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Abstract

Background: Acute Kidney Injury (AKI) occurs in at least 5 % of hospitalized patients and can result in 40–70 %
morbidity and mortality. Even following recovery, many subjects may experience progressive deterioration of renal
function. The heterogeneous etiology and pathophysiology of AKI complicates its diagnosis and medical management
and can add to poor patient outcomes and incur substantial hospital costs. AKI is predictable and may be avoidable if
early risk factors are identified and utilized in the clinical setting. Timely detection of undiagnosed AKI in hospitalized
patients can also lead to better disease management.

Methods: Data from 25,521 hospital stays in one calendar year of patients 60 years and older was collected from a large
health care system. Four machine learning models (logistic regression, support vector machines, decision trees and naïve
Bayes) along with their ensemble were tested for AKI prediction and detection tasks. Patient demographics, laboratory
tests, medications and comorbid conditions were used as the predictor variables. The models were compared using the
area under ROC curve (AUC) evaluation metric.

Results: Logistic regression performed the best for AKI detection (AUC 0.743) and was a close second to the ensemble
for AKI prediction (AUC ensemble: 0.664, AUC logistic regression: 0.660). History of prior AKI, use of combination drugs
such as ACE inhibitors, NSAIDS and diuretics, and presence of comorbid conditions such as respiratory failure
were found significant for both AKI detection and risk prediction.

Conclusions: The machine learning models performed fairly well on both predicting AKI and detecting undiagnosed
AKI. To the best of our knowledge, this is the first study examining the difference between prediction and detection of
AKI. The distinction has clinical relevance, and can help providers either identify at risk subjects and implement
preventative strategies or manage their treatment depending on whether AKI is predicted or detected.
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Background
Acute Kidney Injury (AKI) is a common clinical event
among hospitalized patients, affecting at least 5 % of pa-
tients admitted to hospitals and over 25 % of patients in
the intensive care unit. AKI results in significant mor-
bidity and mortality (as high as 40–70 %), and even fol-
lowing resolution, can lead to severe renal impairment
progressing to dialysis dependency, resulting in pro-
longed hospital stays and associated health costs [1, 2].
AKI occurs over the course of a few hours to days and is
potentially reversible if detected and managed early in
the course of the condition. Over the past few decades,

AKI rates in older adults have been steadily increasing
due to multiple contributing factors, such as aggressive
surgical and medical treatments; increasing numbers of
chronic and comorbid illnesses; greater use of nephrotoxic
medications and imaging agents; and longer exposures to
chronic diseases and nephrotoxins [1, 3]. Older persons
who develop AKI also have higher rates of short- and
long-term mortality; subsequent chronic kidney disease
(CKD), including end-stage renal disease (ESRD); pro-
longed hospital stays; transitions to sub-acute care facil-
ities; AKI-related morbidity; functional decline and related
health care costs.
The heterogeneous etiology and pathophysiology of AKI

complicates its diagnosis and medical management. Due
to this, a national consortium was formed to develop

* Correspondence: katerj@uwm.edu
1Department of Health Informatics and Administration, University of
Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
Full list of author information is available at the end of the article

© 2016 Kate et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kate et al. BMC Medical Informatics and Decision Making  (2016) 16:39 
DOI 10.1186/s12911-016-0277-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-016-0277-4&domain=pdf
http://orcid.org/0000-0001-5522-0674
mailto:katerj@uwm.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


consensus based guidelines (RIFLE criteria) for AKI diag-
nosis [4], followed by further refinement with the AKIN
criteria [5]. However, reliance on a rise in serum creatinine
alone as the gold standard for diagnosis is problematic in
older adults because of age-related declines in glomerular
filtration rates, which can affect baseline serum creatinine,
and because serum creatinine is influenced by muscle
mass, nutritional status and volume distribution. Although
decreased urine output is associated with early course of
AKI, this value is frequently not monitored and missed till
AKI is established.
Despite these drawbacks, it is important to note that

20–30 % of AKI in the hospital setting is predictable and
avoidable if all risk factors are identified, quantified and
utilized in the clinical setting for risk profiling of patients.
Recently, the ASSESS-AKI study [6] was established to
examine how AKI can predict risk of developing CKD,
cardiovascular events and death, but AKI risk prediction
itself was not addressed in this study. Also important to
note is the difficulty in predicting risk of AKI in older
adults, as many variables used for risk prediction become
less predictive as age increase [7].
In this study, we built machine learning models to pre-

dict at 24 h of admission whether a patient will develop
AKI during the rest of the hospital stay, and to detect
AKI (anytime during hospital stay) for hospitalized pa-
tients over the age of 60. To the best of our knowledge,
there are no studies in the literature examining the dif-
ference in prediction vs. detection of AKI–the distinc-
tion between the two could be clinically very important
as it can help providers either plan preventive care or
manage treatment/plan depending on whether AKI is
predicted or detected. We tested four separate and dif-
ferent types of models and their ensemble to allow us to
compare and contrast different methods for prediction
and detection of AKI.

Methods
Data collection
Patients older than 60 years of age with at least a one
day hospital stay (encounter) in 2013 at any of Aurora
Health Care’s (15) hospitals formed our retrospective
cohort (n = 32,076). All these hospitals use the same
electronic health record (EHR), follow standardized
order sets, and are located in the southeastern region of
the Wisconsin state. Aurora Health Care’s EHR system
was queried to obtain structured data corresponding to
the patient cohort. The structured data included demo-
graphic information, admission and discharge dates and
times, surgeries, comorbidities, family history, medica-
tions and laboratory values. Each piece of this structured
data also had a timestamp corresponding to when it was
recorded. Using this information and the timestamps on
the structured data, it was possible to appropriately

associate patients’ structured data with their encounter.
This study was approved by the Institutional Review
Board at Aurora Health Care.

AKI definition
AKI was defined using the AKIN criteria [5] using any
two serum creatinine measurements taken within 48 h
of each other during an encounter. Given that a patient
may have AKI during one encounter and not during an-
other, in this study, encounters rather than patients were
classified as ‘with AKI’ or ‘without AKI’. Out of total
25,521 encounters that were included in our data, pa-
tients acquired AKI during 2,258 (8.84 %) encounters.

Study design
Two separate tasks were considered: predicting whether
a patient will acquire AKI during their encounter and
detecting if a patient has acquired AKI sometime during
their encounter that would otherwise go undetected.
While predicting AKI is important to enable better pre-
ventive care, detecting undiagnosed AKI is also import-
ant to enable an alert system that will lead to suitable
treatment measures.

Predicting AKI
AKI prediction models were built using machine learn-
ing methods to predict at 24 h from admission whether
a patient will develop AKI later during the hospital stay.
Positive examples were those in which AKI was acquired
after 24 h (1,782) and negative examples were the en-
counters during which AKI was never acquired (23,263).
There were no encounters shorter than 24 h in our data.
Encounters during which AKI was acquired within 24 h
of admission were not used as examples because the
model is being trained to predict AKI at 24 h from
admission.
Demographic information, comorbidities, family his-

tory, medications and laboratory values extracted from
the structured part of EHRs were used as predictive vari-
ables by the models. For each of these variables, only the
last recorded value before 24 h after admission was used
for each example. If no such value existed for a hospital
stay then its value was taken as “unknown.” Serum cre-
atinine was not used as a predictive variable as it was
used to determine “gold-standard” positive and negative
examples. Comorbidity and medication variables took ei-
ther “yes” or “no” values. If a patient had a comorbid
condition or was prescribed a medication anytime in the
past then its value was considered to be “yes” because
the patient would be susceptible to AKI. The family his-
tory parameter was “yes” only if the corresponding field
in the EHR mentioned kidney or a kidney related dis-
ease. For every laboratory value variable only the last
value recorded within 24 h from admission was used.
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Unlike medications or comorbidities, a laboratory value
prior to the encounter was not used.

Detecting AKI
For AKI detection, positive examples were encounters
during which AKI was acquired (2,258) and negative ex-
amples were those during which AKI was never acquired
(23,263). Unlike the AKI prediction which had a fixed
time of prediction at 24 h from admission, this task did
not have a fixed time of detection since AKI could be
acquired anytime during the encounter and the model
needs to detect whenever it happens. However, the posi-
tive and negative examples require timestamps to repre-
sent the temporal clinical scenario for applying the
model. Positive examples used the time AKI was ac-
quired (as determined by the timestamp of the second
serum creatinine measurement which met the AKIN cri-
teria) as its timestamp: this is when the model will be
expected to detect AKI. For negative examples, any time
during the encounter could be used as timestamps
because at any of these times AKI was not present. To
limit one timestamp per negative example, we chose to
use the timestamp of the last serum creatinine measure-
ment taken during the encounter because it signifies that
the patient was still prone to developing AKI. We avoided
using any fixed timestamp, say discharge time, for negative
examples because instead of learning to detect AKI, the
model may simply learn to distinguish between patients
about to be discharged and patients who are to continue
their stay.
As in the task of predicting AKI, the demographic in-

formation, comorbidities, family history, medications
and laboratory values were used as predictive variables
in the same manner. For each of these variables, only
the last recorded value before the example’s timestamp
was used otherwise the value was taken as “unknown.”
This was the reason associating timestamps with the ex-
amples was necessary.

Experimental methodology
Four different machine learning methods - Logistic
Regression [8], Support Vector Machines (SVMs) [9],
Decision Trees [10], Naïve Bayes [11] as well as an en-
semble [12] of all these methods, were used for building
our models using the freely and publicly available Weka
software [13]. We chose these four methods because
they are well-known and represent different types of ma-
chine learning methods. Logistic regression and SVMs
are statistical methods, decision tree is a rule-based
method, and naïve Bayes is a probability-based method.
Decision tree models are human-interpretable; logistic
regression models are informative as they show relation
between predictor variables and dependent variable in
terms of odds ratios; but SVMs and naïve Bayes models

are not very human-interpretable. However, SVMs have
been theoretically as well as experimentally shown to
work well even on prediction tasks involving thousands
of variables; and naïve Bayes, in spite of its naïve
assumption, performs competitively on many real-world
tasks and is also extremely fast to train and test. Weka’s
implementations of these methods also have default
mechanisms for handling unknown values of variables in
the data which we used for our experiments.
An ensemble method combines multiple classification

methods and typically obtains better results than the
component classifiers [12]. However, it may not improve
results if the component classifiers lack in diversity and
agree most of the time in their output classifications.
There are several methods to build ensembles, we used
the stacking method available in Weka in which the out-
puts of the component classifiers are used as variables
by a top-level classifier which is also trained using the
training data.
All models were evaluated using the standard ten-fold

cross-validation [14]. In this procedure, the entire data is
first randomly divided into ten equal parts, the models
are trained on nine parts and tested on the tenth part,
and this process is repeated ten times each time using a
different part for testing. The results of all these ten
folds are then combined to compute the evaluation
scores. All the machine learning methods we used are
capable of giving a confidence score with their output
AKI/Non-AKI classification. By varying the threshold on
this confidence score, one can trade-off between true
positive rate (sensitivity) with false positive rate (1-speci-
ficity) and thus generate an entire receiver operating
characteristic (ROC) curve. We used the standard meas-
ure of area under ROC curve (AUC) to report and com-
pare performance of the models.
Our datasets for both the prediction and detection tasks

were highly unbalanced with the number of negative ex-
amples (non-AKI) more than thirteen times the number
of positive examples (AKI) for the prediction task and
more than ten times for the detection task. With such an
unbalanced data, a machine learning model set to
optimize evaluation scores may do so simply by calling all
test examples negative (this way it will have, for example,
more than 90 % of the test examples correctly classified
on the detection task). But such a model will be practically
of little use. In order to make the model optimize its per-
formance on both the classes, a weight is assigned to the
minority class based on how damaging it will be to mis-
classify it compared to misclassifying the majority class. In
Weka, weight for a class can be specified by using its cost-
sensitive meta-classifier. In order to determine the right
weight of the positive class, in each fold we did internal
ten-fold cross-validations within its training data with dif-
ferent weights. The weight that gave the maximum AUC
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on internal cross-validation was then used to build the
model using the entire training data for that fold. We var-
ied the weight from 1, 2, 4, 6, …, 18, 20 for internal cross-
validations for each of the machine learning methods we
used.
We used Weka’s “SMO” method for SVM, “J48”

method for decision trees, “Logistic” method for logistic
regression and “NaiveBayes” method for naïve Bayes.
Decision tree’s “minimum number of instances per leaf”
parameter was also set through internal cross-validation
(together with the weight of the positive class) out of 20,
40, 60, …, 280, 300. We found that it was computation-
ally impractical to determine the best values of SVMs’
noise and kernel parameters through internal cross-
validation because of the long computational times.
Through pilot experiments we found that Weka’s default
parameter setting for SVMs (noise parameter = 1 and
linear kernel) to be the best for our dataset and used
these values. We, however, determined the best value of
the weight of the positive class for SVMs through in-
ternal cross-validation. Logistic regression and naïve
Bayes methods did not have important parameters to set
besides the weight of the positive class.
An ablation study was performed to determine the

relative contributions of comorbidity, medications and
laboratory values variables. Learning curves were also
plotted to see how the performance changes with in-
creasing number of training examples.

Results
Patient characteristics
Figure 1 shows the number of encounters (hospital
stays) in the retrospective cohort of patients for the time

period of the study. A majority of patients had a single
(n = 22,313) or two encounters (n = 6,075) with only 374
patients having 6 or more encounters. Figure 2 shows the
number of patients included in analysis after exclusion cri-
teria were applied. Patients with chronic kidney disease
stages III, IV and V, organ transplant recipients, and those
with less than two serum creatinine measurements were

Fig. 1 Number of hospital stays of the 32,076 hospitalized patients in the year 2013

Fig. 2 Flowchart depicting number of patients that were included in
analysis after exclusion criteria. The total included encounters were
divided as AKI or without AKI
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Table 1 Distribution of various variables in AKI and non-AKI encounters. For numeric variables, mean and standard deviation are
shown; categorical variables are shown with the number of occurrences and percentages

Variable AKI (2258) Non-AKI (23263) P-value

Demographics

Age 75.2 ± 9.5 75.3 ± 9.6 0.799

BMI 29.7 ± 8.2 28.4 ± 7.3 <0.0001

Race =White 1974 (87.4 %) 20940 (90.0 %) <0.0001

Race = Black 198 (8.8 %) 1571 (6.8 %) <0.0004

Race = Other 27 (1.2 %) 240 (1.0 %) 0.5331

Sex = Female 1101 (48.8 %) 12426 (53.4 %) <0.0001

Sex = Male 1154 (51.1 %) 10791 (46.4 %) <0.0001

Tobacco Use = Never 767 (34.0 %) 8601 (37.0 %) <0.005

Tobacco Use = Quit 1281 (56.7 %) 12118 (52.1 %) <0.0001

Tobacco Use = Yes 193 (8.5 %) 2360 (10.1 %) <0.02

Alcohol Use 705 (31.2 %) 8037 (34.6 %) <0.002

Family History 37 (1.64 %) 442 (1.90 %) 0.4280

Laboratory Values

BUN 25.81 ± 14.27 17.45 ± 8.63 <0.0001

AST 35.49 ± 29.02 27.79 ± 18.7 <0.0001

Troponin 3.98 ± 3.13 1.31 ± 1.12 <0.0001

Blood Bilirubin 0.77 ± 0.56 0.60 ± 0.37 <0.0001

Platelet Count 214.33 ± 92.98 215.11 ± 85.71 0.686

Heart Rate 84.2 ± 19.0 81.3 ± 18.7 <0.0001

Temperature 98.2 ± 1.2 98.1 ± 1.6 0.08

BP systolic 140 ± 32 138 ± 28 <0.01

BP diastolic 72 ± 16 71 ± 14 <0.04

Medications

ACE Inhibitors 1219 (54.0 %) 10869 (46.7 %) <0.0001

ARB 422 (18.7 %) 3851 (16.6 %) <0.02

NSAIDS 821 (36.36 %) 8619 (37.05 %) 0.5312

Lipid Lowering Drugs 1539 (68.16 %) 15233 (65.48 %) <0.02

Diuretics 1750 (77.50 %) 13654 (58.69 %) <0.0001

ACE Inhibitors or NSAIDS or Diuretics 2052 (90.88 %) 19111 (82.15 %) <0.0001

ARB or ACE Inhibitors or NSAIDS or Diuretics 2076 (91.94 %) 19580 (84.17 %) <0.0001

K Sparing 284 (12.58 %) 1786 (7.68 %) <0.0001

Aminoglycoside Antibiotics 241 (10.67 %) 1986 (8.54 %) <0.001

Radiocontrast Dyes 1536 (68.02 %) 14229 (61.17 %) <0.0001

Cisplatin 31 (1.37 %) 267 (1.15 %) 0.3963

Acyclovir 119 (5.27 %) 1170 (5.03 %) 0.6539

Comorbidities

Prior AKI 378 (16.74 %) 1470 (6.32 %) <0.0001

Diabetes 223 (9.88 %) 1410 (6.06 %) <0.0001

Hyperlipidemia 392 (17.36 %) 3127 (13.44 %) <0.0001

Hypercalcemia 32 (1.417 %) 222 (0.95 %) <0.05

Thrombocytopenia 103 (4.56 %) 567 (2.43 %) <0.0001

Hypertension 453 (20.06 %) 3518 (15.12 %) <0.0001
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excluded with remaining 25,251 encounters used for ana-
lysis. The total included encounters were divided as AKI
(n = 2,258) or without AKI (n = 23,263).
Patient characteristics separated by AKI and non-AKI

status are depicted in Table 1. All demographics except
for age, those belonging to a race other than Black or
White and family history of kidney disease were statisti-
cally different between AKI and non-AKI encounters.
We note that some categorical values do not add to
100 % in Table 1 because of some missing or unknown
values in the data. The majority of laboratory values, med-
ications and comorbidities had significant differences be-
tween the two groups, with the exception of platelet
count, temperature, NSAID, Cisplatin and acyclovir use,
disorders of lipoid metabolism and rhabdomyolysis.

Classification results
The area under ROC (AUC) ranged between 0.621 to
0.664 for predicting AKI and between 0.692 to 0.743 for
detecting AKI (Table 2) between the four machine learn-
ing methods and their ensemble. The performance on the
detection task was clearly better than that on the predic-
tion task for each model tested, indicating that it is easier
to detect AKI than to predict it. While all the methods
obtained competitive results on both prediction and de-
tection, logistic regression obtained the best results for
AKI detection (AUC 0.743) and was a close second to the
ensemble method for AKI prediction (AUC ensemble
method: 0.664, AUC logistic regression: 0.660). An

ensemble model typically improves over its component
models if they disagree on some of their outputs in such a
way that when one model incorrectly classifies an example
most other models correctly classify it. Hence these results
indicated that our models mostly agreed well with one an-
other and could not correct their mistakes by forming an
ensemble. Note that ROC curve for a random classifier is
a diagonal line with AUC 0.5, hence our models outper-
form it. Figure 3a and b show the ROC curves obtained by
the logistic regression model for prediction and detection
respectively. The corresponding curves for other models
are not shown for clarity as they are close to each other.
An ROC curve shows the entire range of sensitivity and
specificity obtainable by the model allowing a user to
trade-off between them to choose a particular setting. For
example, in Fig. 3a, one can choose 75 % sensitivity for
AKI prediction and obtain 43.6 % specificity, or choose
75 % specificity and obtain 45.5 % sensitivity. One can also
choose 80 % sensitivity and obtain 36.9 % specificity, or
choose 80 % specificity and obtain 40.6 % sensitivity. Simi-
larly, in Fig. 3b, one can choose 75 % sensitivity for AKI
detection and obtain 61.1 % specificity, or choose 75 %
specificity and obtain 62.6 % sensitivity. One can also
choose 80 % sensitivity and obtain 52.7 % specificity, or
choose 80 % specificity and obtain 55.7 % specificity.

Ablation study
In order to determine the relative contributions of the
major categories of variables, we conducted an ablation

Table 1 Distribution of various variables in AKI and non-AKI encounters. For numeric variables, mean and standard deviation are
shown; categorical variables are shown with the number of occurrences and percentages (Continued)

Heart Failure 272 (12.05 %) 1442 (6.20 %) <0.0001

Coronary Artery Disease 250 (11.07 %) 1670 (7.18 %) <0.0001

Disorders of Lipoid Metabolism 134 (5.93 %) 1413 (6.07 %) 0.8265

Pancreatitis 51 (2.26 %) 342 (1.47 %) <0.005

Rhabdomyolysis 19 (0.84 %) 164 (0.70 %) 0.5464

Congestive Heart Failure 272 (12.04 %) 1442 (6.20 %) <0.0001

Sepsis 230 (10.19 %) 1324 (5.69 %) <0.0001

Respiratory Failure 363 (16.08 %) 1271 (5.46 %) <0.0001

The p-values less than 0.05 are shown in bold

Table 2 Area under ROC curves and 95 % confidence intervals obtained using different machine learning methods for predicting
and detecting AKI during hospital stay. In each column, the highest ROC value is shown in bold and the values found statistically
significantly different (p < 0.05; two-tailed paired t-test) from it are indicated with a asymbol

Method Prediction at 24 h (95 % CI) Detection (95 % CI)

Logistic Regression 0.660 (0.647–0.673) 0.743 (0.732–0.755)

Naïve Bayes a0.654 (0.639–0.669) a0.699 (0.684–0.715)

Decision Trees a0.639 (0.627–0.651) a0.725 (0.717–0.733)

Support Vector Machine a0.621 (0.609–0.633) a0.692 (0.682–0.702)

Ensemble 0.664 (0.651–0.676) a0.738 (0.727–0.748)
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study where we excluded laboratory value, medication
and comorbidity variables one group at a time, and re-
peated the same process of training and evaluation.
Table 3 shows the ablation results for the logistic regres-
sion classifier which was found to be the best classifier
on our data. It is clear that the performance always
dropped on both the tasks after removing any category
of variables; however, it is interesting to observe how
much the performance dropped in each case. The per-
formance on detection task dropped dramatically from
0.743 AUC to 0.668 AUC on removing laboratory values
which shows that they play the most significant role in
helping to detect AKI. However, excluding laboratory
values incurred a very small drop in performance on the
prediction task (AUC 0.66 to AUC 0.656) whereas the
largest drop occurred when comorbidities were removed
(AUC 0.66 to AUC 0.625) which shows that they are the
more predictive of AKI when compared to medications
or laboratory values.

Learning curves
Figure 4a and b show the learning curves obtained on
the prediction and detection tasks respectively using the
logistic regression classifier which performed best on
this data. The corresponding curves for other models

are qualitatively similar and are not shown. To obtain
each point on a learning curve, the same training and
evaluation procedure was employed as before but using
only a portion of the entire training data in each fold. A
larger portion of training data always comprised all the
examples that a smaller portion of training data in-
cluded. The test data, however, remained exactly the
same. From the graphs one can see that the performance
grows rapidly in the beginning with increasing amounts
of training data and reaches very close to peak with
around 40 % of the training data. The graphs also show
that while the performance has mostly plateaued, it may
still go up slightly with more training data.

Odds ratios
Odds ratios of the variables for the prediction and detec-
tion tasks obtained using logistic regression are seen in
Fig. 5a and b respectively. Weka software does not give
confidence intervals on its odds ratios, hence we used R
statistical software to obtain the odds ratios and their
confidence intervals. Variables that had high odds ratios
for AKI prediction vs. AKI detection were different –for
AKI prediction: use of diuretics (OR 1.801) or combin-
ation drugs such as NSAIDs, ACE inhibitors and di-
uretics (OR 2.165), history of prior AKI (OR 1.646),

Fig. 3 a ROC curve of the logistic regression model for predicting AKI. b ROC curve of the logistic regression model for detecting AKI

Table 3 Results of ablation study for area under ROC curve and 95 % confidence intervals obtained on the two tasks using the
logistic regression classifier. The values found statistically significantly different (p < 0.05; two-tailed paired t-test) from the value in
the “All” column in the same row are indicated with a asymbol

All (95 % CI) Exclude Labs (95 % CI) Exclude Meds (95 % CI) Exclude Comorbidities (95 % CI)

Prediction at 24 h 0.660 0.656 0.647 0.625a

(0.647–0.673) (0.643–0.668) (0.633–0.662) (0.611–0.638)

Detection 0.743 0.668a 0.728a 0.705a

(0.732–0.755) (0.652–0.683) (0.707–0.749) (0.686–0.724)
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comorbidities such as coronary artery disease (OR
1.669), diabetes (OR 1.505) and respiratory failure (OR
2.415) all had strong association with AKI. On the detec-
tion task, use of diuretics (OR 2.305), history of prior
AKI (1.697), presence of comorbid conditions such as
hypercalcemia (OR 1.538) heart failure (OR 1.415) and
respiratory failure (OR 1.564) each had strong associ-
ation with the AKI class.

Discussion
AKI detection vs. AKI prediction
Each modeling method used to predict and detect AKI
performed fairly well although logistic regression was
the best. The choice between developing an AKI predic-
tion or an AKI detection model is ultimately dependent
on whether the model will be used in clinical decision
support tools for prevention of AKI or for management
of the disease in the hospital setting.
A few computer based algorithms and predictive models

for AKI risk have been used in post-operative complica-
tions and ICUs [4, 15–19], but a clear linkage of risk fac-
tors for AKI is not evident in the current literature.
Recently, the ASSESS AKI study examined how AKI can
predict risk of developing CKD, cardiovascular events and
death, but AKI risk prediction itself was not addressed [6].

Other studies have developed risk stratification models for
AKI using structured EHR data [7, 20]. However, they did
not specify the time point at which AKI is predicted. This
is an important distinction from our study because it can
have an impact on patient care and management of the
disease. After a patient is admitted to hospital, the sooner
AKI is predicted the higher the opportunity to prevent
established AKI and its associated morbidity and cost.
However, the variables used to predict AKI will be better
indicative of AKI if their values are recorded closer to the
time AKI is actually acquired. On the other hand, if the
prediction is made too late, a patient may already acquire
AKI before the prediction time thus making the prediction
pointless. Hence there is a trade-off between how soon to
predict AKI and the accuracy of predicting AKI.
Table 4 depicts in how many hospital stays AKI was

acquired within different time intervals from admission
(as determined by the timestamp of the second serum
creatinine measurement which met the AKIN criteria).
It is evident that the number of AKI acquired cases in-
crease with the time from admission; and about half of
these cases happen by 48 h. In contrast to the earlier
studies [7, 20] where researchers did not make it clear
exactly when, from the time of admission, the models
will be applied to make AKI prediction, in the current
study, our models make AKI prediction at 24 h from ad-
mission as a reasonable compromise for the trade-off
between the models’ usefulness (clinical relevance) and
its predictive power (scientific rigor). If needed, our
models can be easily adapted to make predictions at any
other desirable time from admission (12 h, 48 h etc.).
Aside from predicting AKI early in the encounter, it is

equally important to detect AKI any time throughout
the encounter to prevent AKI from going undiagnosed.
A patient may acquire AKI during an encounter while
the providers are focused on treating other illnesses. In
such situations the model will detect AKI and alert the
providers. Different than the model posed by Wilson et
al. [21] in which their alert system was based on a
change in serum creatinine, our model is capable of de-
tecting AKI in the absence of serum creatinine measure-
ment because once this measurement is taken, one can
reliably know whether AKI is present or not without
needing the model. Thus our model’s alert may, in fact,
prompt the providers to take serum creatinine measure-
ment which they might have overlooked.

Factors affecting AKI prediction vs. AKI detection
We further explored the factors and variables important
in either prediction or detection of AKI. The logistic re-
gression model was used to obtain odds ratios for all the
variables. Of all the variables, only a few stood out for
prediction of AKI (use of combination drugs, history of
prior AKI and comorbidities such as coronary artery

Fig. 4 a Learning curve for the AKI prediction task obtained using
the logistic regression model. b Learning curve for the AKI detection
task obtained using the logistic regression model
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disease and respiratory failure). In our analysis, although
independent use of ACE inhibitors and NSAIDs did not
increase AKI prediction, combining these drugs with
diuretics increased the odds ratio significantly, with
diuretics being the single largest contributor to the pre-
diction. This finding is also consistent with a study in
which the combination of these drugs was found to in-
crease the risk of AKI [22]. Diabetes, coronary artery
disease and respiratory failure all contributed to the

higher AKI risk prediction. The link for coronary artery
disease and AKI is justifiable as previous reports have
shown that AKI risk increases after cardiac surgical pro-
cedures especially cardiac bypass graft surgery [23, 24].
Our current results for respiratory failure as a good indi-
cator for AKI risk prediction is also similar to a recent
report indicating that respiratory distress syndrome is
independently associated with AKI and may promote
AKI [25]. Another large study (n ~ 2 million patients)
was conducted to quantify the risk of AKI associated with
Type 2 diabetes using the General Practice Research Data-
base in the UK_ENREF_24 [26]. The researchers con-
cluded that even after adjustment in known risk factors,
elderly patients with Type 2 diabetes have an increased
risk of AKI. Our study results corroborate well with these
previously published reports.
Similar to the AKI prediction, a few variables stood out

as being important factors for AKI detection. History of
prior AKI, use of diuretics and presence of comorbid con-
ditions such as respiratory failure were significant for both
AKI risk prediction as well as AKI detection. Presumably
in critically ill patients, the incidence of sepsis, respiratory
failure, etc. are more prevalent leading to higher incidence
of AKI in this population. Detection of AKI (which might

Table 4 Number of encounters in which AKI was acquired
within different intervals from time of admission

Within time from admission (hours) Number of AKI cases

6 8

12 92

24 476

36 725

48 1166

60 1313

120 1796

240 2103

Through end of stay (total) 2258

Fig. 5 a Odds ratios for AKI prediction. The lines indicate 95 % confidence intervals. b Odds ratios for AKI detection. The lines indicate 95 %
confidence intervals
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otherwise go undiagnosed) is nevertheless very important
as it can help guide management of the AKI in terms of
volume resuscitation and hydration to prevent any per-
manent damage to the kidneys and dependence on renal
replacement therapy.

Limitations of study
The results of this study should be interpreted with re-
spect to several limitations. First, our model was based off
an older cohort (60 years and older) which may limit the
generalizability to a wider age group. Second, we limited
inclusion to those presenting with chronic kidney disease
I and II. This was done to achieve a more homogeneous
dataset with which to train our model. However, those
with chronic kidney disease III, IV and V are at an in-
creased risk for developing AKI and accurate detection/
prediction of this is currently not in the scope of our
model. Third, any variable which was missing for more
than 20 % of the population was not included in our ana-
lysis. This might have limited our model’s performance.
Finally, the models that we used relied solely on struc-
tured information found in the electronic health record.
Future studies will focus on using machine learn-

ing and natural language processing techniques to
extract AKI-relevant information from unstructured
clinical notes. It is expected that the information
held within the clinical notes will improve the pre-
dictive models.

Conclusions
This study was first to consider two distinct tasks of
predicting and detecting AKI in hospitalized older
adults. Predictive models were built for both the tasks
using different machine learning methods trained on
large patient data of hospital stays. All models per-
formed well on both the tasks but were better at detect-
ing AKI than predicting AKI. Through ablation study,
laboratory values were found to be most important for
detecting AKI while comorbidities were found to be
most important for predicting AKI. Among the models,
logistic regression performed the best. This model
found certain comorbidities and drug combinations to
be particularly good predictors of AKI which also has
support in literature. The models developed in this
study could help in early identification of subjects at
risk as well as in early detection of AKI and allow im-
plementation of preventative intervention in the care
and management of these patients during the course of
their hospital stay.

Data availability
Our dataset consists of hospital patient data provided by
Aurora Health Care, Inc. and can only be shared with its
written consent.
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