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Abstract

Background: Combining MRI techniques with machine learning methodology is rapidly gaining attention as a
promising method for staging of brain gliomas. This study assesses the diagnostic value of such a framework
applied to dynamic susceptibility contrast (DSC)-MRI in classifying treatment-naïve gliomas from a multi-center
patients into WHO grades II-IV and across their isocitrate dehydrogenase (IDH) mutation status.

Methods: Three hundred thirty-three patients from 6 tertiary centres, diagnosed histologically and molecularly with
primary gliomas (IDH-mutant = 151 or IDH-wildtype = 182) were retrospectively identified. Raw DSC-MRI data was
post-processed for normalised leakage-corrected relative cerebral blood volume (rCBV) maps. Shape, intensity
distribution (histogram) and rotational invariant Haralick texture features over the tumour mask were extracted.
Differences in extracted features across glioma grades and mutation status were tested using the Wilcoxon two-
sample test. A random-forest algorithm was employed (2-fold cross-validation, 250 repeats) to predict grades or
mutation status using the extracted features.

Results: Shape, distribution and texture features showed significant differences across mutation status. WHO grade
II-III differentiation was mostly driven by shape features while texture and intensity feature were more relevant for
the III-IV separation. Increased number of features became significant when differentiating grades further apart from
one another. Gliomas were correctly stratified by mutation status in 71% and by grade in 53% of the cases (87% of
the gliomas grades predicted with distance less than 1).
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Conclusions: Despite large heterogeneity in the multi-center dataset, machine learning assisted DSC-MRI radiomics
hold potential to address the inherent variability and presents a promising approach for non-invasive glioma
molecular subtyping and grading.
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Key points

– On highly heterogenous, multi-centre data, machine
learning on DSC-MRI features can correctly predict
glioma IDH subtyping in 71% of cases and glioma
grade II-IV in 53% of the cases (87% < 1 grade
difference).

– Shape features distinguish best grade II from grade
III gliomas.

– Texture and distribution features distinguish best
grade III from grade IV tumours.

Importance of study
This work illustrates the diagnostic value of combining
machine learning and dynamic susceptibility contrast-
enhanced MRI (DSC-MRI) radiomics in classifying
gliomas into WHO grades II-IV as well as across their
isocitrate dehydrogenase (IDH) mutation status.
Despite the data heterogeneity inherent to the multi-

centre design of the studied cohort (333 subjects, 6 cen-
tres) that greatly increases the theoretical challenges of
machine learning frameworks, good classification per-
formance (accuracy of 53% across grades (87% < 1 grade
difference) and 71% across mutation status) was ob-
tained. Therefore, our results provide a proof-of-concept
for this emerging precision medicine field that has good
generalisability and scalability properties. Introspection
on the classification errors highlighted mostly borderline
cases and helped underline the challenges of a categor-
ical classification in a pathological continuum.
With its strong generalisability property, its ability to

further incorporate participating centres and its possible
use to identify borderline cases, the proposed machine
learning framework has the potential to contribute to
the clinical translation of machine-learning assisted diag-
nostic tools in neuro-oncology.

Background
The most recent grading system of gliomas has inte-
grated the mutation status of key encoding genes
prompting a ground-breaking change in the context of
glioma diagnosis and treatment [1, 2] with further mo-
lecular stratification achieved by determining CDKN2A/
B status [3]. Tumour anatomical features and gadolin-
ium enhancement properties are not sufficient for this
task and are extremely variable across different types

and grades of gliomas with low specificity rates [4, 5].
To overcome this limitation, advanced imaging tech-
niques such as diffusion weighted imaging (DWI), MR
spectroscopy, and dynamic susceptibility contrast
(DSC)-MRI (also known as perfusion-weighted MRI)
have been tested. Perfusion-weighted MRI provides bio-
markers tightly linked to the tumour vascularity and
thus indices of the biochemical and genetic substrates
related to neo-angiogenesis [6, 7]. ‘Gain-of-function’ iso-
citrate dehydrogenase (IDH) mutations result in the ac-
cumulation of the “oncometabolite” 2-hydroxy glutarate
(HG) and cause an increase in the activity of the
hypoxia-inducible factor-1, which has a pivotal role in
the energy metabolism, angiogenesis and apoptosis [8].
Therefore, perfusion MRI biomarkers carry the potential
to act as diagnostic surrogates of IDH mutation status
and further for tumour grading.
DSC-MRI is often favoured, compared to other MRI-

based perfusion techniques, for its higher temporal
resolution and sensitivity for detecting abnormal angio-
genesis resulting in high accuracy rates for baseline
tumour grading and tumour surveillance [7]. To date,
these encouraging findings have been mostly obtained in
single-institution settings utilising different DSC-MRI
acquisition techniques and post-processing software
packages for quantitative analysis. This can result in sig-
nificant variation [7] and, hence, limit the diagnostic
value of the technique impeding its large-scale applica-
tion for non-invasive tumour phenotyping [9–11]. Re-
cently, a consensus paper for DSC-MRI acquisition
guidelines aimed to act as a blueprint and provide a
framework for achieving routine success with this tech-
nique [12].
The vast majority of the published DSC-MRI studies

have focused on establishing the value of the tumour re-
gion of interest rather than encompassing the whole
tumour. They have made use of histogram analyses,
which nonetheless reflect numeric values of the voxels
and only help to calculate first-order statistics. By con-
trast to first-order statistics, second- and higher-order
statistical analyses, which allow measures of not only
local voxel-wise values but also incorporate neighbour-
ing information, have been suggested as more reliable
and elaborative methods for characterisation of the
region-of-interest [13]. Texture analysis, as a contextual
quantification method, has already embarked in the
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medical imaging literature as a method that can detect
tissue heterogeneity and complexity [13, 14]. Radiomics,
applied in the clinical context of glioblastoma, have gen-
erally been performed on anatomical sequences and ap-
plied to distinguish between GBM subtypes [15], for
prediction of survival rates [16] and prognosis [17], pre-
diction of response to treatment [18], as well as risk
stratification [19]. Deep-learning based techniques have
recently received a sustained attention due to their high
performance in such classification tasks [20, 21]. None-
theless, there is limited biological insight in their deci-
sion process making failure cases difficult to interpret.
An alternative is to use the classical feature-based ma-
chine learning methods as diagnostic tool and to evalu-
ate the relevance of acquisition sequences. In such a
framework, interaction between clinical interpretation
and machine learning is essential. Indeed, an iterative
loop between clinical interpretation and machine learn-
ing analysis based on advanced features can help to de-
fine most distinguishing images properties and exclude
non-relevant ones. Such process would result in the def-
inition of disease specific imaging signatures.
While the high heterogeneity among DSC-MRI acqui-

sition protocols may contribute to lowering the diagnos-
tic value of any single first-order statistic, this work
sought to examine the role of higher-order analysis and
machine-learning assisted radiomics in mitigating these
limitations and augment the diagnostic accuracy of
DSC-MRI for tumour staging with emphasis on IDH
molecular subtyping.
Specifically, this study aims to assess the accuracy of

combining DSC-MRI radiomics with supervised machine
learning algorithms in classifying gliomas by grade and
mutation status using multi-centre dataset. Our hypoth-
esis is that different combination of MRI features are to
be used according to the distinctions to be looked after
encompassing either tissue heterogeneity between high
grade GBM or measures of dissemination (using shape
assessment) at lower grades. Compared to existing work,
including the most recent one by Lu et al. [22], where a
publicly available database was used focusing solely on
structural imaging, this work focuses for first time on
the use of DSC-MRI acquisition in a multicentre setting.
The heterogeneity inherent to the multi-centre quality
of the data, makes the task of tumour and molecular
phenotyping even more challenging. If successful, the
proposed platform is readily expandable to include more
participating institutions or utilising different machine
learning approaches – all aiming to increase the diag-
nostic capacity and power to determine the most appro-
priate parameters for conducting DSC-MRI experiments.
With this in mind, this work has potential to become a
first step for a widespread application of machine-
learning assisted diagnostic aid in neuro-oncology.

Methods
Different components of the methodology in this study
are shown in Fig. 1a with the post-processing of the
tumour segmentation and rCBV maps leading to feature
extraction depicted in Fig. 1b.

Study design and ethics
This multi-center study was based on retrospectively
identified or prospectively acquired neuro-oncology MRI
data collection in the participating centres, according to
the local institutional review boards guidelines and the
respective local ethical committees’ approvals. Data shar-
ing agreements between the collaborators and the cen-
tral reading and post-processing site were also in place.

Subjects
DSC-MRI data of 359 patients from 6 university hospi-
tals with histopathologically and molecularly confirmed
primary, treatment naïve gliomas (WHO grades II-IV)
between January 2010 and May 2018 were consecutively
collected and screened for this study. The inclusion cri-
teria were as follows: i) existence of preoperative DSC-
MRI examination raw data suitable for post-processing
and ii) availability of histopathological and molecular
testing least for IDH1 and IDH2 mutations [2]. Images
with non-correctable motion artefacts (n = 8) and cor-
rupt source data (n = 18) were excluded. Finally, 333 pa-
tients were included in the analysis. Figure 1c contains
the decision tree of the dataset stratified into different
glioma cohorts.

Histopathology
All gliomas in the cohort were diagnosed according to
the WHO 2016 classification scheme, complemented
with molecular profiling for IDH1 and IDH2 mutations
[2, 23–25]. The assessment of morphological features
and immunostaining in the tumour samples was per-
formed by neuropathologists in each institution. All
IDH1R132H immune-negative gliomas were investigated
by Sanger sequencing to identify out common tumour
driver mutations of IDH1, IDH2, histone H3F3A, TERT
promoter and BRAF genes [26, 27]. 1q/19p codeletion
status, EGFR amplification and 10q loss were deter-
mined by using a qPCR-based copy number assay in a
subset of the participating institutions.

MR imaging
The eligible patients were examined on either 1.5 T MR
scanners (n = 186, 56%) (Siemens SymphonyVision,
Siemens Avanto, Siemens Healthineers, Erlangen,
Germany; GE Discovery MR450, GE Healthcare,
Chicago, USA; and Philips Achieva, Philips Medical
Systems, Eindhoven, The Netherlands) or 3 T MR units
(n = 147, 44%) (Siemens Skyra, Siemens Allegra, Siemens
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TrioTim, Siemens Biograph_mMR, Siemens Healthi-
neers, Erlangen, Germany; Philips Ingenia, Philips
Medical Systems, Eindhoven, The Netherlands, 3 T,
Signa HDx, GE Healthcare, Waukesha, WI, USA).

Tumour delineation and parametric modelling
Tumour segmentation was performed manually by the
same radiologist, who was blind to the immunohisto-
pathological results, on axial T2 (n = 167, 49.7%) or axial
FLAIR (n = 169, 51.3%) series using ITK-SNAP Version
3.6.0 [28] excluding large cystic or necrotic tumour com-
ponents and large vessels in line with previous relevant
literature. When available, 3D T2/FLAIR series were
preferred to their 2D counterparts.
Relative cerebral blood volume (rCBV) maps were

generated from the DSC –MRI raw data using dedicated
commercially available postprocessing software (Olea
Sphere, Version 3; Olea Medical Solutions, La Ciotat,
France). Perfusion source images motion correction,
temporal and spatial filtering was applied in all cases.
Subsequently, the software automatically defined the ar-
terial input function (AIF) for each individual based on
all voxels throughout the time series using global clus-
tering method as it was described by Mouridsen et al.
[29]. Instead of the standard deconvolutional mathemat-
ical algorithms, a fully adaptive Bayesian scheme, which
has been shown to be superior to the widely used

classical approaches [30, 31], was chosen to derive the
perfusion indices aiming at the most possibly accurate
contrast agent leakage correction.

Spatial and intensity normalisation
The customised pipeline for the post-processing of the
tumour segmentations and perfusion (rCBV) images is
presented in Fig. 1b. The data was prepared for ad-
vanced analysis by isotropic resampling of the T1-
weighted images followed by registration, normalisation
of the parametric rCBV maps, and biomarker extraction
through distribution and texture features. Isotropic re-
sampling to 1mm3 voxels was facilitated using the Nif-
tyReg open source software (https://sourceforge.net/
projects/niftyreg) to allow for the computation of rota-
tional invariant textural features. The T2-weighted/
FLAIR images and rCBV maps were rigidly registered to
the T1 isotropic image using NiftyReg [32] and trilinear
interpolation. The resulting co-registered maps were
visually inspected to evaluate the success of the registra-
tion step. At the third stage, automatic normalisation of
the parametric maps was performed in order to mitigate
inter-subject variability and therefore, enable compari-
son of statistical and textural features across subjects. At
this step, the basal ganglia of both hemispheres were ini-
tially segmented using the Geodesic Information Flows
framework (GIF) [33], a label fusion framework allowing

Fig. 1 a: Flow chart of the methodology of this analysis in this paper. b: Graphical illustration of the customised pipeline shows the cascade of
processing starting from tumour segmentation on FLAIR series and ending in feature extraction over tumour mask. c: Decision tree illustrating
the different cohorts of gliomas from the multicentre dataset stratified per WHO grades II, III and IV and also per IDH mutation status
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for a local weighting of the information from a labelled
database according to measures of local morphological
similarities. The basal ganglia in the tumour-free hemi-
sphere was used as a reference area for normalisation of
the rCBV maps instead of healthy white matter in order
to mitigate the risk of variability across the subjects due
to white matter degeneration and vasculopathy. For tu-
mours extending in the contralateral hemisphere, any
tumour tissue was first removed from the reference re-
gion. Consequently, z-score maps over the tumour mask
were derived with respect to the intensity distribution
over the normalisation area.

Feature extraction
Comprehensive biomarker extraction was performed
using the normalised parametric maps. To capture
tumour shape, four shape features (volume, surface/vol-
ume ratio, non-compactness) were extracted for each
tumour mass. For distribution mapping, 13 histogram
features (mean, skewness, kurtosis, standard deviation,
minimum, maximum, 1st, 5th, 25th, 50th (median),
75th, 95th and 99th percentiles) were extracted through
all voxels in each segmented tumour. Finally, the 12
Haralick features [34] and including angular secondary
moment (ASM), contrast, correlation, sum square, sum
average, inverse difference moment (IDM), sum entropy,
entropy, difference variance, sum variance, difference en-
tropy, IMC1) for each tumour were also extracted.

Statistical analysis
All extracted intensity-based features were corrected for
the influence of MR acquisition parameters on the ex-
tracted features was scrutinised by scanner manufac-
turer, magnetic field strength (1.5 T and 3 T), TR
(≤1499ms and ≥ 1500 ms), TE(25–44ms and 45–55ms),
FA (90° and < 90°)slice thickness (< 5 mm and ≥ 5mm),
and matrix size (matrix size < 128 × 128 and ≥ 128 × 128)
and in plane resolution (<=1, > 1 and < =2, > = 2). Fol-
lowing correction for these covariates, two-sample Wil-
coxon test was used to report the differences in all
extracted features between IDH mutation status and
across pairs of grades. Results were considered to be sig-
nificant if p-value ≤0.05 and all statistical analysis was
carried out using Stata v14 and python 3.7. Effect size
difference was calculated using Cliff’s Delta.

Supervised learning from extracted features
All extracted features and acquisition parameters were
used as input to a random forest (RF) algorithm [35] to
classify gliomas according to their IDH mutation status
(IDH-mutant vs IDH-wildtype as a 2-class classifier) or
according to their grade II, III and IV, as a 3-class prob-
lem. RF was chosen as the classifier based on the fact
that it is simple to use as a collection of decision trees, is

based on ensemble learning that allows the algorithm to
learn accurately and does not require fine-tuning of pa-
rameters with the default parametrisation often leading
to excellent performance.
For each task (IDH mutation or grade assessment)

training was performed in a stratified two-fold cross-
validation setting with 250 repetitions to assess the value
of rCBV-extracted features. Hyperparameters were opti-
mised in a cross-validation setting leading to two differ-
ent settings for the mutation task (200 trees, maximum
depth of 10, minimum samples per leaf of 4) and the
grade separation task (800 trees, minimum samples per
leaf = 4, maximum depth of 50). Error, computed as the
difference between predicted and true classification was
averaged over the 250 iterations and t-test over the error
distribution were performed to assess the differences ob-
served across acquisition parameters. Confusion matri-
ces using the average classification were constructed to
summarise the classification performance of the machine
learning algorithm, from which the overall accuracy of
classifying different gliomas cohorts, as well as overall
sensitivity and specificity rates were calculated.

Error introspection
In order to have more insight into the cases of erroneous
classification, features were compared for each category
of misclassification (wild type classified as mutant, mu-
tant as wild type, grade II as grade III etc) and their
rightly classified counterpart to investigate if there was a
consistency in the features leading to the misclassifica-
tion and whether or not it was consisted demographic
findings between said classes. Wilcoxon 2 samples tests
were performed on the features corrected for acquisition
parameters, age and gender as per the demographic
analysis.

Results
Demographic findings
Overall, data included 333 glioma patients comprising
198 males and 135 females with a mean age 48.9 years
(age range 20–81 years). Of these, 101 were classified as
grade II, 74 were grade III and 158 were grade IV while
151 were IDH-mutant and 182 were IDH-wildtype gli-
omas (Fig. 1c). Details on the demographics of the pa-
tient population, tumour location, histological grades
and the molecular mutation status are contained in table
S1 of Appendix A.
Effect size of acquisition parameters are presented

with the value of the Cliff Delta in supplementary table
S2. Shape, histogram and texture features for comparing
gliomas by mutation status and across three different
grades are shown in Table 1, with Cliff’s Delta effects
sizes presented pictorially in Fig. 2.
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Glioma stratification for IDH mutation status
When comparing gliomas by mutation type, 23 out of
the 29 extracted features were significantly different be-
tween IDH-wildtype and IDH-mutants (column 6 on

Table 1 and Fig. 2). Tumour surface to volume ratio
(SAV) and measure of non-compactness were signifi-
cantly lower in IDH-mutants compared to IDH-
wildtype, as were six rCBV histogram features, including

Fig. 2 Comparisons of IDH wild type and IDH mutant gliomas within WHO grades II, III and IV gliomas. Typical examples of gliomas categories
are shown for illustrator purposes on the top panel. Bar charts on the bottom panel present the mean z-score transformed difference between
groups for each feature after correction for acquisition parameters for the non-shape features. Bars encoded in red represent features presenting
significant statistical significance between groups, whereas bars in blue are those not statistically significant (significance threshold p = 0.05)
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mean, standard deviation,5th,25th,50th,75th, 95th and
99th percentiles. Skewness and kurtosis were higher in
IDH-mutants compered to IDH-wildtype. Among the
texture features, correlation and sum entropy were sig-
nificantly higher in IDH-mutant tumours than in the
IDH-wildtype (p < 0.0001), while sum square, sum
average, sum variance, entropy and difference variance
features were significantly lower (p ≤ 0.0001) in IDH-
mutant gliomas compared to IDH wildtype gliomas.

Glioma stratification for WHO-grade
The results of comparing gliomas by grade across WHO
grades II, III and IV gliomas are shown in Fig. 3. When
comparing gliomas grade III vs grade II, the surface to
volume ratio shape feature, was significantly (p = 0.021)
higher in grade III gliomas compared to grade II gliomas
as was the non-compactness feature (p = 0.042) (Table 1,
column 13). The IMC1 measure was also found to be
lower in grade III compared to grade II (p = 0.040).
A total of 20 features were different between grades III

and IV (Fig. 3 and Table 1).The shape features did not
differ between grades III and IV. Among the histogram
features, 9 out of the 13 features were different with 6

(mean, STD, 25th, 50th, 75th, 95th and 99tth percentile)
higher and skewness and kurtosis lower in grade IV
compared to grade III gliomas. Finally, among the
texture features 11 out of 12 features were different.
Notably texture features related to appearance hetero-
geneity such as the entropy, sum square and sum
variance were larger in grade IV than III, while mea-
sures of correlation and inverse difference momentum
were lower.
Comparing gliomas grades IV with II, significant dif-

ferences could be observed in most of the extracted fea-
tures (20 out of 29). Of the shape features, SAV and
non-compactness were higher, with non-compactness of
greater degree, in gliomas grade IV compared to grade
II. Five histogram features (mean, STD, 25th, 50th, 75th,
95th percentile) were higher while skewness and kurtosis
were lower in grade IV compared to grade II gliomas. Fi-
nally, among the texture features, 10 out of 12 features,
with only the contrast and the difference variance not
presenting any statistically significant difference. Overall,
comparisons between grade II and IV combined the dif-
ferences observed between grade II and III and grade III
and IV.

Fig. 3 Comparisons between different WHO grade gliomas grades across shape, histogram and texture features. Typical examples of gliomas
grades are shown for illustrator purposes on the middle panel. Bar charts on the top and bottom panel present the mean z-score transformed
difference across all groups and between groups for each feature after correction for acquisition parameters for the non-shape features. Bars
encoded in red represent features presenting significant statistical significance between groups as per Wilcoxon non parametric testing, whereas
bars in blue are those not statistically significant (significance threshold p = 0.05)
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Classification results
The confusion matrices describing the accuracy of the
random forest algorithm are contained in the supple-
mentary table S5 and are depicted in Fig. 4a-b. The ran-
dom forest algorithm correctly classified gliomas by IDH
mutation status in 71% of the cases. This was slightly
higher when we considered data from 1.5 T scanner only
(77% accuracy) while the accuracy dropped to 66% when
we considered data from 3 T scanner only. Stratifying
gliomas by IDH mutation status had an overall specifi-
city of 77% and sensitivity of 65%. When magnetic field
strength was taken into consideration, at 1.5 T the speci-
ficity rate increased up to 83% with a sensitivity at 70%
while the specificity was of 72% and the sensitivity of
60% at 3 T. Overall, we obtained significant (p = 0.008)
lower error rates of stratification at 1.5 T (0.25) in com-
parison to 3 T (0.35) (Table S3 and confusion matrices).
Resolution appeared also to be associated with error,
higher resolution leading to lower error rates (0.196 vs

0.320 p = 0.024 for <=1 mm vs between 1 and 2mm)
(see Supplementary Table S2).
When classifying the gliomas by grade, 53% of in-

cluded gliomas were classified correctly and 87% of the
cases received grade classification with a distance less or
equal to 1. The accuracy of classifying gliomas by grade
was higher using perfusion data obtained at 1.5 T mag-
netic field rather than at 3 T: 59 and 46% respectively,
p = 0.024, with grade distance of less than 1 in 91 and
83% of the cases, respectively. Acquisition parameters
had different effect with a larger error for lower reso-
lution (p = 0.026), TR value (p = 0.009) with a larger
error for TR below 1500ms; a flip angle value of 90 de-
grees was associated with higher error rates (p = 0.006).

Introspection results
When investigating in more details the misclassified
cases (see Fig. 5), it appeared that the characteristics of
these gliomas reflected the texture properties of the

Fig. 4 a: Pictorial representation of Cliff’s delta values when comparing features of shape, histogram and textures across mutation status and
grades. Exact Cliff delta values are given in Table S1. Positive values are shown in darkening red while negative ones are in darkening blue. b:
Outcomes of the confusion (or error) matrix aiding visualisation of the performance of our machine-learning algorithm. The first row shows the
confusion matrices for the classification of gliomas by IDH mutation status. The second row shows the confusion matrices for the classification
across the three WHO grades II, III and IV. In both classification scenarios we show three cases: using all data and separately using only data
obtained from scanners with 1.5 T or 3 T magnetic field. Within each matrix, the matrix row represent the instances in the actual ground truth
class while each column represents the instances in the predicted class. Darkening red correspond to higher percentages of the overall
population to be classified. The exact values of the confusion matrices are given in supplementary table S4 of the Appendix.
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classes they were misclassified into both with respect to
the mutation status or the grading. For instance, simi-
larly to what was observed between grade II and IV, the
cases wrongly classified as grade IV instead of grade II
had a significantly lower compactness, with higher mean
and kurtosis and lower skewness as well as lower correl-
ation and higher entropy among others. Numerical mean

of z-score differences for each of the possible error cases
are reported in Supplementary table 4.

Discussion
Our results suggest that the application of machine
learning strategies to DSC-MRI extracted features, has
the potential to correctly classify gliomas from multi-

Fig. 5 Comparison of features Z-Scores between erroneously classified and rightly classified elements for each possible error type. The bar length
represents the Mean Z-Score difference between error cases and true cases. Bars in which difference was significant (Wilcoxon 2 sample test P <
0.05) are coloured in red while others are in blue
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center patients pool by IDH mutation status and WHO
grades II, III and IV. Applying a random-forest algo-
rithm, we accurately predicted IDH mutation status in
72% of the cases with an overall specificity of 77% and
sensitivity of 65%. On average, the algorithm classified
53% of the gliomas correctly into three histological
grades II-IV, and with 87% the classification with an
error distance of less than 1.
The novelty of our work is that we show that even

simple shape features can help in the distinction be-
tween grade II and higher grades. The measure of non-
compactness was significantly higher in WHO grade III
or grade IV compared to grade II, reflecting possibly
higher infiltrative features in these tumours. Interest-
ingly, this shape feature was not found to be significantly
different between WHO grade IV and grade III groups.
It must be noted that in the existing literature, histo-
gram features have generally been favoured against
shape descriptors [36–38]. Falk et al. have found that
90th percentile rCBV values were significantly lower in
grade II gliomas than grade III (AUC = 0.77, p = 0.04),
but they have also found the standard deviation of rCBF
was the best discriminative feature with the highest
AUC in the same setting (AUC = 0.80, p = 0.02). Our re-
sults do not confirm these findings, with histogram fea-
tures only relevant markers of grade difference between
grades IV and II or IV and III. Therefore, we suggest
that shape descriptors, such as non-compactness and
surface to volume ratio, have to be considered in the
mapping of the composition of gliomas as they correlate
well with histopathological findings. Perfusion texture
features measuring the degree of intensity heterogeneity
(such as the correlation or the sum of variance) ap-
peared to be significantly different across the IDH muta-
tion groups. Similar large number of markers of tissue
heterogeneity were found to be different across a paired
comparison of grades IV vs III and grades IV vs II.
These observations are biologically relevant as they re-
flect heterogeneous microenvironment in high-grade gli-
omas, which is also consistent with diffusion studies [14,
39]. It can be postulated that texture features reflect the
continuum of appearance evolution between grades but
the results highlight the challenge of strictly separating
grades III from the two extremes of the spectrum (grade
II and grade IV).
The prediction rate in our study performed better

(65% of specificity, 79% sensitivity) than the one re-
ported by Kickingereder et al. [8] in a single-centre trial
despite the overall heterogeneous nature of our large co-
hort in terms of molecular subgroups and DSC acquisi-
tion protocols. Similar machine-assisted techniques for
tumour grade prediction demonstrated accuracy be-
tween 73 and 85% [40–43]. While our algorithm per-
formance appears slightly inferior to the aforementioned

results, we note that in all these studies patients are re-
cruited from one centre, while we considered patients
data from six centres. With multi-center data we expect
higher variability and heterogeneity and hence antici-
pated lower accuracy. Using a different simulation ap-
proach might however improve accuracy. Citak-Er et al.
[43] have proposed the use of a linear kernel support
vector machine (SVM) with ten-fold cross-validation
based on features extracted from conventional and ad-
vanced MRI data (DTI, DWI, DSC perfusion and MR-
Spectroscopy), and reported 73.3% of overall sensitivity
from their multiparametric MR imaging. For the pur-
pose of our study we chose random-forest algorithm as
an established method for three classes or more classifi-
cation. Future work would probably involve combining
radiomics features from additional advanced MRI se-
quences so as to better identify required sequences for
an optimised performance. With the recent rise of deep-
learning techniques that do not rely on hand-crafted fea-
tures, further exploration on this end would be required
notably to assess the behaviour of such solutions in the
identification of borderline cases, the associated uncer-
tainty calibration as well as the assessment of robustness
to acquisition changes.
Our error analysis was performed to better character-

ise the existing continuum between ordinal categories
such as glioma grades. Analysis of the relationship be-
tween misclassifications and used features was strongly
in agreement with previously well-known MRI short-
comings in tumour staging. For instance, some tumours
incorrectly classified as WHO grade IV instead as grade
III had significantly higher mean intensity in rCBV im-
ages. This highlights the inadequacy of first-order statis-
tics to establish clear cut-off values regardless the
sophistication of the DSC technique. This paradigm
exemplifies the biological interpretability of machine-
learning based radiomics compared to non-feature based
methods and illustrates how it can be used to re-
evaluate categorical classifications and improve charac-
terisation and understanding of the pathological
continuum in glioma grades, in particular with emerging
novel, validated molecular biomarkers, such as
CDKN2A/B deletion in IDH-mutant astrocytomas,
which have been suggested to form a new clinical risk
group [3]. Such use of radiomics techniques parallels the
findings of new biological definition of GBM subgroups
described in the work from Rathore et al. [44].
Overall, this proof-of-concept study aimed to assess

the diagnostic value of the DSC-MRI radiomics in
treatment-naïve gliomas using multi-centre study design
without a priori consensus on the acquisition parameters
and settings (incl. MR field strength, sequence type,
resolution, acquisition parameters). Different suggestions
for sequence optimisation in DSC-PWI, especially across
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TE and FA, are available in the literature [30]. The large
protocol variability observed in our cohort allowed us to
investigate the effect of these key characteristics. Acqui-
sition metrics were dichotomized based on existing lit-
erature [30, 45], and subsequently analysed prediction
results across defined groups. Higher acquisition reso-
lution was significantly associated with lower error rates.
Error in grade prediction was more sensitive to acquisi-
tion parameters than the distinction between IDH wild-
type and mutant. Additionally, lower field strength
associated with lower variability in scanning protocols
led to lower absolute errors (p = 0.02 and p = 0.01 for
IDH and WHO grade respectively). Higher sensitivity
and specificity rates with lower errors were achieved in
the estimation of IDH mutation (82, 70%, 0.26 at 1.5 T,
and 72, 60%, 0.37 at 3 T, respectively), and better WHO
grade predictions, exact or with a distance, at 1.5 T sys-
tems when compared to 3 T. In fact, while higher spatial
resolution and signal-to-noise ratio from higher mag-
netic fields may turn into an advantage in DSC imaging,
which eventually leads decrease in the dose of contrast
material and acquisitions time, protocol variability may
increase image appearance heterogeneity. This result
cannot be generalised in favour of the 1.5 T field
strength scanners as this would need a controlled rando-
mised study but it stresses the need for imaging acquisi-
tion guidelines to harness the potential of technological
advances, such as higher MRI fields. Last but not least,
partial volume effect caused by surrounding tissues in
the point of arterial input function may also result in er-
roneous estimation of rCBV.
The main strength of this work lies in both the multi-

centre design and, though limited for optimised learning
approaches, still the largest cohort in the literature to
utilise machine-learning based radiomics as a predictive
diagnostic tool. Since the analyses were purposefully per-
formed across perfusion data only, further studies are
needed to assess a combined impact of a multimodal ap-
proach (e.g. DWI, T1-weighted MR perfusion, MR spec-
troscopy, PET) in the imaging phenotyping in gliomas,
though this carries the risk of introducing further con-
siderable variability.
This study has some limitations. Specifically, the small

number of patients in some groups did not allow to
form integrated molecular subgroups, akin to existing
previous work. Therefore we could not undertake multi-
class optimised learning classification according to the
integrated histomolecular WHO classification scheme.
Further data is continuously being gathered from the
existing and new participating centres to extend the
work in this direction and assess the generalisability of
the proposed framework, while simultaneously exploring
the optimal machine learning algorithm to use. Future
work will explore the accuracy of contrasting different

algorithms, such as supervised V unsupervised algo-
rithms, when faced with heterogeneous dataset.

Conclusions
In conclusion, the findings underscore the satisfactory
diagnostic contribution of DSC-MRI extracted higher-
order features combined with machine-learning in the
automated classification of grading and IDH mutation
status of gliomas mitigating the high imaging heterogen-
eity. The promising results obtained through the pro-
posed random forest radiomics-based framework, are an
additional step towards the clinical translation of ma-
chine learning tools as diagnostic aid aiming at facilitat-
ing the implementation of tailored treatment based on
precision imaging.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12911-020-01163-5.

Additional file 1: Table S1. Demographic details on the population.
Table S2. Cliff’s Delta obtained for the comparison of each feature
(intensity and shape with respect to the different acquisition parameters.
Table S3. Analysis of error and absolute errror in the prediction of IDH
status and Grade according to acquisition parameters.Table S4.
Confusion matrix over different feld strengths for the mutation status
prediction(top row) and the grade prediction(bottom row). Table S5. For
all error types, mean z-score difference between the erroneously classified
elements and the rightly classifed elements for each feature corrected for
acquisition parameters. Figure S1. Representation of the acquisition pa-
rameters repartition across the 333 used cases.

Abbreviations
α-KG: α-ketoglutarate; 2-HG: D-2-hydroxyglutarate; AIF: Arterial input function;
asm: Angular second moment; ATRX: Alpha thalassemia / mental retardation
syndrome X- linked; BBB: Blood brain barrier; CBF: Cerebral blood flow;
CBV: Cerebral blood volume; cWM: Contralateral white matter; DSC-
MRI: Dynamic susceptibility contrast-enhanced MRI; EGFR: Epidermal growth
factor receptor; GBM: Glioblastoma multiforme; Gd: Gadolinium;
IDH: Isocitrate dehydrogenase; imc: Information measures of correlation;
k2: Constant of contrast agent permeability; MGMT: O6 - methylguanine-
DNA - methyltransferase; rCBV: Relative cerebral blood volume; ROI: Region
of interest; SAV: Sum average; SVM: Support vector machine;
TERT: Telomerase reverse transcriptase

Acknowledgments
Not applicable.

Authors’ contributions
CHS, JPG, ES, MJC and SB2 conceived the study. ES undertook the pre-
processing of the images and extracted the features for statistical analysis.
CHS and JPG undertook the statistical analysis. JPG, CHS and ES drafted the
manuscript with input from SB1, SB2 and MJC. VKK, GS, FBP, CG, KSP, JA,
MVS, MN, ARC, AA, SG, AK, NA, GMC, VR, LU, AE, EFC,EG,EK supplied the data
for this study and reviewed the manuscript. DR, JG and TB reviewed and and
edited later versions of the manuscript. All co-authors read and approved
the submitted version of the manuscript.

Funding
CS is supported by an Alzheimer’s Society Junior Fellowship (AS-JF-17-011).
MJC is supported by Wellcome/EPSRC Centre for Medical Engineering
(WT203148/Z/16/Z) and Wellcome Flagship Programme (WT213038/Z/18/Z).
JPG’s work was funded by the National Institute for Health Research (NIHR)
Applied Health Research and Care North Thames at Barts Health NHS Trust.
Part of the study was funded by the National Institute for Health Research to

Sudre et al. BMC Medical Informatics and Decision Making          (2020) 20:149 Page 12 of 14

https://doi.org/10.1186/s12911-020-01163-5
https://doi.org/10.1186/s12911-020-01163-5


UCLH Biomedical research centre (BRC399/NS/RB/101410). SBr is also
supported by the Department of Health’s NIHR Biomedical Research Centre’s
funding scheme. The views expressed are those of the authors and not
necessarily those of the NHS, the NIHR or the Department of Health and
Social Care. The funder had no role in this study.

Availability of data and materials
The datasets used and analysed during the current study, and the machine
learning algorithm are available from the corresponding author on
reasonable request.

Ethics approval and consent to participate
Informed consent was deemed unnecessary due to the retrospective nature
of the study and according to the national ethics regulations for medical
research. The ethics approval protocol was submitted to the University
College London / University College London Hospitals Joint Research Office
(Reference 213920) and the assigned North West - Liverpool Central
Research Ethics Committee approved the study (reference number: 18/NW/
0395). In addition bilateral data transfer agreements reviewed by the
University College London Hospitals Joint Research Office and the
counterpart research committees were put in place with each contributing
institution. All individual data was anonymised and only collated data on
perfusion parameters was seen by statisticians.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Biomedical Engineering, School of Biomedical Engineering &
Imaging Sciences, King’s College, London, UK. 2Dementia Research Centre,
Institute of Neurology, University College London, London, UK. 3Department
of Medical Physics and Biomedical Engineering, University College London,
London, UK. 4Department of Applied Health Research, Institute of
Epidemiology & Health Care, University College London, London, UK.
5Institute for Global Health, University College London, London, UK. 6The
Queen’s College, Oxford University, Oxford, UK. 7Department of
Neuroradiology, The National Hospital for Neurology and Neurosurgery,
University College London NHS Foundation Trust, London, UK. 8Division of
Neuropathology, UCL Queen Square Institute of Neurology, London, UK.
9Department of Advanced Imaging Modalities, MRI Unit, General Anti-Cancer
and Oncological Hospital of Athens “St. Savvas”, Athens, Greece.
10Department of Neurosurgery, General Hospital Evangelismos, Medical
School, University of Athens, Athens, Greece. 11Neuroradiology, Department
of Diagnostics and Pathology, Verona University Hospital, Verona, Italy.
12Neuropathology, Department of Diagnostics and Pathology, Verona
University Hospital, Verona, Italy. 13Department of Neuroradiology, University
Medical Centre, Ljubljana, Slovenia. 14Department of Radiology, Faculty of
Medicine, University of Ljubljana, Ljubljana, Slovenia. 15Department of
Radiology and Radiological Science, Medical University of South Carolina,
Charleston, SC, USA. 16Grenoble Institute of Neurosciences, INSERM,
University Grenoble Alpes, Grenoble, France. 17Department of
Neuroradiology, San Raffaele Hospital, Vita-Salute San Raffaele University,
Milan, Italy. 18Department of Advanced Biomedical Sciences, Diagnostic
Imaging Section, University of Naples Federico II, Naples, Italy. 19Department
of Advanced Biomedical Sciences, Pathology Section, University of Naples
Federico II, Naples, Italy. 20Department of Radiology, School of Health
Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece. 21Image
Analysis Group, London, UK. 22Olea Medical, La Ciotat, France. 23Department
of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, UCL,
London, UK.

Received: 21 October 2019 Accepted: 24 June 2020

References
1. Yang M, Soga T, Oncometabolites PPJ. Linking altered metabolism with

cancer. J Clin Invest. 2013;123(9):3652–8.

2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D,
Cavenee WK. And others. The 2016 World Health Organization classification
of tumors of the central nervous system: a summary. Acta Neuropathol.
2016;131(6):803–20.

3. Shirahata M, Ono T, Stichel D, et al. Novel, improved grading system(s) for
IDH-mutant astrocytic gliomas. Acta Neuropathol. 2018;136(1):153–66.

4. Chamberlain MC, Murovic JA, Levin VA. Absence of contrast enhancement
on CT brain scans of patients with supratentorial malignant gliomas.
Neurology. 1988;38(9):1371.

5. Scott JN, Pma B, Sevick RJ, Rewcastle NB, PA. F. How Often Are
Nonenhancing Supratentorial Gliomas Malignant? A Population Study.
Neurology. 2002;59(6):947–9.

6. Santarosa C, Castellano A, Conte GM, et al. Dynamic contrast-enhanced and
dynamic susceptibility contrast perfusion MR imaging for Glioma grading:
preliminary comparison of vessel compartment and permeability
parameters using hotspot and histogram analysis. Eur J Radiol. 2016;85(6):
1147–56.

7. Anzalone N, Castellano A, Cadioli M, et al. Brain Gliomas: Multicenter
Standardized Assessment of Dynamic Contrast-enhanced and Dynamic
Susceptibility Contrast MR Images. Radiology. 2018;1703:62.

8. Kickingereder P, Bonekamp D, Nowosielski M, et al. Radiogenomics of
Glioblastoma: machine learning-based classification of molecular
characteristics by using multiparametric and multiregional MR imaging
features. Radiology. 2016;281(3):907–18.

9. Hu LS, Kelm Z, Korfiatis P, et al. Impact of software modeling on the accuracy
of perfusion MRI in Glioma. AJNR Am J Neuroradiol. 2015;36(12):2242–9.

10. Kelm ZS, Korfiatis PD, Lingineni RK, et al. Variability and accuracy of different
software packages for dynamic susceptibility contrast magnetic resonance
imaging for distinguishing glioblastoma progression from
pseudoprogression. J Med Imaging. 2015;2:2.

11. Conte GM, Castellano A, Altabella L, et al. Reproducibility of dynamic
contrast-enhanced MRI and dynamic susceptibility contrast MRI in the study
of brain gliomas: a comparison of data obtained using different commercial
software. Radiol Med. 2017;122(4):294–302.

12. Welker K, Boxerman J, Kalnin A, et al. ASFNR recommendations for clinical
performance of MR dynamic susceptibility contrast perfusion imaging of
the brain. AJNR Am J Neuroradiol. 2015;36(6):E41–51.

13. Brynolfsson P, Nilsson D, Henriksson R, et al. ADC texture-an imaging
biomarker for high-grade glioma? Med Phys. 2014;41(10):101903. https://doi.
org/10.1118/1.4894812.

14. Bisdas S, Shen H, Thust S, et al. Texture analysis- and support vector
machine-assisted diffusional kurtosis imaging may allow in vivo gliomas
grading and IDH-mutation status prediction: a preliminary study. Sci Rep.
2018;8:1.

15. Chaddad A, Zinn PO, Colen RR. Quantitative texture analysis for
Glioblastoma phenotypes discrimination. In: 2014 International conference
on control, decision and information technologies (CoDIT), vol. 2014: IEEE. p.
605–8. https://doi.org/10.1109/CoDIT.2014.6996964.

16. Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A. Evaluation of tumor-
derived MRI-texture features for discrimination of molecular subtypes and
prediction of 12-month survival status in glioblastoma. Med Phys. 2015;
42(11):6725–35. https://doi.org/10.1118/1.4934373.

17. McGarry SD, Hurrell SL, Kaczmarowski AL, et al. Magnetic Resonance
Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly
Diagnosed Glioblastoma Before Therapy. Tomography. 2016;2(3):223. https://
doi.org/10.18383/J.TOM.2016.00250.

18. Kickingereder P, Gotz M, Muschelli J, et al. Large-scale Radiomic profiling of
recurrent Glioblastoma identifies an imaging predictor for stratifying anti-
Angiogenic treatment response. Clin Cancer Res. 2016;22(23):5765–71.
https://doi.org/10.1158/1078-0432.CCR-16-0702.

19. Grossmann P, Narayan V, Chang K, et al. Quantitative imaging biomarkers
for risk stratification of patients with recurrent glioblastoma treated with
bevacizumab. Neuro-Oncology. 2017;19(12):1688–97. https://doi.org/10.
1093/neuonc/nox092.

20. Ertosun MG, Rubin DL. Automated grading of Gliomas using deep learning
in digital pathology images: a modular approach with ensemble of
convolutional neural networks. AMIA. Annu Symp proceedings AMIA Symp.
2015;2015:1899–908.

21. Chang P, Grinband J, Weinberg BD, et al. Deep-learning convolutional
neural networks accurately classify genetic mutations in Gliomas. Am
J Neuroradiol. 2018;39(7):1201–7. https://doi.org/10.3174/AJNR.A5667.

Sudre et al. BMC Medical Informatics and Decision Making          (2020) 20:149 Page 13 of 14

https://doi.org/10.1118/1.4894812
https://doi.org/10.1118/1.4894812
https://doi.org/10.1109/CoDIT.2014.6996964
https://doi.org/10.1118/1.4934373
https://doi.org/10.18383/J.TOM.2016.00250
https://doi.org/10.18383/J.TOM.2016.00250
https://doi.org/10.1158/1078-0432.CCR-16-0702
https://doi.org/10.1093/neuonc/nox092
https://doi.org/10.1093/neuonc/nox092
https://doi.org/10.3174/AJNR.A5667


22. Lu CF, Hsu FT, Hsieh KL, et al. Machine learning-based Radiomics for
molecular subtyping of Gliomas. Clin Cancer Res. 2018;24(18):4429–36.

23. Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and IDH2
mutations are related to astrocytic and oligodendroglial differentiation and
age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118(4):469–74.

24. Louis DN, Perry A, Burger P, Ellison DW, Reifenberger G, von Deimling A.
And others. International society of neuropathology--Haarlem consensus
guidelines for nervous system tumor classification and grading. Brain Pathol.
2014;24(5):429–35.

25. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A.
Analysis of the IDH1 codon 132 mutation in brain tumors. Acta
Neuropathol. 2008;116(6):597–602.

26. Brandner S, von Deimling A. Diagnostic. Prognostic and predictive relevance
of molecular markers in gliomas. Neuropathol Appl Neurobiol. 2015;41(6):
694–720.

27. Jaunmuktane Z, Capper D, Dtw J, et al. Methylation array profiling of adult
brain tumours: diagnostic outcomes in a large, single Centre. Acta
Neuropathol Commun. 2019;7:1.

28. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour
segmentation of anatomical structures: significantly improved efficiency and
reliability. Neuroimage. 2006;31(3):1116–28.

29. Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S.
Bayesian estimation of cerebral perfusion using a physiological model of
microvasculature. Neuroimage. 2006;33(2):570–9. https://doi.org/10.1016/j.
neuroimage.2006.06.015.

30. Boxerman JL, Paulson ES, Prah MA, Schmainda KM. The effect of pulse
sequence parameters and contrast agent dose on percentage signal
recovery in DSC-MRI: implications for clinical applications. AJNR Am J
Neuroradiol. 2013;34(7):1364–9.

31. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume
maps corrected for contrast agent extravasation significantly correlate with
glioma tumor grade, whereas uncorrected maps do not. AJNR Am J
Neuroradiol. 2006;34(7):1364–9.

32. Modat M, Cash DM, Daga P, Winston GP, Duncan JS, Ourselin S. Global
image registration using a symmetric block-matching approach. J Med
Imaging. 2014;1(2):024003.

33. Cardoso MJ, Modat M, Wolz R, et al. Geodesic information flows: spatially-
variant graphs and their application to segmentation and fusion. IEEE Trans
Med Imaging. 2015;34(9):1976–88. https://doi.org/10.1109/TMI.2015.2418298.

34. Haralick RM, Shanmugam K, Dinstein I. Textural features for image
classification. IEEE Trans Syst Man Cybern Part B. 1973;SMC-3(6):610–
21.

35. Breiman L. Statistical modeling: the two cultures. Stat Sci. 2001;16(3):199–215.
36. Catalaa I, Henry R, Dillon WP, et al. Perfusion, diffusion and spectroscopy values

in newly diagnosed cerebral gliomas. NMR Biomed. 2006;19(4):463–75.
37. Kim H, Choi SH, Kim JH, et al. Gliomas: application of cumulative histogram

analysis of normalized cerebral blood volume on 3 T MRI to tumor grading.
PLoS One. 2013;8:5.

38. Falk A, Fahlstrom M, Rostrup E, et al. Discrimination between glioma grades
II and III in suspected low-grade gliomas using dynamic contrast-enhanced
and dynamic susceptibility contrast perfusion MR imaging: a histogram
analysis approach. Neuroradiology. 2014;56(12):1031–8.

39. Hempel JM, Schittenhelm J, Bisdas S, et al. In vivo assessment of tumor
heterogeneity in WHO 2016 glioma grades using diffusion kurtosis imaging:
diagnostic performance and improvement of feasibility in routine clinical
practice. J Neuroradiol. 2018;45(1):32–40.

40. Zöllner FG, Emblem KE, Schad LR. Support vector machines in DSC-based
glioma imaging: suggestions for optimal characterization. Magn Reson Med.
2010;64:1230–6.

41. Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud A, Pinho MC, Scheie D,
et al. Machine learning in preoperative glioma MRI: survival associations by
perfusion-based support vector machine outperforms traditional MRI. J
Magn Reson Imaging. 2014;40(1):47–54.

42. Emblem KE, Pinho MC, Zollner FG, Due-Tonnessen P, Hald JK, Schad LR,
et al. A generic support vector machine model for preoperative glioma
survival associations. Radiology. 2015;275(1):228–34.

43. Citak-Er F, Firat Z, Kovanlikaya I, Ture U, Ozturk-Isik E. Machine-learning in
grading of gliomas based on multi-parametric magnetic resonance imaging
at 3T. Comput Biol Med. 2018;99:154–60.

44. Rathore S, Akbari H, Rozycki M, et al. Radiomic MRI signature reveals three
distinct subtypes of glioblastoma with different clinical and molecular

characteristics, offering prognostic value beyond IDH1. Sci Rep. 2018;8(1):
5087. https://doi.org/10.1038/s41598-018-22739-2.

45. Boxerman JL, Rosen BR, Weisskoff RM. Signal-to-noise analysis of cerebral
blood volume maps from dynamic NMR imaging studies. J Magn Reson
Imaging. 1997;7(3):528–37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Sudre et al. BMC Medical Informatics and Decision Making          (2020) 20:149 Page 14 of 14

https://doi.org/10.1016/j.neuroimage.2006.06.015
https://doi.org/10.1016/j.neuroimage.2006.06.015
https://doi.org/10.1109/TMI.2015.2418298
https://doi.org/10.1038/s41598-018-22739-2

	Abstract
	Background
	Methods
	Results
	Conclusions

	Key points
	Importance of study
	Background
	Methods
	Study design and ethics
	Subjects
	Histopathology
	MR imaging
	Tumour delineation and parametric modelling
	Spatial and intensity normalisation
	Feature extraction
	Statistical analysis
	Supervised learning from extracted features
	Error introspection

	Results
	Demographic findings
	Glioma stratification for IDH mutation status
	Glioma stratification for WHO-grade
	Classification results
	Introspection results

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

