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Abstract

Background: Nearest neighbor (NN) imputation algorithms are efficient methods to fill in missing data where each
missing value on some records is replaced by a value obtained from related cases in the whole set of records. Besides the
capability to substitute the missing data with plausible values that are as close as possible to the true value, imputation
algorithms should preserve the original data structure and avoid to distort the distribution of the imputed variable.
Despite the efficiency of NN algorithms little is known about the effect of these methods on data structure.

Methods: Simulation on synthetic datasets with different patterns and degrees of missingness were conducted to
evaluate the performance of NN with one single neighbor (1NN) and with k neighbors without (kNN) or with weighting
(wkNN) in the context of different learning frameworks: plain set, reduced set after ReliefF filtering, bagging, random
choice of attributes, bagging combined with random choice of attributes (Random-Forest-like method).

Results: Whatever the framework, kNN usually outperformed 1NN in terms of precision of imputation and reduced
errors in inferential statistics, 1NN was however the only method capable of preserving the data structure and data were
distorted even when small values of k neighbors were considered; distortion was more severe for resampling schemas.

Conclusions: The use of three neighbors in conjunction with ReliefF seems to provide the best trade-off between
imputation error and preservation of the data structure. The very same conclusions can be drawn when imputation
experiments were conducted on the single proton emission computed tomography (SPECTF) heart dataset after
introduction of missing data completely at random.

Background
The occurrence of missing data is a major concern in ma-
chine learning and correlated areas, including medical do-
mains. As the quality of knowledge extracted from data is
largely dependent from the quality of data, records with
missing values may have a significant impact on descriptive
and inferential statistics as well as on predictive analytics.
Missing data can be handled in different ways, but simply

ignoring them via deletion methods (e.g. listiwise deltetion)
can be an inappropriate choice under many circumstances
and besides a general loss of power this may lead to biased
estimates of the investigated associations [1, 2]. The re-
placement of missing values with plausible values derived

from the observation of a dataset via imputation procedures
is, in most cases, a far better and valuable solution.
Several methods exists for imputing missing data [2–5],

among the most popular there are the so-called hot deck
imputation methods, that in their deterministic form in-
clude the “nearest neighbour” (NN) imputation procedure
[6]. In the hot-deck imputation methods, missing values of
cases with missing data (recipients) are replaced by values
extracted from cases (donors) that are similar to the recipi-
ent with respect to observed characteristics. NN imputation
approaches are donor-based methods where the imputed
value is either a value that was actually measured for
another record in a database (1-NN) or the average of
measured values from k records (kNN). The most notable
characteristics ok NN imputation are: a) imputed values
are actually occurring values and not constructed
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values, b) NN makes use of auxiliary information pro-
vided by the x-values, preserving thus the original struc-
ture of the data and c) NN is fully non parametric and
does not require explicit models to relate y and x, being
thus less prone to model misspecification.
Several studies showed that NN may be superior

over other hot-deck methods even though results may
be dependent from the choice of the metric used to
gauge the similarity or the dissimilarity of recipients
to donors [7].
Irrelevant or noisy features add random perturbations

to the distance measure and hurt performance so that,
for instance, points in high dimensional space belong-
ing to the same class (in classification problems) or to
the same cluster (in unsupervised clustering applica-
tions) have low similarity [8, 9]. The choice of different
similarity measures may partially address this issue, but
ultimately does not solve the problem [8, 10]. Several
methods have been proposed to accommodate the
noise and/or to ameliorate the performance of NN al-
gorithms in classification problems, straightforwardly
these methods have been applied in imputation prob-
lems as well. The use of several k neighbors is a first at-
tempt to control noise and it is widely accepted that
small value of k have high influence on the results.
kNN proved effective in imputing microarray data with
an increased performance, as assessed by the normal-
ized root mean squared error (RMSE), when k is > 1
[11]. In the nearest-variable procedure (kNN-V) and
variants (kNN-H and kNN-A) described in [12] k rele-
vant features are selected with respect to the variable
with missing values by means of statistical correlation
measures; evaluation in real-life and synthetic datasets
by means of the RMSE showed a good performance of
this method with respect to the selection of neighbors
based on intra-subject distance. Other methods that
have been proposed to improve the performance of NN
to decorrelate error and wade through the noise in clas-
sification problems include the use of multiple NN
classifiers. In [13] multiple NN classifiers based on ran-
dom subsets of features are used and the performance
of this ensemble was less prone to corruption by irrele-
vant features as compared to 1-NN or to kNN. Albeit
NN is traditionally considered a stable, with low-
variance, algorithm that could be not improved by
other resampling techniques, such as bagging [14],
other experiments indicate that bagging can actually
improve the performance of NN provided that the re-
sampling size is adequately below a minimum threshold
[15]. Despite these premises, the performance of en-
semble methods for NN imputation has not been
assessed so far.
A critical and often overlooked point in the evaluation

of imputation methods, is the effect the imputed datum

has on data structure and on the consequent risk of dis-
torting estimates, standard errors and hypothesis tests
despite an apparent good performance on other quality
metrics. Imputed data are thus not necessarily more use-
ful or usable and while there are situations where chan-
ging the distribution is not of concern, in many cases
changing the underlying distribution has a relevant im-
pact on decision making.
In the present paper we assessed the performance of

the NN algorithm and modifications in synthetic as well
as in real-life datasets, quantifying the effect imputation
yields on the data structure and on inferential and pre-
dictive statistics.

Methods
Frameworks for imputation
NN algorithms are similarity-based methods that rely on
distance metrics and results may change in relation to
the similarity measure used to evaluate the distance be-
tween recipients and donors. In our work, we used the
Minkowski norm as metric to evaluate distance:

Xn

i¼1
xi−yij jp

� �1=p

The Minkowski norm assumes the form of the Euclidean
or L2 distance when p = 2 or the form of the Manhattan
(city-block) distance when p = 1; other fractional
norms for p < 1 have been described [8]. In our ex-
periments we set p = 0.5, 1 or 2. In the present paper
we only focused on imputation problems with con-
tinuous or dichotomous variables, hence there was no
need to consider other similarity measures for cat-
egorical or ordinal data as described in [16].
Three main NN variants were used for evaluation: a)

1-NN, with one donor selected per recipient, b) kNN
with k = 5 donors per recipient and, c) weighted wKNN
method with k = 5 and weighting in relation to the
distance of the full set of donors to the recipient as de-
scribed by Troyanskaya et al [11].
The three NN algorithms were then applied to these

frameworks:

a) Plain NN framework: the full set of data is used
according to the hot-deck method and only
complete cases with no missing data C(X) are
considered as donors.

b) Filtered NN framework: before imputation of the
recipient Xi, the full set with no missing data C(X)
is filtered to select a subset of features relevant to
the missing variable to be imputed (Xi_miss). To this
end, C(X) is considered as a dataset in the context of
a regression problem, where the variable with the
missing datum (Xmiss) is set as the class variable and
the other q variables (X1, X2, …, Xq) as predictors.
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Since in real-life situations there is usually no clue
as to whether any relation exists between predictors
and outcome or, if this relation exists, what form it
takes, a fully non-parametric selection algorithm is
considered an appropriate choice. In the present
context, we applied the RReliefF algorithm described
in [17]; the set is then filtered to select a subset
Cs(X)⊂C(X) where (X1, X2, …, Xs)⊂ (X1, X2, …, Xq)
and s < q. In the present context we set the number of
neighbors for RReliefF equal to 10 and set s as 10 %,
20 % or 30 % of q. As C(X) is invariant to Xi, the
filtering step is performed only once before the
NN imputation step that, on the contrary is per-
formed separately for each Xi.

c) Bagged NN framework: for each recipient Xi, from
the set of donors with no missing data C(X) with
size m, a random subset of donors with size mR < < m
is selected with replacement such as CR(X)⊂C(X); the
subset CR(X) is then used to impute the missing value
for the recipient. The procedure is repeated n number
of times with different random subsets of donors so
that several possible values XiR1,XiR2,…,XiRn are derived
from each CR1(X), CR2(X),…, CRn(X) random subsets;
the final imputed values for Xi is calculated as the
arithmetic mean of the XiRn imputed values. In our
experimental setup mR is set to 10 % of m and n to 50
random runs. The random procedure of bagging,
provided that mR/m→ 0 [15], is expected to be
helpful in a dataset with several noisy variables that
affect the evaluation of the distance from the recipient
Xi to the donors. As a result of noise, cases that are
dissimilar from Xi with respect to the attributes
correlated with the missing variable to be imputed
(Xi_miss), are factiously selected as “close” to the
recipient when they actually lie “far” from it. Bagging
the donors with the abovementioned constrains,
would help to eliminate such donors and to wade
through the noise generated by irrelevant features
correcting in part the overly-strong simplicity bias in
the NN learner because NN is making incorrect
assumptions about the domain and error is re-
duced by changing it [18].

d) Random NN framework: for each recipient Xi a
random subset of attributes l such as that l =

ffiffiffi
q

p
is

selected and the corresponding set of donors with
no missing data in the l attributes CL(X)⊂ C(X) is
then considered. The procedure is repeated n number
of times with different random subsets of attributes so
that several possible values XiL1,XiL2,…,XiLn are
derived from each CL1(X), CL2(X),…, CLn(X) subsets;
the final imputed values for Xi is calculated as the
arithmetic mean of the XiLn imputed values. In our
experimental setup n is set to 50 random runs.
Overall, this frameworks differs from c) in that

randomization is introduced in the selection of
attributes rather in the selection of donors. The
repeated random selection of attributes would for
each random run favour the removal of irrelevant
attributes that may bias the distance metric from
recipient to donors and thus lead to unreliable
proximities. The procedure is expected to have a
high chance of success when in a dataset irrelevant
(noisy) attributes outnumber the non-noisy attributes
correlated with the missing variable to be imputed
(Xi_miss) as the odds are in favour of keeping non-
noisy variables after the random selection of few
attributes. During each random run we do expect
to partially control the noise so that it is accom-
modated to a meaningful extent by the ensemble
as the “true” imputation values derived from inform-
ative voters outnumber the “random” or “false” imput-
ation values derived from non-informative voters [13].

e) Full Randomized NN framework: the procedures
described in c) and d) are combined together in a
random forest-like fashion [19]. This way a double
randomization is introduced in the learning algorithm:
firstly a random subset of l =

ffiffiffi
q

p
attributes is selected

from the set of donors with no missing data C(X) so
that CL(X)⊂C(X) and then a random subset of donors
with size mR < < m is selected with replacement from
CL(X) to generate a fully randomized subset CRL(X)⊂
CL(X)⊂C(X). The procedure is repeated 50 times and,
as in c) and d), the final imputed value is the arithmetic
mean of values derived from the 50 random runs.

The five frameworks used to evaluate the NN algo-
rithms were tested against a mean imputation method
where the missing value is replaced by the variable mean
of complete cases.

Simulated datasets
To evaluate the performance of the imputation algo-
rithms described above, we generated simulated dataset
with a known pattern of missing at random data. In the
present context we considered both missing completely
at random (MCAR) and missing at random (MAR) pat-
terns of randomness [4]. The first refers to the case
when the probability of an instance (case) having a miss-
ing value for an attribute does not depend on either the
known values or the missing data; the latter refers to the
case when the probability of an instance having a miss-
ing value for an attribute depends on observed values,
but not on the value of the missing data itself.
To generate the simulated dataset we firstly created a

population of 1*106 individuals with well-known de-
pendencies among attributes and with a linear relation-
ship with a variable Y such that:
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Y ¼ 50þ β0X0 þ β1X1 þ β2X2 þ β3X3 þ � ð1Þ
where β0 = log [2], β1 = log [4], β2 = log (0.5) and β3 = log
(0.25) and ε is a random error normally distributed with
μ = 40 and ϭ = 4. X0 and X3 are drawn from a multinor-
mal random distribution that encompasses another
variable X4 and whose parameters are: X0, μ = 200 and
ϭ = 40, X3, μ = 50 and ϭ = 10, X4, μ = 100 and ϭ = 20, X0 by
X3 ρ = 0.75, X0 by X4 ρ = 0.6, X3 by X4 ρ = 0.5. X1 is drawn
from a multinormal random distribution with one
variable X5 and whose parameters are: X1, μ = 20 and
ϭ = 4, X5, μ = 500 and ϭ = 100, X1 by X5 ρ = 0.5. X2 is
drawn from a non-central chi-square distribution with
μ = 20 and 3 degree of freedom.
Two additional variables that are used to generate MAR

data were then added to the population. X6 is drawn from
a Bernoulli distribution with p = 0.5 and X7 is drawn from
a uniform distribution in the range [30, 60].
Fifty additional variables drawn from different dis-

tributions were finally added to the dataset to gener-
ate a random noise and whose setting parameters
were randomly generated from uniform distributions.
These comprise: 15 variables drawn from a non-central
chi square distribution with μ = [10, 50] and degree of
freedom = [2, 5], 20 normally-distributed variables
with μ = [10, 200] and ϭ = μ/5, 3 blocks of 3 variables
drawn from a multinormal distribution with μ = [10, 100]
and ϭ = [μ/5, μ/2] and 3 blocks of 2 variables drawn
from a multinormal distribution with μ = [10, 100]
and ϭ = [μ/5, μ/2].
From the population of 1*106 individuals, 400 cases

were randomly drawn. Randomness was then introduced
for variables X0, X1 and X2, so that each variable had
15 % or 30 % of missing cases. Missingness for X1 and
X2 was introduced with a MCAR schema removing the
desired number of cases in relation to a Bernoulli distri-
bution with p = 0.15 or 0.30. Missingness for X0 was in-
troduced according to a MAR schema so that it was
dependent from X6 (binomial with equal probability)
and X7 (uniform in the range [30, 60]). Four dummy cat-
egories were created, A: X6 = 0 and X7 < 60th percentile
of [30, 60], B: X6 = 1 and X7 < 60th percentile of [30, 60],
C: X6 = 0 and X7 ≥ 60th percentile of [30, 60], D: A: X6 =
1 and X7 ≥ 60th percentile of [30, 60]; each category was
given a different risk of having missing cases so that Risk
(A) = 1, Risk (B) = 1.5 * Risk (A), Risk (C) = 1.5 * Risk (B)
and Risk (D) = 1.5 * Risk (C).
The sampling procedure was repeated 500 times for

each sample size/percentage of missingness.

Evaluation of results
After imputation, several estimators from the sampled

sets θ̂ can be calculated and compared with the true pa-
rameters θ observed in the whole population of 1*106

individuals. From these we can calculate the Bias θ̂; θ
� �

the variance, Var θ̂ and the mean squared error, MSE

θ̂
� �

which are defined as follows:

Bias ¼ �X−θ Xð Þð Þ; �X ¼ 1
n

Xn

i¼1
xi

Var ¼ 1
n−1

Xn

i¼1
xi−�Xð Þ

MSE ¼ 1
n

Xn

i¼1
xi−θ Xð Þð Þ2

Where X is the measure of interest, more specifically
we considered:

a. The regression coefficients for the variables with
missing values in equation (1) as calculated by the
least squared method: β0, β1 and β2.

b. The correlation between expected Ŷ values calculated
inserting the derived regression coefficients and the
values of X0, X1, X2 after imputation into equation (1)
and the true Y values.

c. The mean of X0, X1 and X2.
d. The standard deviation of X0, X1 and X2.

Additionally, we provided a measure of inaccuracy
of imputation defined as the mean of the proportional
difference between true and imputed values in the n
variables with missing values, nmiss:

Inaccuracy ¼ 1
nmiss

Xnmiss

i¼1

x̂−Xij j
Xi

Real-life dataset
The performance of the different learning frameworks
was finally tested in a real-life dataset. To this end, we
considered the single proton emission computed tomog-
raphy (SPECT)-F heart dataset described by Kurgan et al
[20] (available at: https://archive.ics.uci.edu/ml/datasets/
SPECTF+Heart). The dataset describes SPECT data in
267 patients with suspected coronary artery disease and
comprises a continous outcome and 44 continuous attri-
butes from SPECT images in 22 regions of interest at
rest and after stress, respectively termed F1R, F2R,…,
F22R and F1S, F2S,…, F22S.
To mirror the evaluation procedure described for

synthetic datasets, we firstly determined the regression
coefficients of a binary logistic regression equation
modelled using a stepwise entry method (entry p = 0.01,
exit p = 0.05). The final model thus obtained was as fol-
low: Y = 44.133 – 0.94 * F5S - 0.123 * F13S - 0.207 *
F16S - 0.201 * F20S. A 15 % of random missingness
was then introduced in the 4 variables included in the
regression equation via the MCAR schema.
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The MSE was chosen as the primary performance meas-
ure to evaluate the ability of the different learning frame-
works to impute missing values. To this end we
considered a) the ability to correctly infer the regression
coefficients for the variables of interest, b) the inaccuracy
in the imputed values, c) the distortion of data as assessed
by the standard deviations of the 4 variables. Overall the
MCAR/imputation procedure was repeated 500 times;
only the wKNN method was used to learn the imputed
values and k was set equal to 1, 3 or 10 neighbors.
To summarize the performance of the different learn-

ing frameworks and to establish the trade-off between
inaccuracy of imputation and distortion of data we pro-
ceeded as described hereafter. The mathematical mean
between the normalized inaccuracy values (across the
different frameworks) and the normalized standard de-
viation values (across the different frameworks) was
calculated for each variable and ranked from the lowest
(the best) to the highest (the worst). The average rank
of the four variables was then ranked to produce a
readily interpretable summary value.

Results
Our analysis was conducted to individuate the NN
procedure that, at the same time, produced the best
imputation performance with the minor distortion in
the distribution of data. Under this view, all the dis-
tance metrics we considered produced the same re-
sults and the same conclusions can be drawn for the
different p values we tested; for sake of brevity here-
after we’ll only show the results obtained with the
Euclidean distance.
Table 1 summarizes the effect of the different NN

algorithms/learning frameworks on the regression co-
efficients for the variable of interest Y. kNN algo-
rithms had the overall best performance as assessed
by the MSE; results are independent from the mech-
anism of randomness and can be observed both for
MAR (β0) and MCAR (β1 and β2) data. Among the
different frameworks, the best results were obtained
when noisy variable were filtered via RReliefF. The re-
sults obtained by resampling methods seem to be in-
dependent from the number of neighbors in the kNN
algorithm and usually perform slightly worse than less
computationally expensive methods.
When the correlation between estimated and true

values of the dependent value Y were considered, the
very same conclusions can be drawn (Table 2). The gen-
eral good performance of kNN algorithms in the context
of inferential statistics with the plain or filtering frame-
work, is justified by the higher degree of accuracy (e.g.
by the lower inaccuracy) these methods have compared
to the competitors in imputing the missing value
(Table 3). As expected, the inaccuracy of imputation for

X0 was lower than the inaccuracy observed for X1, due
to the higher number of dependencies in the simulated
datasets; accordingly, X3 that was completely unrelated
to other variables and had a non-normal (chi-square)
distribution, had the highest degree of inaccuracy in the
imputed values.
Even if kNN and the other complex methods seem to

have a superior performance in inferential statistics as
compared to simple 1NN (or 1NN after filtering), these
methods caused a not irrelevant distortion of data. The
means of the imputed variables were not differentially
affected by these methods (results not shown), yet stand-
ard deviations were greatly influenced by complexity
(Table 4). The detrimental effect on standard deviation
is due to a general “flattening” around the mean of the
imputed values; it is noteworthy to observe that for re-
sampling schemas the imputed value is indeed very simi-
lar to the value obtained by the mean imputation
method. The very same effect can be observed with a
different degree of magnitude for kNN. Figure 1 plots
the distribution of X0 values in absence of missingness
and after imputation with k = 1, 3 or 10 neighbors in an
additional experiment of 100 imputation runs in samples
of size n = 400, MCAR = 30 % in the context of the plain
framework with the kNN algorithm. As it can be clearly
observed, only 1NN preserves the original variability in
the distribution of data while the distribution of X0 is
gradually distorted as the number of k increases. To
evaluate the trade-off between inferential statistics and
distortion of data we next plotted in Fig. 2 the inaccur-
acy of imputation vs the MSE of the standard deviation
of the mean. As it can be observed, the inaccuracy of
imputation decreases as the number of neighbors in-
creases, yet this causes a gradual increase in the MSE of
the standard deviation due to an unwanted reduction in
the original dispersion of data. The best trade-off be-
tween inaccuracy and preservation of data structure, that
is the average between normalized inaccuracy and nor-
malized MSE of the standard deviation, is the point
where the two curves intersect and corresponds to 3
neighbors. The very same optimal k point could be ob-
tained re-running the experiments in samples with larger
sizes (n = 1600) or with the filtered NN framework.
The capability of the imputation frameworks was fi-

nally tested in a real-life dataset with 15 % of MCAR
values in 4 variables of interests. As observed in syn-
thetic datasets, the use of several neighbors or of
complex learning schemas introduced a non-negligible
distortion of data despite a good performance in im-
puting the correct value or in inferring the regression
coefficients (Table 5). Overall, the trade-off between
(in)accuracy in imputation and preservation of data
was most favourable for few neighbors and when fil-
tering via ReliefF was applied. In this specific setting,
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Table 1 Regression Coefficients, average of 500 samples of n = 400, k = 5, 15 % or 30 % of missing data

β0 β1 β2
Missing 15 % 30 % 15 % 30 % 15 % 30 %

Framework Method Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

Plain 1NN 0.1899 0.0012 0.0373 0.3277 0.0014 0.1088 0.1915 0.0265 0.0631 0.3496 0.0464 0.1685 -0.1065 0.0058 0.0171 -0.2156 0.0084 0.0549

kNN 0.0927 0.0005 0.0091 0.1817 0.0009 0.0339 0.045 0.0181 0.0201 0.0638 0.0425 0.0465 -0.0225 0.0039 0.0044 -0.0589 0.0076 0.011

wkNN 0.0925 0.0005 0.0091 0.1811 0.0009 0.0337 0.0451 0.0181 0.0201 0.0639 0.0425 0.0465 -0.0227 0.0039 0.0044 -0.0594 0.0076 0.0111

RReliefF10 1NN 0.158 0.0017 0.0267 0.3025 0.003 0.0944 0.1901 0.0252 0.0613 0.3672 0.0415 0.1763 -0.1003 0.0046 0.0146 -0.2083 0.0082 0.0516

kNN 0.0737 0.001 0.0064 0.1587 0.0025 0.0277 0.0462 0.0176 0.0197 0.0824 0.0384 0.0451 -0.0227 0.0038 0.0043 -0.0602 0.0073 0.0109

wkNN 0.0734 0.001 0.0064 0.1584 0.0025 0.0276 0.0463 0.0175 0.0196 0.0827 0.0384 0.0452 -0.0228 0.0037 0.0042 -0.0602 0.0073 0.0109

RReliefF20 1NN 0.1604 0.0012 0.0269 0.298 0.0023 0.0911 0.1803 0.0241 0.0566 0.3594 0.0443 0.1734 -0.0976 0.0047 0.0142 -0.2097 0.0073 0.0513

kNN 0.0715 0.0007 0.0058 0.153 0.0017 0.0251 0.0407 0.0174 0.019 0.0701 0.0399 0.0447 -0.0208 0.0036 0.0041 -0.0607 0.0072 0.0108

wkNN 0.0712 0.0007 0.0057 0.1524 0.0017 0.0249 0.0408 0.0173 0.0189 0.0707 0.0399 0.0448 -0.0209 0.0036 0.0041 -0.0609 0.0071 0.0108

RReliefF30 1NN 0.1617 0.0012 0.0274 0.2982 0.0018 0.0908 0.183 0.0221 0.0555 0.3468 0.0438 0.164 -0.0986 0.0049 0.0147 -0.2005 0.0081 0.0483

kNN 0.073 0.0006 0.0059 0.1533 0.0013 0.0248 0.0383 0.0155 0.017 0.0633 0.0387 0.0426 -0.0201 0.0036 0.004 -0.0565 0.0068 0.01

wkNN 0.0727 0.0006 0.0058 0.1527 0.0013 0.0246 0.0384 0.0155 0.017 0.064 0.0388 0.0428 -0.0202 0.0036 0.004 -0.0565 0.0068 0.01

Bagging 1NN 0.0812 0.0004 0.007 0.1593 0.0008 0.0262 0.0182 0.0176 0.0179 0.002 0.0394 0.0393 -0.007 0.0038 0.0039 -0.0244 0.0073 0.0079

kNN 0.0869 0.0004 0.008 0.168 0.0008 0.029 0.0095 0.0176 0.0176 -0.015 0.0394 0.0395 -0.0006 0.0039 0.0039 -0.0098 0.0074 0.0075

wkNN 0.0857 0.0004 0.0078 0.1651 0.0008 0.028 0.0096 0.0175 0.0176 -0.0153 0.0392 0.0394 -0.0008 0.0039 0.0039 -0.0104 0.0073 0.0074

Random 1NN 0.0874 0.0004 0.0081 0.1589 0.0007 0.0259 0.0121 0.018 0.0181 -0.0114 0.0387 0.0388 -0.0003 0.0041 0.0041 -0.0122 0.0074 0.0076

kNN 0.0872 0.0004 0.008 0.1572 0.0007 0.0254 0.0081 0.0177 0.0177 -0.0212 0.0385 0.0389 0.0014 0.004 0.004 -0.007 0.0074 0.0074

wkNN 0.0872 0.0004 0.008 0.1571 0.0007 0.0253 0.0081 0.0177 0.0177 -0.0212 0.0385 0.0389 0.0014 0.004 0.004 -0.007 0.0074 0.0074

Bagging + Random 1NN 0.0939 0.0005 0.0093 0.1686 0.0007 0.0291 0.0128 0.0187 0.0188 -0.0109 0.0388 0.0388 -0.0004 0.0041 0.0041 -0.0101 0.0074 0.0075

kNN 0.0956 0.0005 0.0096 0.1715 0.0007 0.0301 0.0103 0.0185 0.0186 -0.0178 0.0393 0.0395 0.001 0.0041 0.0041 -0.006 0.0075 0.0075

wkNN 0.0953 0.0005 0.0095 0.1708 0.0007 0.0299 0.0102 0.0185 0.0185 -0.0179 0.0392 0.0394 0.0011 0.0041 0.0041 -0.006 0.0075 0.0075

Mean Imputation 0.109 0.0005 0.0124 0.1913 0.0008 0.0373 0.0108 0.0196 0.0197 -0.0147 0.0407 0.0409 0.0015 0.0044 0.0043 -0.0047 0.0078 0.0078
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the use of 3 neighbors in conjunction with ReliefF
20 % or 30 % yielded the best performance.

Discussion
In the present paper we explored the properties of NN
imputation method under different learning frame-
works to establish under what circumstances the im-
putation algorithm yields the best performance in
terms of inference and capability to preserve the funda-
mental nature of data distribution. Overall we showed
that: a) NN imputation may have a favourable effect on
inferential statistics and that b) the precision of imput-
ation is dependent from the degree of dependencies the
variable with missing data has with other variables in
the dataset and may be negligible for totally uncorre-
lated attributes; c) resampling methods do not offer any
clear advantage with respect to conventional NN
imputation methods; d) ReliefF selection algorithms
(RReliefF for continous attributes) may help to wade
through the noise and improve the performance of NN
algorithms without causing any distortion in the data
structure; e) the original data structure is only preserved

with 1NN while for any value of k > 1, standard deviations
are significantly affected and inflated; f ) the use of a small
number of k may represent a good compromise between
performance and need to preserve the original distribution
of data; g) in simulations with medium-sized datasets and
a number of noisy variables, the best results in terms of
both imputation accuracy and preservation of data dis-
tribution can be obtained using kNN with small k in
conjunction with ReliefF filtering; h) the very same con-
clusions as in point g can be reached when a real-life
dataset with 15 % of MCAR data is taken into account.
The concept that methods capable of weighting the in-

formation provided by different variables may improve
the performance of NN has previously been explored in
[12] albeit with some substantial differences as com-
pared to our approach. These authors used parametric
measures based on the classical Pearson’s correlation to
evaluate the distance between the variable to be imputed
and the remaining attributes and then borrowed the ne-
cessary information from the nearest variables (or in
their hybrid approach, by both the nearest variables and
the nearest subjects). Compared to the selection by

Table 2 Correlation between expected and actual values of the dependent variable Y as calculated from equation [1], average of
500 samples of n = 400, k = 5, 15 % or 30 % of missing data

Estimated vs actual Y

Missing 15 % 30 %

Framework Method Bias Var MSE Bias Var MSE

Plain 1NN 0.16957 0.00072 0.02947 0.30959 0.00114 0.09698

kNN 0.10961 0.00035 0.01236 0.21987 0.00068 0.04902

wkNN 0.10947 0.00035 0.01233 0.21958 0.00068 0.04890

RReliefF10 1NN 0.15170 0.00075 0.02377 0.29608 0.00163 0.08928

kNN 0.10036 0.00042 0.01049 0.20963 0.00104 0.04498

wkNN 0.10023 0.00041 0.01046 0.20947 0.00104 0.04492

RReliefF20 1NN 0.15246 0.00063 0.02387 0.29331 0.00136 0.08738

kNN 0.09850 0.00035 0.01005 0.20607 0.00087 0.04333

wkNN 0.09839 0.00035 0.01002 0.20580 0.00087 0.04322

RReliefF30 1NN 0.15202 0.00068 0.02379 0.29081 0.00122 0.08579

kNN 0.09893 0.00033 0.01012 0.20508 0.00079 0.04285

wkNN 0.09877 0.00033 0.01008 0.20474 0.00079 0.04271

Bagging 1NN 0.10287 0.00030 0.01088 0.20756 0.00063 0.04370

kNN 0.10608 0.00030 0.01156 0.21240 0.00061 0.04572

wkNN 0.10544 0.00030 0.01142 0.21078 0.00061 0.04503

Random 1NN 0.10629 0.00030 0.01160 0.20738 0.00059 0.04359

kNN 0.10626 0.00030 0.01159 0.20638 0.00058 0.04317

wkNN 0.10622 0.00030 0.01158 0.20631 0.00058 0.04314

Bagging + Random 1NN 0.11010 0.00031 0.01243 0.21258 0.00060 0.04579

kNN 0.11101 0.00032 0.01264 0.21422 0.00060 0.04649

wkNN 0.11083 0.00032 0.01260 0.21386 0.00060 0.04633

Mean Imputation 0.11857 0.00035 0.01441 0.22512 0.00063 0.05130

Beretta and Santaniello BMC Medical Informatics and Decision Making 2016, 16(Suppl 3):74 Page 203 of 208



ReliefF family algorithms, this method considers only
linear bivariate interactions and may not be the optimal
choice when the data structure is completely unknown,
underestimating the relevance of attributes in the multi-
dimensional space. In our implementation, variables
were selected on the basis of ranking and no weighting
on the basis of the attributes’ scores was made. This ap-
proach proved effective even selecting a small fraction of
variables (e.g. 10 %), yet at the moment we cannot pro-
vide any guidance about the optimal number of attri-
butes to select. As previously shown in classification
problems [17], this number is context-dependent, how-
ever the choice of the most parsimonious model seems
reasonable as we do not expect many correlations
among variables. Most notably, the selection of the top
20 % or 30 % ranking ReliefF attributes proved effective
in obtaining the best performance in a medium-sized
real-life dataset with unknown structure or dependencies
among variables.
One of the most striking findings of our simulation is

that when kNN imputation is chosen, it is advisable to
limit the number of k neighbors, because of the risk to
severely impair the original variability of data. Again, we

cannot provide an optimal number of neighbors to se-
lect, however both in the simulations we conducted and
in the test in the real-life dataset we subsequently per-
formed, a value of k = 3 seem a reasonable choice. These
findings are of paramount importance because contrarily
to the common notion derived from the work of
Troyanskaya et al [11], a value f k ranging from 10 to 20
may not be appropriate unless data distortion is com-
pletely neglected and the accuracy of the imputed data
(as measured for instance by the MRSE) is the sole out-
come of interest.
In our simulation, we considered a coloured form of

noise and we did not just added a “white” Gaussian
noise to the variables of interest, including among the ir-
relevant variables blocks of correlated attributes as well
as unrelated attributes normally or diversely (e.g. non
central chi-square) distributed and thus our findings are
robust against different types of noise. Despite this, the
limitations of a simulation setting should be acknowl-
edged as real-life datasets are far more complex and
challenging. Even the final test we conducted in the
SPECTF heart dataset is not fully exhaustive of what a
researcher may encounter in the real-life, as we

Table 3 Inaccuracy in the imputation of missing variables, average of 500 samples of n = 400, k = 5, 15 % or 30 % of missing data

Inaccuracy of imputed values

Missing 15 % 30 %

Framework Method X0 X1 X2 X0 X1 X2

Plain 1NN 0.20513 0.22972 0.56589 0.20740 0.23113 0.56644

kNN 0.16135 0.18078 0.45804 0.16467 0.18252 0.46226

wkNN 0.16119 0.18072 0.45814 0.16443 0.18246 0.46245

RReliefF10 1NN 0.18585 0.22663 0.56361 0.19424 0.23259 0.56324

kNN 0.14861 0.17971 0.45634 0.15461 0.18305 0.46181

wkNN 0.14846 0.17968 0.45643 0.15447 0.18305 0.46184

RReliefF20 1NN 0.18808 0.22416 0.56186 0.19247 0.22891 0.56218

kNN 0.14847 0.17785 0.45450 0.15313 0.18181 0.45896

wkNN 0.14831 0.17781 0.45463 0.15291 0.18179 0.45918

RReliefF30 1NN 0.18835 0.22493 0.55807 0.19371 0.22806 0.55949

kNN 0.14918 0.17770 0.45381 0.15377 0.18058 0.45964

wkNN 0.14899 0.17767 0.45394 0.15353 0.18056 0.45974

Bagging 1NN 0.15793 0.17242 0.43902 0.16149 0.17539 0.44266

kNN 0.16258 0.17134 0.43148 0.16670 0.17458 0.43561

wkNN 0.16190 0.17119 0.43162 0.16558 0.17431 0.43583

Random 1NN 0.16244 0.17164 0.43141 0.16253 0.17400 0.43639

kNN 0.16299 0.17099 0.42932 0.16298 0.17307 0.43380

wkNN 0.16294 0.17097 0.42932 0.16292 0.17306 0.43381

Bagging + Random 1NN 0.16635 0.17287 0.43159 0.16636 0.17490 0.43593

kNN 0.16785 0.17238 0.42907 0.16823 0.17436 0.43371

wkNN 0.16765 0.17233 0.42907 0.16799 0.17429 0.43371

Mean Imputation 0.17576 0.17412 0.42819 0.17560 0.17616 0.43270
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Table 4 Standard deviation of the mean for the imputed variables, average of 500 samples of n = 400, k = 5, 15 % or 30 % of missing data

X0 X1 X2

Missing 15 % 30 % 15 % 30 % 15 % 30 %

Framework Method Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

Plain 1NN 0.5074 2.3775 2.6302 1.0086 3.5607 4.5708 0.0232 0.0279 0.0284 0.043 0.0423 0.0441 -0.0022 0.1952 0.1948 0.0487 0.3396 0.3413

kNN 2.455 1.9712 7.9943 5.1169 2.2592 28.4371 0.2575 0.0222 0.0884 0.523 0.0238 0.2972 0.5701 0.1469 0.4716 1.2426 0.1643 1.708

wkNN 2.4528 1.9704 7.9826 5.1114 2.2626 28.3844 0.2573 0.0222 0.0883 0.5225 0.0238 0.2967 0.5698 0.1469 0.4713 1.2412 0.1646 1.7049

RReliefF10 1NN 0.4393 2.4004 2.5885 0.761 3.3207 3.8931 0.0219 0.0276 0.0281 0.0316 0.0366 0.0375 0.015 0.1709 0.1707 0.0996 0.2514 0.2608

kNN 2.0991 2.0623 6.4642 4.5112 2.533 22.8788 0.2506 0.0228 0.0856 0.5098 0.0249 0.2848 0.5737 0.1449 0.4738 1.2486 0.1575 1.7162

wkNN 2.0946 2.0633 6.4464 4.4987 2.5357 22.7687 0.2504 0.0228 0.0855 0.5091 0.025 0.2841 0.5735 0.1448 0.4734 1.2476 0.1577 1.7138

RReliefF20 1NN 0.5633 2.2892 2.6019 0.994 3.2527 4.2343 0.0321 0.0261 0.0271 0.0511 0.0354 0.0379 0.0279 0.1786 0.179 0.1011 0.2649 0.2746

kNN 2.2315 2.0225 6.998 4.72 2.3146 24.5886 0.2541 0.0222 0.0867 0.515 0.0246 0.2898 0.576 0.1437 0.4752 1.2559 0.1563 1.7334

wkNN 2.2275 2.0219 6.9796 4.7088 2.3178 24.4859 0.2539 0.0222 0.0866 0.5143 0.0246 0.2891 0.5757 0.1437 0.4748 1.2545 0.1564 1.7297

RReliefF30 1NN 0.6213 2.3558 2.7371 1.0826 3.417 4.5821 0.0321 0.0252 0.0262 0.0606 0.0367 0.0402 0.029 0.1781 0.1786 0.1471 0.2647 0.2858

kNN 2.2891 2.0022 7.2382 4.8352 2.3793 25.7541 0.2557 0.0224 0.0878 0.5193 0.024 0.2936 0.578 0.1455 0.4793 1.2588 0.155 1.7392

wkNN 2.2863 2.0032 7.2263 4.8256 2.3794 25.6606 0.2555 0.0224 0.0876 0.5186 0.024 0.2929 0.5776 0.1454 0.4787 1.2574 0.1551 1.7358

Bagging 1NN 2.8371 1.926 9.9715 5.9696 2.0865 37.7185 0.2994 0.0219 0.1115 0.6124 0.0226 0.3976 0.6678 0.1438 0.5895 1.4532 0.1515 2.2629

kNN 3.0206 1.9076 11.0279 6.363 2.0181 42.5012 0.3164 0.0218 0.1219 0.6478 0.0222 0.4418 0.706 0.1432 0.6413 1.5354 0.1473 2.5044

wkNN 3.0141 1.9084 10.9892 6.342 2.0229 42.2391 0.316 0.0218 0.1216 0.6464 0.0222 0.44 0.7051 0.1432 0.6401 1.5322 0.1476 2.4949

Random 1NN 2.9856 1.9079 10.8177 6.2409 2.0297 40.9738 0.3132 0.0218 0.1199 0.6386 0.0222 0.4299 0.6984 0.1425 0.63 1.516 0.1472 2.4451

kNN 3.0477 1.9032 11.188 6.3797 2.0142 42.7108 0.3193 0.0218 0.1237 0.652 0.0222 0.4472 0.7123 0.1426 0.6497 1.5472 0.1466 2.5401

wkNN 3.0473 1.9032 11.1854 6.3787 2.0143 42.6979 0.3193 0.0218 0.1237 0.6519 0.0222 0.4472 0.7123 0.1426 0.6496 1.5471 0.1466 2.5397

Bagging + Random 1NN 3.0144 1.9068 10.9895 6.3079 2.0163 41.8015 0.3149 0.0218 0.121 0.6423 0.0222 0.4347 0.7015 0.1427 0.6345 1.5238 0.1474 2.469

kNN 3.0742 1.9011 11.3478 6.4416 2.0055 43.4956 0.3205 0.0218 0.1245 0.6548 0.0222 0.4509 0.7141 0.1426 0.6523 1.552 0.1466 2.5549

wkNN 3.0733 1.9012 11.3424 6.4393 2.0056 43.4661 0.3205 0.0218 0.1245 0.6547 0.0222 0.4508 0.7141 0.1426 0.6522 1.5518 0.1466 2.5542

Mean Imputation 3.1024 1.8985 11.5198 6.5012 1.9981 44.2595 0.3224 0.0218 0.1257 0.659 0.0222 0.4564 0.7181 0.1425 0.6578 1.5606 0.1465 2.5817
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considered only a MCAR mechanism to create the
missing data. The conclusions we draw applies to cases
with moderate sizes of missingness, no lower than 15 %
and no higher than 30 %; we intentionally limited our
evaluations to this range as for small amounts of miss-
ing data, under the MAR or MCAR mechanisms, im-
putation may be useless and for larger amounts caution
should always be applied because estimates may be-
come very imprecise [21]. Thus, despite the efficiency
of NN imputation under these conditions, it should re-
membered that imputation should be carefully applied
and cannot solve all the problems of incomplete data
[22] and that NN imputation can have serious

drawbacks as we showed for instance considering the
risk of distorting data distribution or the lack of preci-
sion in imputing variables with no dependencies in a
dataset or, conversely, the possibility to introduce spuri-
ous associations considering dependencies where they
do not exist.

Conclusions
The use of ReliefF selection algorithms in conjunction
with kNN imputation methods, provided that k are ad-
equately low, gives and adequate trade-off between pre-
cision of imputation and capability to preserve the
natural structure of data. The use of large number of k

Fig. 1 Distribution of data for the variable X0 before removal of missing cases and after imputation with the kNN algorithm, setting k equal to 1,
3 or 10 neighbors

Fig. 2 Trade-off between inaccuracy of imputation and MSE of the standard deviation (SD) for the kNN algorithm in relation to the number of k
neighbors (x-axis); normalized values are shown; variable of interest: X0
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Table 5 Performance of the different imputation algorithms in the SPECTF dataset with 15 % of cases with missing values (MCAR schema)

AVG
RNK

F5S F13S F16S F20S

Framework NN β Inacc. SD RNK β Inacc SD RNK β Inacc SD RNK β Inacc SD RNK

Plain 1NN 11 0.00055 0.10236 0.07645 2 0.00048 0.25751 0.20554 12 0.00188 0.10025 0.25897 14 0.00208 0.08654 0.22260 14

3NN 13 0.00037 0.08654 0.14198 1 0.00026 0.24829 0.55387 15 0.00113 0.09287 0.37754 15 0.00106 0.09324 0.38604 15

10NN 16 0.00044 0.09324 0.29798 6 0.00024 0.25926 0.93204 17 0.00091 0.09282 0.43864 17 0.00085 0.13671 0.67729 17

RReliefF10 1NN 12 0.00108 0.13671 0.10879 17 0.00081 0.21663 0.10804 8 0.00245 0.09252 0.21413 9 0.00288 0.11535 0.16061 9

3NN 5 0.00056 0.11535 0.20818 14 0.00038 0.18647 0.25249 5 0.00108 0.08159 0.26951 2 0.00127 0.10922 0.25977 2

10NN 10 0.00038 0.10922 0.36227 16 0.00023 0.18632 0.48904 9 0.00071 0.07924 0.36886 7 0.00076 0.12170 0.48206 7

RReliefF20 1NN 4 0.00079 0.12170 0.09823 10 0.00049 0.18938 0.09443 4 0.00177 0.08818 0.19667 4 0.00198 0.10374 0.15313 4

3NN 1 0.00038 0.10374 0.20308 7 0.00023 0.16492 0.24663 1 0.00083 0.07912 0.29916 1 0.00083 0.10194 0.27393 1

10NN 6 0.00030 0.10194 0.34090 13 0.00016 0.16934 0.46077 6 0.00061 0.07827 0.38066 6 0.00054 0.11605 0.49548 6

RReliefF30 1NN 3 0.00060 0.11605 0.09507 8 0.00039 0.18664 0.10566 3 0.00153 0.08897 0.21147 5 0.00180 0.09929 0.16041 5

3NN 2 0.00033 0.09929 0.18934 4 0.00019 0.16570 0.26288 2 0.00084 0.08041 0.31290 3 0.00077 0.09905 0.29194 3

10NN 7 0.00027 0.09905 0.32647 9 0.00015 0.17219 0.47827 7 0.00063 0.08011 0.39277 8 0.00052 0.09865 0.51013 8

Bagging 1NN 17 0.00052 0.09865 0.36311 12 0.00026 0.26573 1.06013 18 0.00101 0.09273 0.45949 18 0.00084 0.10679 0.79511 18

3NN 20 0.00064 0.10679 0.43314 18 0.00033 0.28017 1.20518 20 0.00117 0.09412 0.48350 20 0.00103 0.12034 0.92381 20

10NN 21 0.00060 0.12034 0.53072 21 0.00042 0.29474 1.32230 21 0.00134 0.09648 0.52562 21 0.00125 0.08574 104.138 21

Random 1NN 8 0.00023 0.08574 0.27112 3 0.00013 0.17789 0.61912 10 0.00063 0.07941 0.42192 10 0.00041 0.08773 0.47887 10

3NN 9 0.00025 0.08773 0.31320 5 0.00013 0.18342 0.71124 11 0.00063 0.08053 0.44411 11 0.00040 0.09447 0.55429 11

10NN 14 0.00026 0.09447 0.39598 11 0.00014 0.19570 0.83654 13 0.00064 0.08274 0.46791 12 0.00042 0.10005 0.70133 12

Bagging 1NN 15 0.00028 0.10005 0.43214 15 0.00015 0.20818 0.90011 14 0.00068 0.08464 0.47270 13 0.00045 0.10636 0.77000 13

+Random 3NN 18 0.00029 0.10636 0.47922 19 0.00016 0.22459 1.02479 16 0.00071 0.08658 0.49146 16 0.00047 0.11750 0.86695 16

10NN 19 0.00034 0.11750 0.52735 20 0.00021 0.25749 1.19241 19 0.00082 0.09074 0.51276 19 0.00056 0.13035 0.96854 19

Mean Imputation 22 0.00060 0.13035 0.59451 22 0.00064 0.30319 1.38048 22 0.00193 0.10097 0.54523 22 0.00244 0.23502 1.11848 22
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neighbors is only apparently useful in NN imputation
problems as the gain in precision masks a striking dis-
tortion in the true distribution of data.

Abbreviations
MAR, missing at random; MCAR, missing completely at random; MSE, mean
squared error; NN, nearest neighbour
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