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Abstract

Background: Approximately 10% of admissions to acute-care hospitals are associated with an adverse event.
Analysis of incident reports helps to understand how and why incidents occur and can inform policy and practice
for safer care. Unfortunately our capacity to monitor and respond to incident reports in a timely manner is limited
by the sheer volumes of data collected. In this study, we aim to evaluate the feasibility of using multiclass
classification to automate the identification of patient safety incidents in hospitals.

Methods: Text based classifiers were applied to identify 10 incident types and 4 severity levels. Using the one-
versus-one (OvsO) and one-versus-all (OvsA) ensemble strategies, we evaluated regularized logistic regression, linear
support vector machine (SVM) and SVM with a radial-basis function (RBF) kernel. Classifiers were trained and tested
with “balanced” datasets (N_yype = 2860, N_severityrever = 1160) from a state-wide incident reporting system. Testing
was also undertaken with imbalanced “stratified” datasets (N_yype = 6000, N_severityiever =5950) from the state-wide
system and an independent hospital reporting system. Classifier performance was evaluated using a confusion
matrix, as well as F-score, precision and recall.

Results: The most effective combination was a OvsO ensemble of binary SYM RBF classifiers with binary count
feature extraction. For incident type, classifiers performed well on balanced and stratified datasets (F-score: 78.3, 73.
9%), but were worse on independent datasets (68.5%). Reports about falls, medications, pressure injury, aggression
and blood products were identified with high recall and precision. “Documentation” was the hardest type to
identify. For severity level, F-score for severity assessment code (SAC) 1 (extreme risk) was 87.3 and 64% for SAC4
(low risk) on balanced data. With stratified data, high recall was achieved for SAC1 (82.8-84%) but precision was
poor (6.8-11.2%). High risk incidents (SAC2) were confused with medium risk incidents (SAC3).

Conclusions: Binary classifier ensembles appear to be a feasible method for identifying incidents by type and
severity level. Automated identification should enable safety problems to be detected and addressed in a more
timely manner. Multi-label classifiers may be necessary for reports that relate to more than one incident type.
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Background

Approximately 10% of admissions to acute-care hospitals
are associated with an adverse event (an incident result-
ing in patient harm) [1, 2]. An event or circumstance
that could have resulted, or did result, in unnecessary
harm to a patient is called a patient safety incident. The
reporting of patient safety incidents is now widespread
and is regarded as a cornerstone of initiatives to improve
the safety of health services [3]. Incident reports are a
critical resource for understanding how and why inci-
dents occur. Analysis of narratives about adverse events
and near misses can inform policy and practice for safer
care. Timely analysis and response to the growing vol-
ume of reports about such patient safety incidents are
urgent challenges.

With widespread use of centralized reporting systems,
the volume of incident reports has increased. Unfortu-
nately, our capacity to monitor and respond to these re-
ports in a timely manner is limited by the sheer volumes
of data collected. For instance, 492,526 incidents were
reported to the UK National Reporting and Learning
System from April to June 2015, a 15.8% increase from
the previous year [4]. Current methods, which rely upon
the retrospective manual review of reports, can no lon-
ger keep up with the growing volume of incidents being
reported by healthcare workers [5-7].

The use of incident reports to examine a specific pa-
tient safety problem such as falls or medications, is
highly dependent on identifying these incident types
from the large volume of reports collected within an in-
cident monitoring system database. An incident type is a
descriptive term for a category of incidents with a com-
mon nature, grouped because of shared, agreed features
[8]. Reported incidents can vary in severity and the like-
lihood of recurrence. Most reporting systems apply a se-
verity level to grade the seriousness of an incident, to
prioritise investigation of high-risk events. This is critical
in ensuring that events with significant consequences
which are likely to recur are immediately followed-up.

The efficiency of identifying incident type and severity
can be improved by asking reporters to identify incident
type and severity when they are first recorded. A major
problem with this approach is that incidents are re-
ported by healthcare workers from a range of profes-
sional  groups  including clinicians,  hospital
administrators and safety officers who may not be expert
in incident classification [9-12]. Problems with asking
reporters to identify incidents are well documented in
the literature [13]. For example, in one controlled ex-
periment which used video-based scenarios to examine
the categorisation of falls by 446 staff from seven hospi-
tals, there was no consensus about what constituted a
fall in five out of the 14 scenarios tested [14]. Falls onto
surfaces higher than the ground were less likely to be
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considered as incidents. The type of hospital and ward
also influenced whether a scenario was categorised as a
fall.

Similarly, a severity rating system only works if re-
porters are knowledgeable about the system, and are
able to apply their knowledge consistently. Severity rat-
ings assigned by healthcare workers are often inconsist-
ent. A study carried out to evaluate the reliability of the
severity rating scale used by the UK National Reporting
and Learning System for medication errors showed that
there are marked differences in the severity ratings be-
tween different health professional groups, within groups
and for individuals at different time points [13], making
severity rating highly subjective [15]. Further, reporters
are often hesitant in assigning high severity ratings and
many reports are submitted without a severity rating,
missing opportunities for preventive and corrective ac-
tions. In the US, 25% of reports submitted to an incident
reporting system were labeled as “miscellaneous” and
“other” [16].

One way of improving the efficiency and accuracy of
identifying incident reports is to automatically classify
the incidents using text classification techniques. In
healthcare, text classification has been used to identify
adverse drug events in discharge summaries [17], surgi-
cal margin status in pathology reports [18] and disorders
in chest radiograph reports [19]. Other studies have
sought to identify reports about patient safety incidents
using unsupervised methods [20—22]. In our preliminary
work, we showed the feasibility of using supervised
methods based on statistical text classification to identify
reports about three types of incidents: patient identifica-
tion [23], clinical handover [23], and health information
technology [24]. We developed binary classifiers based
on Naive Bayes, logistic regression and Support Vector
Machines (SVM) and subsequently showed that
extreme-risk events could be identified using a similar
approach [25]. Others have similarly showed the feasibil-
ity of text classification to identify reports involving
health information technology [26]. However, these stud-
ies have focused on distinguishing a specific incident
type from all other types.

In reality, safety improvement initiatives are interested
in many different types of incidents and severity levels
reflecting the range of safety problems encountered in
healthcare. This extension from binary classification, ad-
dressed by our previous studies, to multiclass classifica-
tion is not straightforward. The complexity of multiclass
problems increases with the number of classes due to
noise and variance among input variables which poses a
challenge for well-known classification methods, espe-
cially with limited training data [27]. Binary classifiers
are good at discriminating one class from another but
do not perform as well when more classes are involved
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[28]. In this study, we thus set out to explore the real-
world multiclass problem where reports need to be cate-
gorized into many different incident types and severity
levels.

Our aim was to evaluate the feasibility of using multi-
class classification to automate the identification of re-
ports about safety problems in hospitals by type and
level of severity. We focused on ten patient safety prob-
lems that are recognized as priority areas for safety and
quality improvement (Table 1) [29-31]. One of the most
popular techniques for addressing such multiclass classi-
fication problems is to reduce the problem into multiple
binary classification problems [32], as the decision
boundaries are simpler than when considering all classes
within a single optimization formula. We sought to
examine different combinations of binary classifier en-
sembles, feature extraction methods, and decision-
making schemes. Classifiers were built separately for in-
cident type and severity level using balanced datasets for
training, validation and testing. We then examined
generalizability by testing on imbalanced stratified data-
sets which represented real-world conditions.

Methods
There are two classic ways to address multiclass classifi-
cation: problem transformation and algorithm
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adaptation. In problem transformation, multiclass classi-
fication is converted into a series of binary classification
sub-tasks, while algorithm adaptation handles multiclass
data directly using a single optimization formula. Prob-
lem transformation is a natural choice for patient safety
incident reports as it provides a simpler approach; binary
classifiers to handle individual incident types are easier
to implement and computationally efficient. In general,
the complexity of multiclass classification increases with
the number of classes. With limited training data, al-
gorithm adaptation methods are harder to optimize
while problem transformation is adaptive. For ex-
ample, new classes can be easily incorporated by
training additional binary classifiers with no changes
to the original classifiers.

We decomposed our multiclass classification problem
into a series of binary classification problems. Two trad-
itional binary classifier ensemble strategies, one-versus-
one (OvsO) and one-versus-all (OvsA), were used to
combine base binary classifiers [32]. The OvsO strategy
transforms an [ class problem into /*({-1)/2 binary prob-
lems by involving all possible combinations between
pairs of classes, where base classifiers are responsible for
distinguishing between pairs of classes. In prediction,
new samples are presented to each binary classifier and
their output is combined to give the predicted class. The

Table 1 Text classifiers were trained to identify reports about 10 safety problems in hospitals by type and severity level. This table
shows the composition of balanced and stratified datasets used for classifier training and testing

balanced AIMS

stratified AIMS

stratified Riskman

benchmark original independent
n n % n %
Incident type
Falls 260 90 20 872 15
Medications 260 68 15 1053 18
Pressure injury 260 37 8 190 3
Aggression 260 49 M 487 8
Documentation 260 26 6 252 4
Blood product 260 5 1 59 1
Patient identification 260 7 2 86 1
Infection 260 6 1 22 <1
Clinical handover 260 7 2 87 1
Deteriorating patient 260 1 <1 14 <1
Others 260 148 33 2878 48
Total 2860 444 6000
Severity level
SACI 290 25 <1 23 <1
SAC2 290 95 2 105 2
SAC3 290 2198 45 2609 44
SAC4 290 2519 52 3213 54
Total 1160 4837 5950
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OvsA strategy divides an [ class problem into [ binary
problems by training classifiers to distinguish one class
from all other classes. Prediction is based on the binary
classifier with the highest output probability.

We chose two discriminative base binary classifiers, lo-
gistic regression model and support vector machines
(SVM) rather than generative classifiers (e.g. Naive
Bayes) because discriminative classifiers have almost in-
variably outperformed others in similar text classification
of high-dimensionality data with limited training sam-
ples. SVM-based classifiers are the state-of-the-art for
many text classification tasks, despite the proposal of
new approaches that work much better for other tasks,
as they tend to generalize well when tested on independ-
ent data. Two SVM kernel types were considered, linear
and radial-basis function (RBF). Kernel parameters (y for
an RBF kernel) and the trade-off parameter (C) were
tuned to optimize classifiers.

Identifying training and evaluation datasets

We used reports from two separate incident monitoring
systems, the Advanced Incident Management System
(AIMS) [33] and Riskman [34]. AIMS is based on
20 years of research in patient safety, and has been used
since 1998 in many facilities in Australia, New Zealand,
South Africa, and the United States. In Australia, it has
been used across the public hospital system in four of
the eight states and territories: New South Wales, West-
ern Australia, South Australia, and the Northern Terri-
tory. These jurisdictions account for approximately 60%
of the population of Australia and receive high numbers
of incident reports per year. The Riskman system is an
independent tool used across the state of Victoria and a
number of private hospitals across the country.

For classifier training and testing, we used 6000 ran-
domly selected reports from 137,522 submitted to AIMS
across an Australian state between January and Decem-
ber 2011. To test classifier generalizability, an independ-
ent set of 6000 reports were randomly selected out of
28,159 submitted to Riskman in a teaching hospital be-
tween January 2005 and July 2012. Incident reports con-
sist of a number of structured and free text fields used
to describe the event and its consequences (see Add-
itional file 1: Appendix A). The mean word length for
the free text in reports was 78.5 in AIMS (range: 5-308,
SD: 35.5) and 63.4 in Riskman (range: 5-404, SD: 31.6).
The seriousness of an incident is graded using an inter-
nationally accepted rating system called the severity as-
sessment codes (SAC). SAC was developed by the US
Veterans Administration, and assignment of risk is based
on the severity of an incident and the likelihood of re-
currence [2]. One of four risk ratings (i/ extreme; ii/
high; iii/ medium; iv/ low) is assigned by reporters upon
submission [35].
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Upon collection, all reports in the training and test
sets were read and any identifiable or potentially patient
identifying information was removed in accordance with
jurisdictional privacy requirements (e.g. name, date of
birth). Three experts in the classification of patient
safety incidents reviewed and validated the labels for the
10 incident types recognized as priority areas for safety
and quality improvement (Additional file 1: Appendix B)
[29-31]. These areas were chosen prior to the data col-
lection. Inter-rater reliability for determining incident
types was Cohen’s kappa=0.93 (p<0.001 95% CI
0.9301-0.9319). Using a random sampling approach a
further set of unrelated incidents were also labeled to
ensure representativeness of the ‘Others’ set (i.e. includ-
ing ten other types, see Additional file 1: Appendix B).
The labels provided by the experts were used as a “gold
standard” for training and testing the performance of
classifiers. For severity level, the gold standard was based
on SAC ratings which were checked and ratified by local
managers who had received training in assessing severity
levels and were familiar with the nature of incidents and
their consequences. Ethical approval was obtained from
university committees as well as a committee governing
the hospital and state datasets.

Data preparation

Only descriptive narratives in reports were used for ex-
periments including incident description, patient out-
come, actions taken, prevention steps, investigation
findings and results. All codes, punctuation and non-
alphanumerical characters were removed and text was
converted to lower case.

Experimental setup

We used 260 samples for each incident type and 290 re-
ports for each SAC level for classifier training (Table 1);
these sample sizes were based on our previous studies
[23, 25]. Balanced AIMS datasets were used for training.
For testing, balanced AIMS datasets were firstly used to
generate benchmark results. Classifiers were then ap-
plied to imbalanced “stratified” datasets from AIMS (ori-
ginal) and Riskman (independent) to evaluate their
applicability in real-world conditions and to examine
generalizability. The stratified datasets were constructed
so that the distribution of incident types and severity
levels was representative of their real-world ratio
(Table 1).

Experimental workflow

An overview of our approach is shown in Fig. 1. Experi-
ments comprised four main tasks. First, datasets were
decoded into two-class subsets according to OvsO or
OvsA ensemble schemes. For the OvsA ensembles, sam-
ples from all other classes were randomly selected to
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Fig. 1 Experimental workflow to train and evaluate classifiers to identify reports by type and severity level (TF: term frequency; TD_IDF: term

create evenly distributed subsets of 260 or 290 re-
ports. The narratives of reports were then processed
into more informative representations via feature se-
lection and extraction methods. Next, binary classi-
fiers were trained and validated for pairs of classes
using cross-validation. Then, two widely-used group
decision-making schemes, voting and directed acyclic
graph (DAG) [36], were used to identify incidents in
testing sets by combining results from all base binary
classifiers. Finally, performance was evaluated. Each of
these four tasks is detailed below.

1) Feature extraction
The goal of feature extraction is to transform the
raw input data, such as text, into numerical
representations interpretable by classifiers while
providing discriminative information for
classification. To enhance the quality of feature
extraction, text pre-processing methods including
removal of stop words and short words with fewer
than two characters, stemming, and lemmatization
were applied to the reports [37].
We then adopted a bag-of-words model commonly
used in document classification to extract features
[38]. Irrespective of grammar, incident narratives
were represented as an unordered collection of
words, and unique words were used as features. The
bag of words was then transformed into a numeric
representation using three different feature extrac-
tion methods, binary count, term frequency (tf),
term frequency-inverse document frequency (tf-idf).
Binary count transforms individual processed reports
into 1 or O corresponding word occurrences while
Tf converts reports into the actual frequency of
word occurrences. When a word appears in many
reports, it is considered relatively common but less
important. To evaluate the importance of words tf-
idf was adopted, this transforms reports into the

term frequency of each word multiplied by the in-
verse document frequency [39].

2) Base classifier training and validation

To train the base classifiers, a 10-fold repeated ran-
dom sub-sampling cross-validation method was used
to assign incidents to training (80%), validation
(10%), and testing (10%) sets. For each incident type,
we randomly selected 10% of reports and set them
aside for testing. This was done because we were
concerned that, with random assignment, a testing
report for one base binary classifier might be used in
the training set of another base classifier. For ex-
ample, a report i about a fall incident which was
used for training a base classifier (versus medica-
tions), could be assigned to the test set of another
base classifier (versus blood product). For training
and validation, the folds were created using repeated
random sub-sampling. Using this strategy classifiers
were built and validated to avoid potential overlaps
between training and testing sets.

We did not give preference to any types when
training base binary classifiers. The loss function was
set to improve the F-score, which was the equally
weighted harmonic mean of the precision and recall.
For instance, the kernel size for SVM RBF classifier
was optimized during validation to achieve the best
F-scores. Classifiers that achieved higher accuracy
were adopted in ensembles for testing.

3) Group decision-making schemes

Voting is the most common group decision-making
scheme, where each classifier votes and the final pre-
diction is based on the class with the most votes
[40]. This works for both OvsO and OvsA ensemble
strategies, while DAG only applies to OvsO [32].
Starting at the root node, DAG makes a binary deci-
sion by rejecting either class. It then moves forward
along the un-rejected branch to reach a leaf node
that is the predicted class (Fig. 2). Compared with
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Directed acyclic graph

reject1

SAC4 SAC3

SAC2

SAC1

Fig. 2 An example of directed acyclic graph (DAG) for identifying
severity level (SACT: extreme risk; SAC2: high risk; SAC3: medium risk;
SAC4: low risk): each node is a binary classifier for two levels of
incidents. A decision of rejecting one of the two levels is made at
each node

voting, DAG has the same number of training steps
generating [*(I-1)/2 binary classifiers but only re-
quires /-1 comparisons.

4) Performance evaluation
Our aim was to identify specific incident types, thus
E-score, precision and recall measures were evalu-
ated per type. We calculated the probability that a
specific incident type or severity level was classified
as such (e.g. % of falls correctly identified among the
test set for falls). Performance in identifying incident
types and severity levels was also examined using
confusion matrices.
Overall classification performance was examined
using average measures, micro-averaging and
macro-averaging, these are widely accepted and
commonly used in many multiclass classification
studies (Additional file 1: Appendix C) [41]. The
macro-averaged measures of precision, recall and F-
score are the simple average over all classes with
equal weight to each incident type while micro-
averaged measures are based on the cumulative
number of true positives (tp), true negatives (tn), false
positives (fp) and false negatives (fn) per type [41]. We
used micro-averaged F-scores to select the best per-
forming classifiers because this measure evaluates
classification performance over the whole dataset.

Results

Overall classifier performance

Testing against the benchmark, original and independ-
ent datasets showed that OvsO ensembles of SVM RBF
with binary count feature extraction were the most ef-
fective combination to identify incident type and severity
level (Additional file 1: Appendix D). With OvsO, the
DAG decision-making scheme performed slightly better
than voting across each testing dataset. Using this most
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effective combination the overall performance of classi-
fiers was then examined (Table 2). For incident type, the
average F-score across all types was 78.3% on the testing
datasets of benchmark and 73.9% on original but slightly
worse on the independent testing dataset (68.5%). For
severity level, the average F-score across all levels was
62.9% on the benchmark, 50.1% on the original and
52.7% on the independent datasets. Detailed results in-
cluding performance with different combinations of bin-
ary classifier ensembles, feature extraction methods, and
decision-making schemes are given in Additional file 1:
Appendix D.

Identifying incident types

We found that classifiers using the most effective com-
bination (i.e. OvsO ensembles of SVM RBF with binary
count feature extraction) were robust in identifying four
types of incidents including falls, medications, pressure
injury, and aggression (Table 2). In the benchmark and
original datasets, recall for incidents about blood prod-
ucts was comparable but marginally poorer with the in-
dependent dataset (individual precision 43%). For
patient identification, infection, clinical handover and
deteriorating patient, the classifiers achieved high F-
scores on the benchmark dataset but performed poorly
on the original and independent datasets. High recall
along with low precision was achieved on the original
dataset, but both precision and recall were poor on inde-
pendent dataset. The classifiers performed relatively
worse on identifying documentation reports, achieving
an F-score of 24.0-53.3% across the testing datasets.
Documentation was more likely to be misidentified as
patient identification and medications (Fig. 3).

Identifying severity levels

Testing on the benchmark dataset showed that the clas-
sifiers performed well in identifying SAC1 (F-score
87.3%) and SAC4 (F-score 64%; Table 2). With the ori-
ginal and independent datasets, high recall (82.8—84%)
was achieved for SAC1 incidents but precision was poor
(6.8-11.2%). For SAC3 and SAC4 performance was con-
sistent across each testing dataset. However, identifica-
tion of SAC1 and SAC2 in the original and independent
datasets was poorer compared to the benchmark. F-
scores for SAC1 decreased from 87.3 to 19.8% and
12.5% in the original and independent datasets.

Disussion

Main findings and implications

We evaluated text classification using binary classifier
ensembles and our results demonstrate that this ap-
proach can identify reports about falls, medication, pres-
sure injury and aggression as well as reports about
extreme and low risk events. Classifiers were trained
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Table 2 Classifier performance (recall, precision and F-score). SVM RBF with binary count feature extraction was the most effective

combination to identify incident type and severity level

Benchmark Original Independent

Recall Precision F-score Recall Precision F-score Recall Precision F-score
Incident type ° 78.3 78.3 783 73.9 73.9 73.9 68.5 685 685
Falls 96.2 83.3 89.3 95.6 96.6 96.1 91.3 86.5 88.8
Medications 76.9 769 76.9 809 91.7 859 81.1 786 79.8
Pressure injury 885 100.0 939 89.2 86.8 880 96.8 76.0 85.2
Aggression 92.3 88.9 90.6 816 76.9 79.2 81.5 62.2 706
Documentation 46.2 63.2 533 46.2 316 375 476 16.0 24.0
Blood products 80.8 95.5 87.5 100.0 62.5 769 83.1 43.0 56.6
Patient identification 84.6 61.1 71.0 714 250 370 233 444 30.5
Infection 923 889 90.6 833 385 526 409 132 200
Clinical handover 80.8 65.6 724 714 18.5 294 379 143 20.8
Deteriorating patient 923 85.7 889 100.0 250 40.0 214 17.6 194
Others 308 50.0 38.1 54.7 85.3 66.7 57.1 87.0 69.0
SAC level @ 62.9 62.9 62.9 50.1 50.1 50.1 52.7 52.7 52.7
SACT 82.8 92.3 873 84.0 1.2 19.8 82.6 6.8 125
SAC2 414 60.0 49.0 432 7.2 12.3 16.2 9.6 120
SAC3 448 54.2 49.1 359 523 426 469 498 483
SAC4 82.8 522 64.0 624 612 61.8 583 61.8 60.0

“Micro-averaging measures

using balanced datasets from a state-wide incident
reporting system and then evaluated on balanced and
stratified subsets that were set aside for testing. We
found that performance was comparable to a stratified
dataset drawn from an independent hospital reporting
system. This indicated generalizability of the approach
showing that the classifiers for falls, medications, pres-
sure injury, aggression, extreme and low risk events can
be used in a real-world setting to collate and examine
data from disparate incident reporting systems to sup-
port learning from patient safety incidents at regional,
national and international levels. Even so, it should be
emphasized that automated identification of incident re-
ports is not intended as a replacement for expert review.
Manual analysis provides insights that cannot be cap-
tured by any automated methods. However, when hu-
man resources are lacking, automated methods can
reduce the effort spent in identifying common incident
types, and provide small volumes of like incident reports
for further investigation by experts [42]. Automated
methods are only a first step in characterizing any clus-
ter of incidents [43].

Identification of common and rare classes

An important finding of this study is that SVM RBF with
binary count identified the most common incident types
across the three datasets including falls, medications,
pressure injury and aggression. These types made up

54% of all reported incidents (Table 1). Similarly, per-
formance was good for SAC4 incidents which made up
over half of all reported incidents (52%; Table 1). In con-
trast, classifiers trained on balanced datasets tended to
be weaker when identifying rarer types in stratified data-
sets such as patient identification, infection, clinical
handover, and deteriorating patient, which made up 5-
6% of all reported incidents (Table 1).

Performance for patient identification and clinical
handover with balanced datasets was comparable with
our previous study which examined binary classifiers
using SVM RBF [23] (F-scorepyevious = 94.35 and 88.71%
respectively vs. F-score yrenc =71 and 72.4%). Similarly,
for SAC1 incidents, the classifiers performed well on the
balanced dataset (recall = 82.8%, precision =92.3%) and
effectively detected true positives when tested with
stratified datasets (recall: original = 84%, independent =
82.6%). These results were also comparable with our
previous study to identify extreme-risk events (recall =
83%, precision = 88%) [25].

One possible way to improve the identification of rare
classes, especially SAC1 incidents, is to use rule-based
methods [44] and active learning [45, 46] that involve
expert knowledge and incorporate specific criteria for
identifying incidents. An interim solution might be to re-
view rare classes flagged by classifiers, which is practical
because overall volumes in real-world datasets will be
low. For example, 8 out of 444 reports in the original
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dataset were misidentified as infection. With around
132,861 reports in 2012, 46 false positives would need to
be checked by experts per week. Similarly, poor preci-
sion was observed in identifying SAC1 in the stratified
datasets alongside very promising recall measures. As
SAC1 incidents are always subject to a thorough investi-
gation such as root-cause analysis, any false positives
can easily be detected by experts initially screening the
incidents flagged by a classifier. Another way to improve
identification of rare classes is to use balanced training
sets by oversampling rare classes or down sampling
common classes into multiple subsets and then build up
an ensemble of binary classifiers between each subset of
a common class and a rare one [47]. Sensitivity can also
be improved by increasing misclassification costs for
rare classes so that they gain more importance during
classifier training [47].

We observed a drop in the average F-score when the
classifiers were tested with stratified datasets (Table 2:

incident type 9.8% and severity 10.2%). This is expected
with supervised classification methods because the per-
formance of classifiers trained on balanced datasets
tends to degrade when models are applied to stratified
datasets. Minor differences in terminology and linguistic
styles may have also contributed to poorer performance
on the independent dataset.

For overall classifier performance, the average recall
and precision were identical. This was because the sum
of individual (tp + fp); and (tp + fn); turned out to be the
same as the total testing size even though the number of
false negatives and false positives for each class were
different.

Opverall, lower performance was observed with severity
levels compared to incident types. This is because each
SAC level included multiple incident types making it
harder to obtain distinct vocabularies between levels.
For instance, SAC1 incidents involved falls, patient iden-
tification, clinical handover and others while falls,
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medications, pressure ulcer and patient identification
were observed in each of the other levels (SAC2 to
SAC4) [48]. The relationships between specific incident
types and severity levels were not investigated, and
would be worthwhile to study further. Overall, identifi-
cation of SAC2 and SAC3 was worse than SAC4, with
poor precision and recall in original and independent
datasets (Fig. 3). In addition to the presence of multiple
incident types in a severity level group, this may be a re-
flection of the inherent difficulties experienced by
humans in using the SAC matrix where there is a signifi-
cant overlap in the consequences for SAC2 and SAC3
[2]. Consequently, the outer classes, SAC1 and SAC4,
tend to be identified more easily than SAC2 and SAC3
where boundaries are harder to distinguish.

Identifying incidents with implicit causes and results

We observed that classifiers failed when causes and con-
sequences of incidents were implicitly described in re-
ports. This might be due to the bag-of-words model
which does not account for text semantics. For instance,
an incident about a deteriorating patient with a long list
of medications and their doses in the narrative was mis-
identified as a medications problem (Additional file 1:
Appendix E). Other instances were incidents misidenti-
fied as SAC1 where reports contained words that were
associated with true positives (e.g. ‘death; ‘suicide; ‘high
risk] ‘police notified; ‘incorrect patient’ and ‘infection’;
Table 3) [49]. A third scenario involved false positive in-
cidents with minor clinical consequence or near miss
events where potential adverse outcomes had been
avoided but were described in incident reports (70% of
false positives in original and 85% in the independent
dataset). For example, some reports described situations
where there was a high risk for a fall with treatments
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involving neuro observation, vital signs checking, and
CT brain scanning, or if a patient suffered extreme pain
or hit his head. In other cases, patient identification inci-
dents containing the phrase ‘incorrect patient’ were mis-
identified as SAC1 when no patient harm was reported.
Similarly, reports about patients who had absconded
were misidentified as SAC1 because they involved police
notification. Our error analysis also uncovered 18 SAC1
incidents involving patient deaths that had been missed
by human classifiers (e.g. a patient died in operation
room, ambulance, ICU, or during a transfer; Table 3). In
summary, these patterns reflect both the strengths and
limitations of the bag-of-words model, suggesting that a
combination approach that considers the meaning and
order of words might be required. This should be the
subject of further investigation using feature extraction
methods such as UMLS semantic types and N-grams
which have been shown to be effective in similar tasks
like detection of adverse drug reactions [50].

Multiclass nature of incident reports

We found that around 30% of reports could potentially
be related to more than one incident type. This tended
to be more pronounced for some incident types (patient
identification: 62%; clinical handover: 42%; and deterior-
ating patient: 42%) and posed a challenge for our classi-
fiers that were built to identify a single type. As shown
in Table 2, classifiers performed well in identifying more
distinct incident types, such as falls, medications, pres-
sure injury and aggression incidents. However, docu-
mentation was frequently misidentified as this type
always occurred alongside other incident types (Table 2).
In both the AIMS and Riskman datasets, we found that
documentation issues were reported alongside patient
identification (47, 77%), clinical handover (39, 30%) and

Table 3 Key words associated with SACT incidents [50], along with excerpts from reports that were misidentified

Key words Misidentified by machine classifiers (false positives) Misidentified by humans (false negatives)
death problem with death certificate, police notified patient died in operation room, ambulance or ICU, or died
when transferring
suicide suicide or suspected suicide outside of hospital inpatient suicide
high risk high fall risk mentioned e.g. patient suffered extreme pain or hit their
head, neurological observation, vital signs checked, CT scan of brain
high risk medication, drug overdose or wrong medicine
police absconded patients with mental health problems did not return from
notified planned leave, police intervention
incorrect duplicate CT scans due to problem with patient identification incorrect site for patient procedure
patient
infection patient had infection in hospital more than two staff infected by patients
blood shortly after commencing the flebogamma infusion
transfusion patient reacted to the medication with shortness of breath,
reaction chest tightness, vomiting and diarrhea
aggression patient with mental health problems or Hepatitis C

infection assaulted staff
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medications incidents (68, 75%) confirming that more
than one incident type may be applicable in some cases.
For instance, in one report, label Z for patient X was
placed incorrectly onto the specimen that belongs to pa-
tient Y’ showing that patient identification and docu-
mentation errors were involved (Additional file 1:
Appendix E). One possible solution to this problem is to
use multiple labels in training and testing using multi-
label classifiers [51, 52]. Further work is required to in-
vestigate this approach and its potential to improve the
performance of classifiers in a real-world setting.

Limitations

There are several limitations. Firstly, we used datasets
from one Australian state. Therefore our classifiers may
not be generalizable to other jurisdictions and regions
with different reporting, linguistic styles and termin-
ology. Secondly, we exclusively evaluated logistic regres-
sion and SVM using balanced datasets to train
classifiers. We did not examine the use of stratified data-
sets for classifier training because we were restricted to
using incidents that had been reported over a 12-month
period. Given the class imbalance between incident types
a stratified training set may have worked better to iden-
tify rarer types. For testing, the AIMS dataset may have
had too few instances to evaluate performance. This was
a limitation of the number of incident reports that were
made available to us for this study. For example, of the
350 reports about falls, which is the most common inci-
dent type, 260 were used for training and testing via
cross-validation leaving only 90 for a separate test set.
Thus the stratified AIMS dataset had few instances of
the rarer incident types.

Conclusion

The use of text-based binary classifier ensembles is a
feasible approach for automatically identifying incidents
by type and severity. OvsO ensembles of binary SVM
RBF classifiers with binary count feature extraction was
the most effective combination. Despite its limitations
automated identification can provide a more efficient
way to provide initial review of incident reports so that
human resources can be redirected to detailed classifica-
tion, and remedial actions can then be triggered more
quickly to respond to emerging safety issues. In addition,
automated identification can help to find misidentified
incidents and enhance data quality. Testing against
stratified AIMS and independent Riskman systems sug-
gests that our method may be transferable to other inci-
dent reporting systems nationally and internationally.
Given that reports often relate to more than one inci-
dent type, classifier performance could be improved
using multiple labels for training and testing.
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