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Abstract

Background: Adverse drug reaction (ADR) is a major burden for patients and healthcare industry. Early and accurate
detection of potential ADRs can help to improve drug safety and reduce financial costs. Post-market spontaneous
reports of ADRs remain a cornerstone of pharmacovigilance and a series of drug safety signal detection methods play
an important role in providing drug safety insights. However, existing methods require sufficient case reports to
generate signals, limiting their usages for newly approved drugs with few (or even no) reports.

Methods: In this study, we propose a label propagation framework to enhance drug safety signals by combining
drug chemical structures with FDA Adverse Event Reporting System (FAERS). First, we compute original drug safety
signals via common signal detection algorithms. Then, we construct a drug similarity network based on chemical
structures. Finally, we generate enhanced drug safety signals by propagating original signals on the drug similarity
network. Our proposed framework enriches post-market safety reports with pre-clinical drug similarity network,
effectively alleviating issues of insufficient cases for newly approved drugs.

Results: We apply the label propagation framework to four popular signal detection algorithms (PRR, ROR, MGPS,
BCPNN) and find that our proposed framework generates more accurate drug safety signals than the corresponding
baselines. In addition, our framework identifies potential ADRs for newly approved drugs, thus paving the way for
early detection of ADRs.

Conclusions: The proposed label propagation framework combines pre-clinical drug structures with post-market
safety reports, generates enhanced drug safety signals, and can potentially help to accurately detect ADRs ahead of
time.

Availability: The source code for this paper is available at: https://github.com/ruoqi-liu/LP-SDA.

Keywords: Adverse drug reactions, Signal Detection, FDA Adverse Event Reporting System, Drug similarity

Background
Adverse drug reactions (ADRs), identified as harmful
and unintended reactions resulted from drug treatments,
become main public health issues. Delayed detection of
ADRs can cause a major damage to public health [1, 2]
(e.g., accounting for significant amount of mortality and
morbidity each year). It is estimated that over 2,000,000
serious ADRs occur among all hospitalized patients in
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the United States, which causes more than 100,000 deaths
per year [2]. In addition, ADRs become the fourth lead-
ing cause of death in the United States, preceding serious
medical events such as pulmonary disease, diabetes, AIDS
and pneumonia [3]. Therefore, early detection of poten-
tial ADRs or drug safety signals can significantly reduce
the health risk for patients and save money for additional
hospital costs.
Though ADRs can be detected in both pre-marketing

clinical trials and post-marketing surveillances, most ADR
knowledges are revealed after the drugs being on market.
Compared to clinical trials, post-marketing stage allows
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larger population and extended follow up. Real-world evi-
dence, such as Spontaneous Reporting System (SRS) [4],
Electronic Health Records (EHRs) [5], medical claims [6],
social media and web search [7, 8], become important for
detecting ADRs. Among those data sources, SRS remains
a cornerstone of pharmacovigilance and are collected
from a variety of sources, including healthcare providers,
national authorities, pharmaceutical companies, medical
literature and more recently directly from patients. SRS
collects case reports such that each sample contains ADR
status (Yes/No) and drug status (Yes/No). Such a structure
allows SRS to be mined without an epidemiology design.
Due to the rich and valuable information offered by SRS

data, a series of signal detection algorithms have been
developed to detect drug safety signals from SRS. Pro-
portional Reporting Rate (PRR) [9] and Reporting Odds
Ratio (ROR) [10, 11] are the most commonly used meth-
ods, which are based on frequentist statistical analysis.
And Multi-item Gamma Poisson Shrinker (MGPS) [12]
and Bayesian Confidence Propagation Neural Network
(BCPNN) [13]) are two Bayesian approaches that widely
used for signal detection. Recently, another approach has
emerged that combines pre-clinical drug structures with
SRS to improve the original safety signals. Vilar et al. [14,
15] improve the original signals generated from health-
care databases by incorporating biological and chemi-
cal information of drugs. Their methods firstly achieved
improvement of performance in the analysis of two rep-
resentative ADRs: rhabdomyolysis and pancreatitis. Vilar
et al. [16] further demonstrate that other types of chem-
informic similarity (e.g., 2D drug chemical structural sim-
ilarity, adverse event profile similarity and target profile
similarity) can also yield great results in the detection of
drug safety signals. Moreover, Vilar et al. [17] present a
3D drug-ADR predictor, which incorporates 3D molecu-
lar structure similarity and drug-ADR standard reference,
to improve ADRs identification and generate enriched
drug-ADR signals. They apply the 3D drug-ADR predic-
tor on SRS resources and find that the proposed predictor
identifies more accurate signals than baseline methods.
The underlying principle behind these approaches is that
drugs with similar chemical structures are more likely to
exhibit similar ADR [18]. In general, existing methods
are developed to generate signals and/or re-rank origi-
nal signals for drugs with enough reports in SRS, but
few methods can be used to generate signals for newly
approved drugs with few or even no safety reports in SRS.
There are some approaches that use machine learning

techniques and pre-clinical information from large pub-
lic drug databases to predict ADR [19–24]. Most of these
methods typically use chemical, biological and phenotypic
properties of drugs to build predictive models. In [19]
for example, a computational approach is presented to
predict the side effects of a given drug by incorporating

information on other drugs and their side effects. They
use drug-ADR pairs obtained from public drug databases
both in the training process and performance evaluation.
However, we just use these drug-ADR pairs as external
evaluation resources which do not take part in the prior
training process (A comparison of [19] and ours frame-
work can be found in Fig. S1 of Additional file 1). To
best of our knowledge, ours is the first signal detection
framework that combines pre-clinical drug structures and
post-market safety reports.
In this paper, we propose a label propagation frame-

work to enhance drug safety signals by combining drug
chemical structures with FDA Adverse Event Reporting
System (FAERS) [25]. First of all, we compute original drug
safety signals via common signal detection algorithms
from FAERS. Then, we construct a drug-drug similarity
network based on chemical structures. Finally, we gener-
ate enhanced drug safety signals by propagating original
signals on the drug-drug similarity network. We apply the
label propagation framework on four popular signal detec-
tion algorithms (PRR, ROR, MGPS, BCPNN) and find
that our proposed framework can generate more accurate
drug safety signals than the corresponding baseline meth-
ods. In addition, the proposed framework can identifies
potential ADRs for newly approved drugs, thus providing
promise for early detection of ADRs.
In general, the contributions of the paper lie in three-

fold:

• We propose a label propagation framework to
generate enhanced drug safety signals, which
incorporates the pre-clinical drug structures with the
post-market safety reports.

• We compare the proposed framework with four
different state-of-the-art signal detection algorithms
and evaluate the performance in detecting ADRs.

• We also apply our framework on newly approved
drugs (with few cases in SRS) and access whether
pre-clinical drug structures can help to early detect
safety signals prior to FDA safety label change.

Methods
Datasets
FAERS database
The SRS data used in this work is FAERS. we adopt a
curated and standardized version of FAERS data from
2004 to 2014 [26]. After removing duplicate case records,
mapping drug names to RxNorm concepts and ADR out-
comes to Medical Dictionary for Regulatory Activities
(MedDRA) codes [27], we obtain 4245 unique drugs,
17,671 ADRs and totalling 4,928,413 reports. We plot the
frequencies of ADRs and drugs of FAERS data in Fig. 1
to demonstrate the data distribution of this dataset. The
number of drugs associated with ADRs varies a lot with
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Fig. 1 The frequencies of ADRs and drugs. a Frequencies of number of drugs associated with each ADR, b Frequencies of number of ADRs
associated with each drug

an average of 213 as shown in Fig. 1a. And the number of
ADRs associated with each drug with an average of 887 in
Fig. 1b.
Pubchem database
PubChem Compound database [28] provides unique
chemical structure information of drugs.Wemap the con-
cept IDs of drugs in FAERS into PubChem IDs using the
exact drug names and then extract the drug chemical
substructures from PubChem. Among 4245 unique drugs
in FAERS, 2708 drugs are mapped and their chemical
features are extracted from PubChem.
SIDER ground truth data
The Side Effect Resource (SIDER) database [29] contains
approved drugs and their recorded ADRs, which are col-
lected from package inserts (i.e., drug labels). In the SIDER
version 4.1, it contains totalling 1430 drugs, 5868 ADRs
and 139,756 drug-ADR pairs. We use drug-ADR pairs
extracted from SIDER version 4.1 as positive controls for
evaluation. Of 2708 drugs with chemical features, 843
drugs are mapped to SIDER by converting PubChem IDs
to STITCH IDs in SIDER. ADRs in SIDER are recorded in
both Lowest Level Terms (LLT) and Preferred Terms (PT)
form of MedDRA. We select PT for ADRs as our evalua-
tion dataset. Thus, we end up with 843 drugs, 842 ADRs
and 65,636 drug-ADR pairs as the ground truth data in the
experiment.As further validation of the approach, we also
use OFFSIDES [30], a post-marketing dataset to test the
performance (See Table S4 in Additional file 1).

Overall framework
The overall framework of this paper is outlined in Fig. 2.
It consists of three main steps: computing original drug
safety signals from FAERS reports, constructing a drug-

drug similarity network from pre-clinical drug structures,
and generating enhanced drug safety signals through a
label propagation process.

Computing drug safety signals
Our study covers four commonly used signal detection
algorithms. Table 1 lists the main properties of each algo-
rithm. The proportional reporting ration (PRR) [9] and
the reporting odds ratio (ROR) [10, 11] are two popular
measurements of frequentist statistical methods. For each
drug-adverse pair, we construct a 2×2 contingency table
(Table 2) and compute the signal scores as follow:

PRR = a/a + c
b/b + d

(1)

ROR = a/c
b/d

(2)

In this paper, we use PRR05 (referred as PPR) and ROR05
(referred as ROR) as baseline methods in the experiments.
The multi-item gamma poisson shrinker (MGPS) [12,
31] and bayesian confidence propagation neural network
(BCPNN) [13] are widely used Bayesian approaches for
signal detection. We adopt EB05 of MGPS and BCPNN25
of BCPNN as our baseline methods.

Constructing drug similarity network
We construct a drug similarity network based on chemi-
cal structures. To be specific, we treat different drugs as
nodes on the network, and compute edge weights on the
network with drug chemical structure similarities. The
similarity is based on a chemical structure fingerprint cor-
responding to the 881 chemical substructure [32] defined
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Fig. 2 The overall framework. It consists of three main steps: computing original drug safety signals, constructing a drug-drug similarity network and
generating enhanced drug safety signals through a label propagation process

in PubChem. Each drug can be represented by an 881-
dimensional binary profile whose elements indicate the
presence or absence of corresponding PubChem substruc-
tures with value 1 or 0. The Jaccard similarity between two
drugs can be calculated by:

Jaccard(A,B) = |A ∩ B|
|A ∪ B| (3)

where A and B denote the profiles of two drugs.

Generating enhanced drug safety signals
Label propagation algorithms are widely adopted in ana-
lyzing weightedN nodes graph to discover latent informa-
tion [33] and have been applied to biomedical problems
[34]. At the beginning of the algorithms, a small portion
of nodes have labels and these labels are propagated to
previously unlabeled nodes through the algorithms.
In our method, we generate enhanced drug safety sig-

nals via propagating original signals on the drug similarity
network. The weighted N nodes graph is constructed
based on theN ×N drug similarity matrix A, where Ai,j ≥
0 represents the similarity for drug i and drug j. Drugs are
treated as nodes in the graph and the edge weights are
assigned by the drug similarities. The signal score matrix
S of drug-ADR pairs, where Si,j denotes the signal score of
drugi-ADRj combination, are considered as initial labels
of nodes. For the drug Di, the initial labels are ith row of
the signal scores matrix S, which are denoted as Si. The
label information of initial drug nodes is propagated to
the nodes through the weighted edges in the graph by an
iterative approach. To guarantee the convergence of the
updates, the original drug similarity matrix A needs to be
normalized so that the row sum is one. We denote the
normalized matrix asW.

Using W, we propagate labels from the labeled drug
nodes to the unlabeled nodes. In every iteration, the label
information of each node is updated by absorbing labels
from its neighbors by a probability γ , and retaining labels
of its previous labels by a probability (1 − γ ). The updat-
ing formula for a drug node i in the t th iteration from step
t − 1 to step t can be denoted as below,

Y t
i = γWYt−1

i + (1 − γ )Si (4)

In this formula, Y t
i represents the updated label informa-

tion of drug node i in tth iteration, and 0 < γ < 1 is
the absorbing probability that determine the label infor-
mation absorbed from neighbors. By considering all drug
nodes at the same time, we can formulate the updating
formula (4) into a matrix form,

Y t = γWYt−1 + (1 − γ )S (5)

After t iterations, (5) can be written as,

Y t = (γW )tS + (1 − γ )

t−1∑

i=0
(γW )iS (6)

Since
∑N

j=0 Ai,j = 1, the spectral radius ρ(W ) ≤ 1.
And 0 < γ < 1, thus limt→∞(γW )t = 0 and
limt→∞

∑t−1
i=0(γW )i = (I − γW )−1, where I is the iden-

tity matrix of orderN. Therefore, the iteration of updating
formula will converge as (The proof of convergence can be
found in [33]),

Y = lim
t→∞Y t = (1 − γ )(I − γW )−1S (7)

where Y is the final label information for N drug nodes
and S is the matrix for initial label information.
To generate signals for a new drug, we regard the sig-

nals of the drug with all ADRs as 0. Then we calculate
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Table 1 Common disproportionality analysis for safety signals

Methods Description Signal score
computation

Frequentist
statistical
methods

Proportional
Reporting Ratio
(PRR)

Statistical
method to
calculate the
relative risk in
order to measure
the association
strength for a
drug-ADR pair

PRR05: lower
bound of the
95% confidence
interval of
relative risk
reporting ratio
distribution

Reporting Odds
Ratio (ROR)

Statistical
method to
calculate the
odds ratio in
order to measure
the association
strength for a
drug-ADR pair

ROR05: lower
bound of the 95%
confidence
interval of odds
ratio distribution

Bayesian-based
methods

Multi-item
Gamma Poisson
Shrinker (MGPS)

Bayesian-based
method to
prevent false-
positive signals
from multiple
comparisons.
Generate an
adjusted value
based on
Reporting Ratio
(RR)

EB05: lower
bound of the 95%
of the posterior
distribution for RR

Bayesian
Confidence Prop-
agation Neural
Network (BCPNN)

Bayesian-based
method to
prevent false-
positive signals
from multiple
comparisons.
Generate an
adjusted value
based on
Information
Component (IC)

BCPNN25: lower
bound of the
2.5% of the
posterior
distribution for IC

the similarities between new drugs and other drugs. Based
on current similarity network, we can generate safety
signals via label propagation, even there is no existing
report.
In general, the original signal scores computed by com-

mon signal detection algorithms are further improved
through the label propagation on the drug similarity net-
work. The final labels (scores) can be regarded as the
improved signals for drug-ADR pairs.

Table 2 2×2 contingency table for a drug-ADR pair

Reports with ADR Reports without ADR Total

Reports with drug a b a + b

Reports without drug c d c + d

Total a + c b + d a+b+c+d

Results
Experiment setup
The known drug-ADR pairs extracted from SIDER are
treated as positive controls, and the unknown drug-ADR
pairs are referred as negative controls. Since the num-
ber of positive samples is much fewer than negative ones,
we randomly sample part of negative controls from all
unknown pairs. The size of negative samples is twice the
size of positive controls. To fully demonstrate the per-
formance of our methods, we also compile an evaluation
dataset with all drug-ADR pairs from SIDER as reference
positives and the complement set of SIDER drug-ADR
pairs as reference negatives (i.e., without any sub-sampling
of negatives).We conduct the experiments on this alterna-
tive dataset and report the results in Table S2 of Additional
file 1.
In the performance comparison, we use Area Under

the Curve (AUC) score, Area Under the Precision-Recall
Curve (AUPR) score, precision, recall, accuracy and F1-
score (F1) for performance comparison. AUC score is
a graphical figure of true positive rate (TPR) and false
positive rate (FPR), which can be plotted by varying the
threshold value for output scores. The definition of TPR
and FPR shows below:

⎧
⎨

⎩
TPR = True Positive

True Positive+False Negative

FPR = False Positive
False Positive+True Negative

(8)

Similarity, AUPR can be plotted in the same way based on
precision and recall score. Precision measures the proba-
bility of the output identified safety signals being correct.
Recall measures the probability of real true safety signals
being estimated as the outputs. The equations of precision
and recall are shown in 9.

{
Precision = True Positive

True Positive+False Positive

Recall = True Positive
True Positive+False Negative

(9)

Accuracy measures the probability of all ground labels of
drug-pairs being estimated correctly. F1 is defined as the
harmonic mean of precision and recall:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(10)

There is one parameter: absorbing probability (γ ) of
label propagation in the proposed method. We consider
γ in {0.1, 0.2, 0.3, ..., 0.9} and build the model with γ that
yields the maximum AUC score. We evaluate the perfor-
mance of models on different parameters and show the
results in the Fig. S2 of Additional file 1. The optimal val-
ues of γ for each signal detection algorithms are shown in
Table S3 of Supplementary Materials.
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Performance evaluation on all ADRs
We compare the proposed methods with four baselines
(PRR, ROR, MGPS, BCPNN) using all years data and
report the six metrics in Table 3. “LP-Method name”
denotes the proposed method and which signal detec-
tion algorithm we use to generate original signals. From
Table 3, we can observe that among these four signal
detection algorithms, MGPS outperforms other baseline
methods resulting in the best AUC scores and AUPR
scores. And our methods are better than all the cor-
responding baseline methods in terms of AUC scores,
AUPR scores and precision. The results demonstrate that
drug-drug similarities can help to enhance the safety sig-
nals since the similar drugs may induce same ADRs. By
this way, the original drug safety signals are improved by
incorporating information from similar drugs.
We also plot the yearly change curve for LP-MGPS

and MGPS based on AUC scores and AUPR scores in
Fig. 3. Here, 2004, 2005, ..., 2014 of horizontal axis repre-
sent the reports we use to generate signals accumulated
from 2004 to current year (i.e., 2008 denotes reports from
2004 to 2008 are utilized to generate signals). Accord-
ing to Fig. 3, we can find that our method LP-MGPS
outperforms its corresponding baseline MGPS on every
cumulative years. In addition, the proposed method can
achieve better performance especially only with reports of
early years.

Performance evaluation on representative ADRs
To further characterize the performance of the proposed
method, we select ADRs from Designated Medical Event
(DME) [35] for additional comparisons. DME contains
standardized medical concept terms released by The
European Medicines Agency (EMA), which is a list of
inherently serious ADRs. We map the ADRs of DME with
our datasets and remove the ADRs associated with less
than 10 drugs. 31 ADRs are considered for performance
evaluation and Table 4 shows the comparison of proposed

Table 3 Comparison of the proposed methods and
corresponding baseline methods on all years reports

Method AUC AUPR Precision Recall Accuracy F1

PRR 0.716 0.517 0.786 0.466 0.629 0.586

LP-PRR 0.728 0.534 0.801 0.478 0.644 0.588

ROR 0.716 0.518 0.786 0.466 0.629 0.585

LP-ROR 0.728 0.534 0.801 0.477 0.643 0.588

MGPS 0.727 0.544 0.746 0.483 0.649 0.586

LP-MGPS 0.751 0.574 0.770 0.498 0.665 0.601

BCPNN 0.670 0.445 0.867 0.428 0.570 0.573

LP-BCPNN 0.671 0.449 0.911 0.428 0.574 0.573

Evaluation metrics of fixed levels of sensitivities and specificities values can be
found in Table S1 of Additional file 1. The bold in the table is maximum values of
that evaluation metrics on different methods

LP-MGPS and the original MGPS algorithm on top 15
ADRs ranked by AUPR scores. “Number of positive drugs”
denotes the number of drugs that associated with each
ADR. Here, we use MGPS as our based signal detection
algorithm since it yields highest AUC andAUPR scores for
this task. According to the results, the proposed method
is better than the corresponding baseline method on all 15
ADRs in terms of AUPR scores. And our methods outper-
form the baseline on most cases for AUC scores. (More
experiments on these representative ADRs can be found
in Table S5 and Table S6 of Additional file 1).

Discussion
A label propagation framework is built in this study, which
enriches post-market safety reports with pre-clinical drug
similarity network to generate enhanced safety signals.
The overall performance of the proposed method is supe-
rior, the performance on those important ADRs are good,
and the MGPS-based method achieves the best perfor-
mance.
We further demonstrate the performance of the pro-

posed method on newly approved drugs which have few
(or even no) reports in SRS. The safety related labels
for a drug are released by FDA since the drug approval
and ADRs are recorded in labeling information for drugs.
The labeling information might be revised quarterly by
port-marketing surveillance. Here, we report the perfor-
mance of ADRs detection for two recently approved drugs
“liraglutide” and “pazopanib” in Fig. 4. We use MGPS-
based method to generate original signals since we obtain
the best performance on MGPS. We compute the yearly
rankings of the drug to the ADR and the number of
drug-ADR cases in SRS. The horizontal axis here rep-
resents the cumulative years from 2004 to current year.
The rank in vertical axis denotes the percentile of the
drug ranking, which can be calculated by rank of the drug

# all drugs ∗
100 after sorting the entire drug list in a descending
order.
Liraglutide is a medication used to treat diabetes or obe-

sity [36], and it is approved for medical use in the United
States in 2010 [37] and in Europe in 2009 [38]. In 2011,
renal failure was updated to the labeling information of
liraglutide [39]. According to Fig. 4a, we can find that
Liraglutide-Renal failure first showed up in SRS in 2010
and accumulated to 11 cases in 2014. Thus, the baseline
which entirely rely on the sufficient cases can only gener-
ate signals for this pair after 2010. The ranking of liraglu-
tide gradually increases as more years data accumulated.
The proposed method performs better than the baseline
after 2010.More importantly, the proposedmethod is able
to generate signals before 2010 and can predict liraglu-
tide to cause renal failure as early as of 2005 by taking the
case reports of liraglutide’s similar drugs into the consid-
eration. Therefore, the proposed method can early detect
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Fig. 3 Comparison of the proposed method with MGPS on yearly cumulative reports. a: AUC scores of LP-MGPS and MGPS with yearly reports, b:
AUPR scores of LP-MGPS and MGPS with yearly reports

the safety-related labeling changes than the labels revised
by FDA.
Pazopanib is a medicine used for treatment of advanced

renal cell carcinoma (RCC) and advanced soft tissue sar-
coma (STS) [40]. It is approved for medical use in the
United States in 2009 [41] and in Europe in 2010 [42].
The impaired wound healing was included in one of syn-
dromes in labeling information of pazopanib in 2014 [43].
For Pazopanib-Impaired wound healing shown in Fig. 4b,
it is initially reported by SRS in 2009 and continually
accumulated up to 77 cases by 2014. The baseline can
not generate signals for Pazopanib-Impaired wound heal-
ing without any cases. However, the proposed method is
able to identify potential safety signals before 2009 and
yearly rankings of the pazopanib confirm that our method

can detect the safety signals prior to FDA safety label
change.
The above instances confirm that the algorithm is

able to detect drug safety signal before the approval,
and consistently outperforms the state-of-the-art in early
detection and before the drug label change which every
pharmacy is trying to avoid.

Conclusions
In this paper, we present a label propagation framework,
which integrates drug chemical information with post-
market safety reports, to generate enhanced drug safety
signals. The drug safety signals are enhanced through the
process of label propagation with the drug similarity com-
puted from the chemical information. We compare the

Table 4 Top 15 ADRs ranked by AUPR

ADR concept ID ADR name Number of positive drugs AUPR AUC

MGPS LP-MGPS MGPS LP-MGPS

36009756 Anaphylactic reaction 373 0.968 0.973 0.779 0.798

35104877 Febrile neutropenia 52 0.968 0.972 0.955 0.962

35707713 Pancreatitis 197 0.956 0.959 0.862 0.865

36009762 Angioedema 328 0.949 0.955 0.794 0.807

35406359 Deafness 123 0.932 0.940 0.819 0.832

37019318 Renal failure 207 0.937 0.939 0.824 0.828

36009760 Anaphylactoid shock 151 0.869 0.928 0.681 0.756

35104879 Granulocytopenia 224 0.901 0.925 0.756 0.789

36009724 Stevens-Johnson syndrome 209 0.917 0.922 0.815 0.825

36516888 Rhabdomyolysis 90 0.914 0.920 0.866 0.868

35104103 Bone marrow failure 195 0.914 0.920 0.758 0.756

36009707 Erythema multiforme 252 0.911 0.918 0.777 0.782

35104281 Haemolytic anaemia 128 0.901 0.916 0.788 0.785

35909518 Hepatic failure 136 0.910 0.915 0.813 0.820

35104101 Aplastic anaemia 109 0.885 0.913 0.748 0.802

The bold in the table is maximum values of that evaluation metrics
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Fig. 4 Comparison of the proposed method with MGPS on newly approved drugs: a yearly rankings change of Liraglutide-Renal failure, and the
label change happens in 2011, b yearly rankings change of Pazopanib-Impaired wound healing, and the label change happens in 2014

performance of our methods with four different state-of-
the-art signal detection algorithms (PRR, ROR, MGPS,
BCPNN) using safety reports from SRS. The results
demonstrate that the proposed methods outperform
their corresponding baselines in generating accurate drug
safety signals. Extensive experiments show that our meth-
ods are able to accurately detect potential ADRs for newly
approved drugs with few safety reports, which pave the
way for early detection of ADRs.
This study can be extended in multiple directions in

the future in terms of both drug features and post-market
real-world evidence. Other types of available data sources
of drugs such as chemical-protein binding and therapeu-
tic indication data can be leveraged for the construction
of drug similarity networks. Furthermore, the label prop-
agation framework can be applied to enhance drug safety
signals generated by other real-world evidence such as
EHRs and medical claims.
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