
from correctly recognizing the terms involved in the lin-
guistic expression, and tools could be adopted that have
been designed for the interactive correction and seman-
tic annotation, also with special focus on narrative clinical
reports [45, 46].
Additionally, one desideratum would be individuating

multiword expressions such as ‘neck of the bottle’ or ‘lac-
erated bruised wound’ that need to be handled as a whole
(and that, conversely, cannot be dealt with in a token
by token mode) [47]. Unfortunately, in the considered
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domain and for the considered text excerpts, standard
approaches such as mwetoolkit [48] are frequently mis-
lead to such an extent that their adoption does not ensure
substantial processing advantage.
To improve the performance in the task of seman-

tic frame extraction, it would be thus crucial to benefit
from reliable syntactic (either dependency or constituency
parsing [49, 50]) information, which unfortunately could
not be attained, due to the presence of frequent disflu-
encies, ungrammatical structures and out-of-vocabulary
(OOV) tokens. Also, a richer representation of the frame
elements could be obtained by employing knowledge
graph embedding techniques [51, 52], that can be com-
bined with predictive models [53], although these cannot
alleviate the issues stemming from the poor quality of
the input. In facts, ER reports are conceived as short
reports for hospital insiders, rather than as a complete,
fully explicit, grammatically and syntactically correct form
of communication.
This is definitely what makes them intriguing and worth

research efforts, like many other forms of contempo-
rary communication, featured by similar grammatical and
syntactical traits such as, e.g., social media communica-
tion [54], and some forms of spoken language involv-
ing ill-formed spontaneous spoken language and under-
specified grammars [55].

Conclusions
In this article we have presented the VIDES system,
aimed at providing the categorization computed through
a neural-network based classifier with explanations. In
particular, we have considered the task of categorizing
emergency room reports, by focusing on those contain-
ing violence events. We have illustrated the motivations
underlying this kind of application: contrasting violence,
by promptly tracking violent episodes as they are reported
in the ER setting. On a purely scientific viewpoint, we have
illustrated some of the challenges inherent to performing
information extraction tasks when dealing with this type
of language.
The input to the VIDES system is composed by text doc-

uments that, as illustrated, can be hardly elaborated with
standard (e.g., syntactic parsing) NLP techniques due to
many typos, abbreviations, acronyms, and so forth. As
mentioned, we have cast the present task to a particular
sort of Semantic Role Labeling, where the system has to
fill the slots describing a violence event, that has been pre-
viously fed to the neural model. In order to explain why a
record was labeled as containing a violence-related injury,
the VIDES system performs a hybrid step of information
extraction by employing word embeddings, supersense
tags, and PoS filtering techniques.
To the best of our knowledge, no attempt has been pro-

posed yet to tackle this task by exploiting a synthetic (vec-

torial) representation for each semantic slot. Although
improvements can be drawn, this approach showed to
obtain encouraging results, especially for some kinds of
information. It would be interesting to investigate to what
extent our approach generalizes to further applications
in the medical domain and to further domains, as well.
Although some components of the proposed pipeline rely
on domain-specific knowledge tailored to the application
needs (in particular the dictionary and the vector repre-
sentation of the event frame), in principle the presented
methodology may be applied to different settings in order
to build explanations of various sorts of output of neural
models.
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