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Abstract

Background: Text mining and natural language processing of clinical text, such as notes from electronic health
records, requires specific consideration of the specialized characteristics of these texts. Deep learning methods could
potentially mitigate domain specific challenges such as limited access to in-domain tools and data sets.

Methods: A bi-directional Long Short-Term Memory network is applied to clinical notes in Spanish and Swedish for
the task of medical named entity recognition. Several types of embeddings, both generated from in-domain and
out-of-domain text corpora, and a number of generation and combination strategies for embeddings have been
evaluated in order to investigate different input representations and the influence of domain on the final results.

Results: For Spanish, a micro averaged F1-score of 75.25 was obtained and for Swedish, the corresponding score was
76.04. The best results for both languages were achieved using embeddings generated from in-domain corpora
extracted from electronic health records, but embeddings generated from related domains were also found to be
beneficial.

Conclusions: A recurrent neural network with in-domain embeddings improved the medical named entity
recognition compared to shallow learning methods, showing this combination to be suitable for entity recognition in
clinical text for both languages.

Keywords: Clinical text mining, Unstructured electronic health records, Medical named entity recognition, Recurrent
neural network

Background
The goal of named entity recognition (NER) is to automat-
ically identify mentions of relevant entities in written texts
[1]. Given a sentence, the goal of NER is to label each token
in the sentence with a corresponding entity tag. Within
the clinical domain, the focus is typically entities such as
symptoms, diseases, body parts, treatments, and drugs,
and the extracted entities can be informative, for example,
for the detection of adverse drug events [2].
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Improved results for general named entity recognition
have lately been achieved through the application of deep
learning methods [3–5], surpassing shallow methods such
as Conditional Random Fields (CRF) [6, 7]. Neural archi-
tectures for named entity recognition often consist of two
main parts, a context encoder creating a context represen-
tation of the input, and a tag decoder. A recent survey on
deep learning for NER [8] found that convolutional neu-
ral networks, recurrent neural networks, recursive neural
networks, natural language models and deep transform-
ers have been used as context encoder architectures. In
the final stage of the NER models, the context-dependent
representations are taken as input by a tag decoder to
produce the tags corresponding to the entities in the
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input sequence. Multi-Layer perceptrons + Softmax, Con-
ditional Random Fields, Recurrent Neural Networks and
Pointer Networks have been used as tag decoders for NER.

One option for encoder-decoder combination is to use
a Long Short-Term Memory network (LSTM)[9] encoder,
paired with a Conditional Random Fields [10] decoder.
Huang et al. [11] were the first to use a bidirectional
LSTM for creating context representations combined with
a CRF as a tag decoder. This combination has become
a de facto standard for named entity recognition. Using
bidirectional LSTMs [3, 4, 11] has an additional advan-
tage when it comes to modeling sequential data as they
make use of both past information (via forward states) and
future information (via backward states). Similar archi-
tectures have also been successful for biomedical texts
[12, 13].

Another motivation for using deep learning architec-
tures is their ability to automatically discover implicit
features in the input. This can potentially reduce the
dependence on external resources for feature engineering,
such as in-domain terminologies, which are not available
for all languages.

Yadav and Bethad [14] compared, in a survey on NER,
feature-engineered systems and feature-inferred neural
network systems and concluded that feature-inferred sys-
tems outperformed the former approaches. However,
Yadav and Bethad also found that there is ample room
to make progress by incorporating key features from
approaches using feature engineering into neural network
architectures.

Using pre-trained word embeddings improved the per-
formance over random initialization in neural architec-
tures [15]. These embeddings are word-level representa-
tions trained over large corpora using unsupervised algo-
rithms. Google word2vec[16, 17], Stanford Glove [18, 19],
SENNA [20, 21] and Facebook FastText [22, 23] are com-
monly used algorithms for generating word embeddings.
In this regard, Yao et al. [24] trained word representations
using a skip-gram neural network language model with
data from Pubmed for Biomedical NER. In our work, a
bidirectional LSTM-CRF is applied for entity recognition
in clinical texts. Input embeddings are generated from
out-of-domain corpora, general medical corpora, and cor-
pora extracted from electronic health records (EHR) using
the word2vec, Stanford Glove and FastText approaches.
There are very few corpora of clinical text openly available
for research for languages other than English, and the pos-
sibility of comparing methods and techniques for different
languages are very limited [25]. Therefore, the evaluation
of the different approaches on two different languages
is beneficial. Since the same experimental structure with
similar corpora, the same architectures and parametriza-
tion has been set for two languages, in our case, Swedish
and Spanish, it is possible to get a more robust evaluation

of the included methods for NER in clinical text. The aim
is to improve NER for clinical text in these languages,
and further, that the results might generalizable for other
languages as well.

In summary, our work is motivated by two factors: i)
the potential knowledge that can be gained from mining
health records [26]; ii) the need for further research and
development of clinical text mining in languages other
than English [25]. Our contribution rests on a thorough
evaluation of the different embedding sources and their
impact on NER in Swedish and Spanish clinical text.

Examples of the ongoing interest in medical and clini-
cal entity recognition are shared tasks such as the i2b2/VA
[27] concept annotation shared-task organized in 2010,
the 2018 MADE 1.0 challenge [28], and the second task of
the China Conference on Knowledge Graph and Semantic
Computing (CCKS-2017) which was devoted to clini-
cal named entity recognition and provided a dataset for
developing systems for Chinese.

In the last years the number of studies on clinical named
entity recognition in Chinese has increased rapidly. In
[6] and [29] feed forward networks gave an improvement
in performance compared to using a CRF when extract-
ing four different types of clinical entities from health
record notes [6]. Wang et al.[30] incorporated dictio-
naries into a bi-LSTM-CRF neural network to deal with
rare or unseen entities and to take advantage of expert
knowledge. They used five schemes for feature repre-
sentation and showed that by incorporating dictionaries,
highly competitive results were obtained for Chinese clin-
ical named entity recognition. Additionaly, EHRs from
the CCKS-2017 dataset were analyzed by means of a
CRF method and a LSTM-CRF model [31]. This model
achieved an F1-score of 90.43.

Due to the unavailability of clinical data resources in
German, not much work has been possible in detecting
medical named entities or relations. One on-going work
is described in [32] were a nephrology reports corpus
was manually annotated, and a CRF and a Character-
level Neural Network (CharNER NN) were used to detect
named entities and, in addition, a Support Vector Machine
(SVM) and a Convolutional Neural Network (CNN)
were used for relation detection between medical named
entities.

For performing NER in clinical notes in English, bidirec-
tional LSTMs and GRUs (Gated Recurrent Unit) [7] and
also LSTMs combined with CRFs [33] have been applied.
Hofer et al. [34] evaluated five improvements on medical
NER with only 10 annotated texts in a neural architecture
with three inputs (character, word and case embeddings)
and a bidirectional LSTM: i) the initialization of all the
layers in the neural architecture with pre-trained weights
extracted from in-domain data achieved an improvement
of +4.52 with respect to the baseline (F1-score of 69.3; ii)
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in the tuning of hyperparameters, the one with the largest
impact was the use of the Nadam optimizer (F1 of 70.41);
iii) pre-training with a combination of datasets decreased
the performance; iv) the use of customized word embed-
dings improved results by 3.78 and lastly, v) reducing the
number of OOV words improved the F1-score marginally.
Finally the authors obtained an F1-score of 78.87. The
positive impact of embeddings trained with in-domain
corpora is also emphasized in [35] where the authors use
a bi-LSTM for the recognition of descriptions of patient
mobility. A study of the semantic relatedness in word
embeddings [36] concluded that they are highly effective
in capturing semantic relatedness and similarity relations
between medical terms and that deriving word vectors
from in-domain data offers a slight advantage over using
text from a related, but not in-domain, corpus.

For Swedish, a bidirectional LSTM has been trained to
recognize entities using general medical texts and then
evaluated on clinical texts [37] and for Spanish an unsu-
pervised shallow neural network has been used to create
word representations that were matched to SNOMED CT
using vector similarities [38].

In previous work we have used different technical
approaches to extract medical named entities from Span-
ish and Swedish clinical corpora. One of the motiva-
tions in these experiments was to study languages other
than English in clinical text mining, and compare differ-
ent techniques in a domain where the data cannot be
openly shared due to ethical considerations. In our previ-
ous work[39], we demonstrated that CRFs by themselves
are useful for medical named entity recognition and that
semi-supervised approaches meaningfully improved stan-
dard supervised approaches for both languages. However,
CRFs use symbolic input representations, with the dis-
advantage that these representations tend to be weak for
unseen words, a frequent issue in the clinical domain. In
[40] we made use of three state of the art supervised clas-
sifiers and four feature sets and combined them to obtain
an ensemble learner that combined 12 base-models. The
combination increased the precision in Swedish and Span-
ish obtaining a F1-score over 71, but did not make a big
difference in terms of recall.

This work is an extension of previous work on med-
ical entity recognition in clinical Spanish and Swedish
texts [41] using a bidirectional LSTM together with a
CRF tag decoder. Here, the specific focus is the genera-
tion of input embeddings and the aim is to evaluate the
impact of using different source corpora and algorithms
for the input representations and the possibility of using
deep architectures for named entity recognition in cases
where large in-domain corpora are unavailable. Addition-
ally, the introduction and background sections have been
extended with a more in-depth discussion of related work
and an error analysis has been performed to investigate

what factors of the training data have the most impact on
the performance of the bidirectional LSTM network for
identifying entities in clinical text.

Methods
In this section first the annotated data set and the gener-
ated input representations, embeddings and their combi-
nations, are described. These contextual representations
are the source for training a bidirectional Long Short-
Term Memory neural network with a Conditional Ran-
dom Fields output layer as the tag decoder of the network.
Next, the model setup and the performed experiments are
presented.

Annotated clinical corpora
The LSTM-CRF network is trained and evaluated on clin-
ical corpora annotated for entities by medical experts.
The annotated corpora of clinical texts were extracted
from electronic health records. The use of these records
has been approved by the Regional Ethical Review Board
in Stockholm (Etikprövningsnämnden i Stockholm.), per-
mission number 2014/1882-31/5, and the ethical com-
mittee attached to Osakidetza (Basque Sanitary System)
approved the use of the Spanish documents. The Spanish
data were annotated for the entities Disease and Drug, and
the Swedish data were annotated for Body part, Disorder
and Finding. The annotation of the Spanish and Swedish
corpora are described in [42] and [43] respectively and
Table 1 gives a description of the annotated data.

Embedding generation
The predictive ability of supervised machine learning rests
on accurate and rich input representations from which the
inference algorithm can discover latent patterns. Given
that access to specialized corpora within the clinical
domain is limited due to the sensitive nature of the texts,
the tolerance to the domain of the clinical named entity
recognition task has been measured. To this end we made
use of both in-domain and out-of-domain corpora to
generate the embeddings. With respect to the in-domain

Table 1 The number of entity instances in the training,
development, and test sets of annotated data

Entity Set

Train Dev Test

Spanish Disease 2367 1065 949

Drug 884 522 456

All 3251 1587 1405

Swedish Body part 1359 354 390

Disorder 635 196 228

Finding 2760 846 895

All 4754 1396 1513
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corpora we explored two variants: 1) For both languages,
EHRs similar to those used for supervised inference of the
entity recognition models (but not exactly the same); The
Swedish EHR corpus consists of patient records from 500
clinical units at the Karolinska University Hospital. This
data base is described in detail in [44]. The Spanish corpus
of EHRs was collected between 2008–2012 at Galdakao-
Usansolo Hospital and in 2014 at Basurto Hospital. The
Spanish corpus are mainly composed of discharge reports,
while the Swedish corpus contains several types of clinical
notes. 2) General medical corpora (from now on referred
to as genMed). The sources for the Spanish genMed cor-
pus were a collection of general texts devoted to medical
contents such as forums and tweets from the openly avail-
able UFAL Medical Corpus v. 1.0 [45], Wikipedia articles
filtered using SNOMED CT and collections of abstracts
from Medline. The general medical texts for Swedish
were collected from the Swedish medical journal Läkar-
tidningen. This journal contains both scientific articles
and editorials, and an openly available version from the
years 1996–2006 [46] was used to generate the genMed
embeddings.

Regarding the out-of-domain corpora, we made use of
Spanish Billion Word Corpus [47]. The general corpus
(referred to as gen) comprises texts extracted from differ-
ent corpora and resources of the web. For Swedish, the
general corpus was collected from a dump of Swedish
Wikipedia articles [48]. Table 2 gives an overview of the
corpora used to generate the embeddings.

The corpora were analyzed in order to get their lem-
matized versions. For Spanish, the corpora was analyzed
with a tool suited to the medical domain: FreeLing-Med
[49]. For Swedish, the UDPipe[50] was used to lemmatize
the out-of-domain corpus, and Stagger [51] was used for
the EHR texts. Finally, three different state of the art tools
were used to extract embeddings from these large un-
annotated corpora 1) FastText [52]; 2) word2vec [53]; 3)
Glove [19]. For these three algorithms, the dimension of
embeddings was set to 300 with a window size of five.

In an attempt to illustrate the embedding-combinations,
we chose a few examples obtained from our data with
a PCA reduction to dimension n=2 in Table 3. We
show the word-form, the corresponding lemma and the

Table 2 The corpora used to generate the embeddings

Swedish Spanish

Corpora Size Vocabulary
size

Size Vocabulary
size

Out-of-domain
(gen)

2.89 GB 1 040
025

8.3 GB 1 000 655

General medical
(genMed)

130 MB 118 683 176 MB 168 500

EHR 1.2 GB 300 825 1.1 GB 286 986

Table 3 Projection in a bi-dimensional space (R2) of several
word-embeddings and their corresponding lemmas

w l ew ∈ R
2 el ∈ R

2

DM diabetes mellitus (6.5,2.0) (0.6, 23.2)

diabetesmellitus diabetesmellitus (6.8,2.7) (0.8, 2.1)

hiperglucemia hiperglucemia (5.0,2.5) (0.1,1.8)

diarrea diarrea (1.5,5.0) (1.6,5.4)

fiebre fiebre (1.7,7.1) (2.1,6.3)

embedded word and lemma (respectively ew and el) in a
bi-dimensional space (R2). Note that DM is close to dia-
betesmellitus (a misspelled version of diabetes mellitus)
and to hiperglucemia (meaning hyperglycemia) while it is
far from diarrea (meaning diarrhea) and fiebre (meaning
fever), as the cosine similarity between DM and diabetes-
mellitus is 0.99, but the similarity to fiebre is 0.51.

Simcos(DM, diabetesmellitus) = 0.99
Simcos(DM, fiebre) = 0.51

As a result, embeddings were generated from word-
forms (denoted as W) and from lemmas (L) expressed in
(1) and (2) respectively where w stands for a word-form
and ew(w) for its corresponding embedding, likewise, l
refers to a lemma and el(l) to its embedding.

ew : �W −→ R
n (1)

w ew(w)

el : �L −→ R
m (2)

l el(l)

For practical reasons, unknown words were modelled as �0
(0-vector).

Additionally, the embedding-spaces were combined by
means of three simple operations:

1 Concatenation (denoted as W,L): A dictionary was
built concatenating word and lemma embeddings as
expressed in (3) where ew(·) expressed in (1) stands
for the n-dimensional word-embedding vector and,
similarly, el(·) expressed in (2) stands for the
m-dimensional lemma embedding vector.

f1 : �W × �L −→ R
n+m (3)

(w, l) f1(w, l) = (ew(w), el(l))

Following with the example in Table 3, the resulting
concatenation for the entity (w,l)=(DM, diabetes
mellitus) becomes (e_w(w),e_l(l))=(6.5, 2.0, 0.6,
23.2)∈ R

4

2 Sum (W+L): It is known that summing dense
representations leads to semantic variations[54].
Following this intuition, summing the vectors of
lemmas and word-forms might help to re-enforce the
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semantic content and reduce ambiguity. To achieve
this, several semantic units (e.g. words and lemmas)
were combined by summing up their corresponding
vector embeddings as in (4). The restriction is that
the embeddings associated to each unit must have
the same dimension (n = m).

f2 : �W × �L −→ R
n (4)

(w, l) f2(w, l) = ew(w) + el(l)

Following with the example in Table 3, the resulting
sum for the entity (w,l)=(DM, diabetes mellitus)
becomes e_w(w)+e_l(l)= (6.5, 2.0)+ (0.6, 23.2) = (7.1,
25.2)∈ R

2

3 Subtraction (W-L): As summing the two vectors
could possibly add redundant information, the
difference of the lemma and word vectors was next
evaluated as an input to the network.

f4 : �W × �L −→ R
n (5)

(w, l) f4(w, l) = ew(w) − el(l)

Following with the example in Table 3, the resulting
subtraction for the entity (w,l)=(DM, diabetes mellitus)
becomes e_w(w) - e_l(l) = (6.5, 2.0) - (0.6, 23.2) = (5.9,
-21.2)∈ R

2

To summarize, we explored features from embedding-
spaces obtained from 3 extraction approaches, 3 different
corpora, with surface word-forms and lemmas and their 3
combinations.

Bidirectional long short-term memory
Following the approaches for general named entity recog-
nition described in the introduction, a bidirectional Long
Short-Term Memory network (bi-LSTM) was used as a
context encoder to learn the representations of the words
in the input sequences. Figure 1 shows the bi-LSTM
numbered as (1) and the CRF tag decoder labeled as (2).

The LSTM network used here [55] is implemented in
Tensorflow and is similar to the bidirectional network
described in [4]. The network consists of two parts, firstly
character embeddings are obtained through applying a
bi-LSTM to the training data. Character embeddings are
similar to word embeddings, but where the basic unit for
word embeddings are the words in a text, and the embed-
ding for a word is based on the context words, the basic
unit for a character embedding is the characters. Analo-
gously, the character embedding for a single character is
based on the context characters. Word embeddings can
only be created for words which are present in the corpus,
meaning that words in the test set which were unseen in
the training corpus will lack a meaningful representation.
Including character embeddings is therefore useful both
for representing unseen words, and also for sub-word level
information. For example, there are suffixes of words that
are common for diseases which could be captured by char-
acter embeddings. This is the case for compound-words
(e.g. neoclassical word-forms) such as ‘hyperalgesia’ or
‘fibromyalgia’ and also ill-formed compound words (e.g.
‘fribomialgya’ is misspelled). Even if these cases are not
found within the word-embeddings, splitting at charac-
ter level enables comprehensive embedded information
(keeping together “hyper-” “-algesia”). The same applies
to other commonly used suffixes such as “-itis” and “-
it” referring to inflammation, “-algia” for pain or prefixes
such as “hypo-” for diminution. Such patterns are com-
mon in both the Swedish and the Spanish clinical texts as
there is an influence of Latin and Greek for medical terms
in both languages.

Next, the character level embeddings are concate-
nated with the word embeddings, and the final inter-
nal representation is then learned from these concate-
nated vectors. This approach is also similar to that of
[3] where a bidirectional LSTM was combined with
a convolutional neural net for learning the character
representations.

Fig. 1 Architecture. Bidirectional LSTM and CRF for clinical entity recognition
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Finally, the contextual representations is provided to a
conditional random field (CRF) decoder (second layer,
numbered 2, in Fig. 1). The CRF decoder is used to pre-
dict the sequence of entity labels for the input sequence
of words. When assigning the entity label to the current
word, the CRF is able to take into consideration both the
contextual representation of the word and previously pre-
dicted entity labels, i.e. the previous output of the CRF.
This is beneficial since a single entity can consist of several
tokens.

Hyperparameter tuning
The hyperparameters of the network were tuned on the
development set for both languages. The impact of dif-
ferent settings for the following hyper-parameters was
explored: learning rate, batch size, number of hidden units
for the LSTM, number of hidden units for the character
embeddings, and dimension for the character embed-
dings. Increasing the number of hidden units leads to
a network with higher capacity to model more complex
relationships between input and output; too few hidden
units can lead to underfitting, while too many might cause
overfitting [56]. Two additional important parameters of
a deep network are batch size and learning rate. Batch
size determines the number of training examples included
in each training iteration; learning rate influences how
much the parameters of the network are changed with
each batch [56].

For Swedish, a grid search over the settings for batch
size and learning rate indicated that a batch size of 30 and
a learning rate of 0.005 were appropriate. A subsequent
grid search of over the remaining hyperparameters did not
improve overall results but confirmed the use of a batch
size of 30 and a learning rate of 0.005. The rest of the orig-
inal hyperparameters were kept including a dropout rate
of 0.5 for regularization of the network.

For Spanish an exhaustive grid search of all the parame-
ters was carried out and as shown in Table 4, the optimal
parameters for Swedish and Spanish were often found

Table 4 Results of the hyperparameter tuning, the last column
shows the selected value for each language

Hyperparameter Evaluated values Best
Swedish/Spanish

Batch size 10, 20, 30, 40, 50, 100 30/10

Nr. of hidden units, LSTM 100, 200, 300, 400 300/300

Nr. of hidden units, char. 5, 50, 100, 150, 200 100/100

Learning rate 0.01, 0.005, 0.001,
0.0005, 0.00005

0.005/0.005

Drop-out 0.5, 0.8 0.5/0.5

Dimension character
embeddings

50, 100, 150, 200, 300 100/300

Dimension word
embeddings

100, 300 300/300

to be the same, with the exception of batch size and
the dimension of the character embeddings. The hyper-
parameters were empirically determined, however one
possible reason for the larger dimension of the charac-
ter embeddings needed for Swedish could be that Swedish
text contain a larger set of character combinations com-
pared to Spanish text.

Experiments
The bi-LSTM network was trained on the training data
using the selected hyper-parameters. The number of
training epochs was determined using early stopping on
the development set, meaning that the training stopped
if no improvement was observed on the development
set for three subsequent training epochs. First, the input
embeddings generated from the three different source
corpora were evaluated and next the different feature
combinations were explored. To enable a comparison
over languages, the best hyperparameters derived from
the Spanish data were used for evaluating the embed-
dings generated from different domains. For the further
experiments with combined input features, the individ-
ual parameter tuning results for each language were used
for the network. The performance of the network on each
type of input was evaluated on the test set using precision,
recall and F1-score.

Results
In total, 18 sets of embeddings were generated for
each language using the different embedding algorithms,
source corpora and both word forms and lemmas.
Regardless of embedding algorithm (Glove, FastText or
word2vec) using EHR text to generate the embeddings
proved more efficient compared to the general and gen-
Med corpora for both words and lemmas for Swedish, see
Fig. 2. For Spanish, the trend is less clear for words, but the
overall highest results were gained using the EHR corpus
and lemmatisation, see Fig. 3.

The results for the combined features, that is, for the
concatenated, summed and subtracted embeddings did
not improve results over the individual input features for
Spanish, but for Swedish improved results were reached
when concatenating the lemma and word vectors. See
Tables 5, 6, 7, and 8, for an overview of the results.

Discussion
Medical named entity recognition is an important but
challenging task due to the noisy and highly specialized
nature of clinical text. Previously, shallow methods have
been applied to Spanish and Swedish clinical text. Using
the same annotated data sets and ensembles of shallow
learners with symbolic features as input, an average F1-
score of 71.32 was obtained for Spanish and of 71.65 for
Swedish [40].
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Fig. 2 F1 Swedish. Average F1-score for each corpus and extraction method

Comparing those results to the current ones, obtained
using a bi-LSTM, an improvement was achieved despite
having fewer feature types—i.e. only word and lemma
embeddings—as input. The average F1-score in the cur-
rent study using only one of the embeddings is four points

higher compared to when using shallow methods for both
languages. In the case of Spanish, lemma embeddings gave
a better result but for Swedish the network performed
similarly using either lemmas or words. The results in
this study are also higher compared to previous results

Fig. 3 F1 Spanish. Average F1-score for each corpus and extraction method
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Table 5 Results for Spanish

Source Feature Algorithm Precision Recall F1-score

EHR W Glove 71.97 60.33 65.64

word2vec 72.48 69.34 70.87

FastText 73.82 69.84 71.77

L Glove 74.22 67.21 70.54

word2vec 80.18 70.90 75.25

FastText 76.71 66.86 71.44

GenMed W Glove 70.42 64.73 67.46

word2vec 75.15 68.91 71.90

FastText 75.02 66.08 70.26

L Glove 73.53 65.86 69.49

word2vec 75.15 63.31 68.72

FastText 72.18 66.64 69.30

Gen W Glove 71.54 65.65 68.47

word2vec 70.63 61.60 65.81

FastText 73.97 62.74 67.90

L Glove 73.00 64.66 68.57

word2vec 74.11 63.38 68.32

FastText 75.87 63.38 69.06

EHR W,L word2vec 76.00 69.00 72.27

W+L word2vec 76.52 65.93 70.83

W-L word2vec 75.18 67.71 71.25

Embeddings of base-units on top and, below, with the base-units combined

obtained using Conditional Random Fields with a larger
set of input features, including part-of-speech tags and
clustered embeddings but without the LSTM layer [39].
This shows that the LSTM network is able to produce a
good representation of the input texts for the task of entity
recognition.

Compared to previous work applying a LSTM network
trained on general medical texts on Swedish clinical text
[37] the results in the current study are significantly higher
(an average F1-score of 76.04 compared to the previous
35), the difference in results is likely because the current
network was trained on annotated in-domain data.

State of the art methods for NER achieves F1-scores
of over 90 for English news text and for Spanish news
text the corresponding result is 87.26 for entities such as

Table 6 Per-entity detailed results for Spanish with embeddings
extracted with word2vec from lemmatized EHR texts

Feature Algorithm Entity Precision Recall F1-score

L word2vec Disease 75.45 61.66 67.86

Drug 88.03 90.15 89.08

Avg. 80.18 70.90 75.25

Table 7 Results for Swedish

Source Feature Algorithm Precision Recall F1-score

EHR W Glove 76.03 74.42 75.22

word2vec 75.91 75.44 75.68

FastText 76.35 74.90 75.62

L Glove 76.04 72.10 74.02

word2vec 74.44 74.49 74.46

FastText 75.25 72.99 74.10

GenMed W Glove 73.14 71.15 72.13

word2vec 74.83 68.55 71.56

FastText 74.09 69.65 71.80

L Glove 74.76 67.67 71.03

word2vec 74.05 68.89 71.38

FastText 75.48 69.51 72.37

Gen W Glove 73.79 67.60 70.56

word2vec 72.50 70.33 71.40

FastText 76.18 68.49 72.13

L Glove 73.15 70.05 71.57

word2vec 72.47 68.76 70.56

FastText 73.96 68.01 70.86

EHR W,L word2vec 74.64 77.49 76.04

EHR W+L word2vec 74.43 76.26 75.34

EHR W-L word2vec 73.45 50.95 60.17

Embeddings of single base-units on top and, below, with combined base-units

persons and locations [14]. In the current work, the F1-
scores for recognition of drug names in Spanish surpasses
this with and F1-score of 89.08. For Swedish, the best
model achieves an F1-score of 88.36 for Body part. For the
other clinical entity types, the results are not as high, and
this is not unexpected since there are many differences
between news text and clinical text. Clinical text is not
edited and often written under time pressure, and it typi-
cally contains high levels of noise in form of misspellings,
incomplete sentences and non-standard abbreviations
making it more ambiguous and challenging to process
correctly.

For this study, word2vec, Glove and FastText were used
to generate embeddings from the different source cor-
pora. The best individual results for both languages were

Table 8 Per-entity results for Swedish with word2vec from EHR
texts using concatenated word and lemma embeddings

Feature Algorithm Entity Precision Recall F1-score

L,W word2vec Body part 83.07 94.36 88.36

Disorder 75.91 73.25 74.55

Finding 69.97 70.87 70.42

Avg. 74.64 77.49 76.04
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achieved using word2vec, but the results using the dif-
ferent algorithms are very similar. Averaging over the 6
different input corpora (see Tables 5 and 7, the results in
F1-score for Spanish is in the range 68.36 (Glove) to 70.15
(word2vec). For Swedish, the corresponding results are
ranging from 72.42 for Glove to 72.91 for word2vec. The
source corpora has more impact on the final results, and
it is perhaps worth noting that even though the general
medical corpora are small compared to the out-of-domain
corpora, the results using these smaller corpora are in
most cases competitive.

One idea behind word embeddings is that elements that
are close together in the embedding space have some type
of semantic relatedness. In practice, this means that words
with similar meanings are represented by similar vec-
tors, and the similarity of two words can be measured by
the distance between their corresponding vectors. There-
fore, for an intuitive evaluation of the different embedding
spaces, we selected a number of key terms and retrieved
the elements in the embedding spaces with the highest
cosine similarity to each term. This was done for both
languages and for both the embeddings generated from
general domain texts as well as the embeddings generated
from EHRs. Table 9 shows two examples, the closest ele-
ments to the words “fever” and “diabetes”. All retrieved
terms from the EHR embeddings were highly related to
the key terms, and it can be noted, that for both languages,
both misspelled versions and abbreviations are retrieved
from the EHR-based embeddings space. For the general
domain corpus, the same procedure also produced related
terms, but perhaps in a higher degree for Spanish. In the
Swedish general domain corpus, the terms most similar to

Table 9 The closest elements in the EHR embedding spaces for
fever and diabetes, d is cosine distance

Swedish: feber fever d Spanish: fiebre d

tempstegring rising
temp.

.73 febrícula low-grade fever .65

subfebrilitet inc.
temperature

.73 fibre* .61

frossa shivering .72 febricula* .59

feberkänsla feeling of
fever

.71 escalofríos_y_fiebre
chills_and_fever

.56

halsont sore throat .67 escalofrios chills .55

Swedish: diabetes Spanish: diabetes

DM † .83 diabetes_mellitus .74

diabetiker diabetic .79 DM † .70

diabets* .79 Dm † .59

diabtes* .73 diabétes* .53

diabetets* .74 diabético diabetic .52

*denotes misspellings
†abbreviations

fever are other concepts closely related to disease such as
head ache and nausea, and the bigger difference between
the results when using general and in-domain corpora
for Swedish is perhaps also a consequence of this differ-
ence. Overall, both the general domain embeddings and
the EHR embeddings manages to represent many clinical
concepts in meaningful ways, but the EHR embeddings
are also capable of capturing the characteristics of the clin-
ical texts. The results of the entity recognition when using
the EHR embeddings are perhaps a reflection of this.

The results obtained using a single embedding showed
that i) the recognition of drugs in Spanish gives an F1-
score of 89.08 for lemma embeddings and ii) an F1-score
of 89.35 in the identification of body parts in Swedish
using word embeddings. The F1-score for the other entity
classes (Diseases for Spanish and Findings and Disorders
for Swedish) are lower. This is not due to the number
of instances in the training data, there are for example
a lot fewer annotations for Drug compared to Disorder
for Spanish. Instead a likely explanation is that drugs and
body parts are described in a more consistent way.

With respect to the embedding combination, in both
languages the concatenation strategy works better than
the sum and subtraction operations, and the final best
results were achieved using only the lemma embed-
dings for Spanish and the concatenated lemma and word
embeddings for Swedish.

Error analysis
An error analysis has been performed at both token and
entity level to determine what factors have had the most
impact on the final results. On the token level, we com-
pared the characteristics of the tokens the network man-
ages to correctly assign entity labels to and the tokens that
the network fails on. This was achieved by sorting each
token type into one of three groups: i) always correctly
tagged, meaning that the all tokens in this group were
always assigned the correct tag by the network during test-
ing; ii) always incorrectly tagged tokens and iii) tokens that
were both incorrectly and correctly tagged during testing.

Three possible error sources were considered and
similarly to [3], the tokens in the training data were
also grouped according to their membership in three
different sets: out-of-embedding-vocabulary (OOEV),
out-of-training-vocabulary (OOTV), and ambiguously-
annotated-vocabulary (AAV). A token was put into the
AAV set if the same token had received different entity
tags during training. For example, depending on the con-
text, the token head could be correctly annotated as a
body part or as belonging to a disorder as in head ache.

Membership in each token type group was compared to
membership in each error source group. Table 10 gives an
overview of the influence of the different possible error
sources. Most of the tagging errors are made on tokens
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Table 10 Token level errors in percentages by type (correctly
and incorrectly tagged) and possible error sources

Swedish Spanish

OOEV AAV OOTV OOEV AAV OOTV

Correct 8.04 9.51 38.38 4.09 9.13 39.37

Incorrect 11.30 10.43 66.38 4.56 13.69 58.94

Both 6.90 33.50 40.91 2.34 40.11 33.45

that were unseen in the training data (OOTV) as this is
the case for around 60% of the always incorrectly tagged
tokens. Not being part of the embedding vocabulary and
ambiguous annotations have less impact, where ambigu-
ous annotations are more common among the tokens that
are both incorrectly and correctly tagged during testing.

Another view on the token level performance is given in
confusion matrices, provided in Figs. 4 and 5 for Swedish
and Spanish respectively. The main source of errors for
both languages are false negatives, tokens that should be
included in an entity that were not identified by the net-
work. A minor error source is inaccurate scope of an
entity, that is, beginning (B-) and inside (I-) are miss-
labeled. There is, however, little confusion between the
different types of entities.

On the entity level, a similar analysis was performed.
For the full entities, the out-of-embedding-vocabulary

was not included since entities can comprise several
tokens, while embeddings are representations of individ-
ual tokens. Instead, another possible error source was
considered, non-entity-annotations (NEA). This group
consists of token sequences that, depending on context,
were determined to not represent any entity during anno-
tation. During testing, this could potentially introduce
false negative errors in a different context. Table 11 shows
the percentage of true positives (TP), false positives (FP)
and false negatives (FN) during testing for each possi-
ble error source. Ambiguous annotations did not appear
in the Spanish data, and were not more common among
incorrect entities compared to correct entities for the
Swedish data set. Non-entity-annotations was suspected
to be a possible source of false negatives, but were about
as common among both false positives and false negatives
for both languages. Instead, errors were most frequent for
entities unseen in the training data.

So far, exact match has been used as the evaluation
criterion. It is required that both the type of entity (e.g.
Finding or Disorder) and that the span of included tokens
match exactly for any entity to be considered as cor-
rect. For example, rygg- och nacksmärta (back and neck
pain) should be tagged as one entity of the type finding.
If the network identifies a body part “back” and a par-
tially correct finding “neck pain”, this is considered as two
incorrectly tagged entities during evaluation. Using this

Fig. 4 Confusion matrix for Swedish token level distribution of labels using the best performing approach
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Fig. 5 Confusion matrix for Spanish token level distribution of labels using the best performing approach

strict evaluation, 351 false positive entities were found
in the test set for Swedish and 248 for Spanish. Often,
recognizing the approximate span is enough for decision
making processes in computer aided tasks, thus, partial
match could be useful. Relaxing both criteria reduces the
number of false positives to 154 and 74 for Swedish and
Spanish respectively, meaning that a significant majority
of the identified entities are, at least, partially relevant.
Overall, using the partial match the F1-score increased
to 88.16 for Spanish and 85.08 for Swedish. Focusing on
the assessment criteria (span and type) individually indi-
cates that the span is more challenging for the Spanish
data set, while both span and type influences the results
for Swedish. This is probably due to the more fine-grained
entities in the Swedish data set.

A rather high number of entities not present in the
training data has been correctly tagged using the LSTM

Table 11 Entity level errors in percentages by type and possible
error sources

Swedish Spanish

NEA AAV OOTV NEA AAV OOTV

TP 16.09 6.51 31.74 8.92 0.30 39.58

FP 13.39 5.41 61.54 20.16 0.00 63.17

FN 10.83 6.83 76.39 22.20 0.00 78.54

network. Of the correctly tagged entities in the test set,
40% had not been seen during training for the Spanish
data and 32% for the Swedish data. This indicates that the
network is able to generalize from the training data, it
is not just remembering the correct label sequences for
exact tokens or token sequences. This also highlights the
importance of context words. When applying the model
to artificial sentences, for example, the sentence smärta i
knä (pain in knee), the word knee is correctly tagged as
a Body part. When exchanging the word knee with body
parts that were not present in the training data, the net-
work is still able to correctly tag the word as a Body part. A
possible explanation is that the network has learned that
the word pain is usually associated with body parts.

Conclusions
The aim of this work has been to evaluate deep learn-
ing models for entity recognition in Swedish and Spanish
clinical texts. The motivation for using deep learning for
the task of clinical named entity recognition rests on two
facts: firstly, deep learning models are able to find infor-
mative features in an unsupervised way avoiding manual
feature engineering. Secondly, and most important, there
are few corpora available in this domain and the lexical
variability is generally very high, thus, robust approaches,
such as the dense context representations learned by a
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deep neural network should capture semantic similarities
and therefore be able to better represent the input texts,
compared to previously used symbolic features (e.g. word-
forms).

This work also highlights the importance of exploring
factored representations (combinations of words and lem-
mas) for the input as this has a substantial impact on
the final results. Of the evaluated feature representations,
concatenation of word and lemma embeddings proved
most efficient for the Swedish data, and for Spanish, the
concatenation outperformed the word-embedding repre-
sentations. Analyzing different strategies to generate the
embeddings, it was found that a dimension of 300 and a
window size of 5 are suitable settings for this task.

The evaluation of the different source corpora for gener-
ating the embeddings found EHR corpora most efficient,
but the difference between using EHR corpora and gen-
eral medical texts or general texts was only a few points in
terms of F1-score. This is a valuable result since it shows
that the task of entity recognition in clinical text can be
solved with an acceptable quality even without access to
large clinical corpora which often are difficult to obtain by
using corpora from related domains.

An additional contribution of this work was the error
analysis focusing on the tolerance of the system to differ-
ent out-of-vocabulary elements including un-annotated
entities and ambiguity, an inherent challenge in natural
language. Even though error analysis showed that the net-
work had most success in correctly identifying entities
present in the training data, many entities that were not
present in the training data were still correctly labelled
by the network. This shows the ability of the approach to
generalize which entails a particular challenge in limited
domains such as this one. Partial entity matching led to an
F1-score of 88.16 for Spanish and 85.08 for Swedish.

There are still many challenges for future work. First,
we would like to consider approaches related to multi-
lingualism as the use of bilingual mappings over the two
languages to possibly benefit from the combined infor-
mation included. Second, the scientific community should
make a step ahead and try to retrieve more challeng-
ing elements such as discontinuous entities [57]. Note
that discontinuous entities are not infrequent in the clin-
ical domain, however, they are beyond the scope of the
BIO tagging schema. Finally, we would like to study the
use of hybridization techniques [14] as they seem to be
interesting also for medical named entity recognition. A
disadvantage of pre-training models such as word2vec is
that they do not take advantage of labeled data, one pos-
sibility for including labeled data is Cross-View Training
[58].
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