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Abstract

Background: Epidemics of hand, foot and mouth disease (HFMD) among children in East Asia have been a serious
annual public health problem. Previous studies in China and island-type territories in East Asia showed that the
onset of HFMD epidemics evolved with increased latitude. Based on the natural characteristics of the epidemics, we
developed regression models for issuing aberration alerts and predictions.

Methods: HFMD sentinel surveillance data from 2008 to 2014 in Japan are used in this study, covering 365 weeks
and 47 prefectures between 24 and 46° of north latitude. Average HFMD cases per sentinel are standardized as Z
rates. We fit weekly Z rate differences between prefectures located in the south and north of a designated prefecture
with linear regression models to detect the surging trend of the epidemic for the prefecture. We propose a rule for
issuing an aberration alert determined by the strength of the upward trend of south–north Z rate differences in the
previous few weeks. In addition to the warning, we predict a Z rate for the next week with a 95 % confidence interval.

Results: We selected Tokyo and Kyoto for evaluating the proposed approach to aberration detection. Overall, the
peaks of epidemics in Tokyo mostly occurred in weeks 28–31, later than in Kyoto, where the disease peaked in weeks
26–31. Positive south–north Z rate differences in both prefectures were clearly observed ahead of the HFMD epidemic
cycles. Aberrations in the major epidemics of 2011 and 2013 were successfully detected weeks earlier. The prediction
also provided accurate estimates of the epidemic’s trends.

Conclusions: We have used only the latitude, one geographical feature affecting the spatiotemporal distribution of
HFMD, to develop rules for early aberration detection and prediction. We have also demonstrated that the proposed
rules performed well using real data in terms of accuracy and timeliness. Although our approach may provide helpful
information for controlling epidemics and minimizing the impact of diseases, the performance could be further
improved by including other influential meteorological factors in the proposed latitude-based approach, which
is worth further investigation.
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Background
Epidemiological surveillance is a routine process of col-
lection, analysis and dissemination of health data for
public health purposes. One function of infectious dis-
ease surveillance is to detect aberrations at an early
stage. Early warning of aberrations could improve the ef-
ficiency of control campaigns and facilitate preventative

actions to halt the spread of infectious diseases, thus re-
ducing their impact on the health system [1]. Further-
more, morbidity and mortality would be reduced
through an earlier and more efficient public health
response.
Hand, foot and mouth disease (HFMD), which often

strikes children under five years old, is caused by mul-
tiple enterovirus serotypes, and usually leads to mild or
moderate symptoms, with recovery in about three to six
days without medication [2]. Treatment of HFMD is
limited, as there is currently no effective antiviral drug
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or vaccine [3]. So far, preventive measures, such as
avoiding direct contact with infectious patients, disinfec-
tion of contaminated environments, and good personal
hygiene habits, represent the best options for controlling
and preventing HFMD infection [4].
Historically, the occurrences of HFMD epidemics

were sporadic and local, but this pattern changed in
the late 1990's. Since then, medium- to large-scale ep-
idemics have been continuously observed in the Asia-
Pacific region, including Singapore [5], Malaysia [6],
Hong Kong [7], Taiwan [8], Japan [9], and China [10, 11].
Severe or lethal complications, such as encephalitis, men-
ingitis, pulmonary edema and myocarditis, in the course
of enterovirus infections drew attention to these diseases.
In Taiwan, the sentinel physicians reported 129,106 cases
of HFMD in 1998 [12]. There were 405 patients with se-
vere disease, most of whom were five years old or younger;
severe disease was seen in all regions of the island.
Complications included encephalitis, aseptic meningi-
tis, pulmonary edema or hemorrhage, acute flaccid
paralysis, and myocarditis. Seventy-eight patients died,
71 of whom (91 %) were five years of age or younger.
Of the patients who died, 65 (83 %) had pulmonary
edema or pulmonary hemorrhage. From 2000 to 2002,
many cases with complications were reported in Japan.
Cases with complications included 226 (0.10 %) of the
total 216,154 reported HFMD cases which occurred in
2000, 32 (0.02 %) of a total of 134,927 reported HFMD
cases in 2001, and 14 (0.01 %) of the total 97,870 re-
ported HFMD cases in 2002 [13]. Although severe or
lethal complications are rare, some of these HFMD
epidemics had unusually high numbers of fatalities,
and this generated much fear and anxiety in this re-
gion [14]. Therefore, controlling the HFMD epidemics
has become an emerging public health problem in
these countries.
Detecting infectious diseases’ aberrations at an early

stage is crucial for swift implementation of control mea-
sures. HFMD epidemics exhibit a significant seasonal
pattern, with a rapid onset in the spring or summer, a
gradual decline after the peak, and a mild second wave
in the fall. This pattern has been observed not only in
Asia, but also in European countries, such as Sweden,
France and Hungary [15]. A bimodal seasonal pattern
was reported in the United Kingdom, with peaks in sum-
mer, late autumn, and early winter [16]. In Finland, most
HFMD cases were observed in autumn [17]. In an at-
tempt to provide early warning for HFMD epidemics, a
considerable amount of research has focused on devel-
oping statistical methods, including temporal, spatial,
and spatiotemporal methods not only to contribute
novel information but also to support aberration detec-
tion and management to identify aberrations in HFMD
data accurately and quickly [18–21].

Meteorological factors have been recognized as spatial
risk factors associated with HFMD occurrence. Weekly
mean temperature and cumulated rainfall are signifi-
cantly associated with HFMD incidence with a time lag
of 1–2 weeks in Singapore [4]. A higher risk of transmis-
sion is associated with temperatures in the range of 70 °F
to 80 °F, higher relative humidity, lower wind speed, more
precipitation, and greater population density in China
[22]. In Hong Kong, relative humidity, mean temperature,
and difference in diurnal temperature were positively asso-
ciated with HFMD consultation rates at a 2-week lag time
[7]. In Japan, a study found that ambient temperature and
relative humidity were associated with increased HFMD
occurrence at a lag of 0–3 weeks [9]. In Taiwan, higher
dew point, lower visibility, and lower wind speed were sig-
nificantly associated with the rise of epidemics [23]. All
these studies show that the dispersion of HFMD is sensi-
tive to temperature variation.
In our previous study [23], we integrated the available

surveillance and weather data in East Asia to elucidate
possible spatiotemporal correlations between HFMD ep-
idemics and the weather. The results revealed that lati-
tude was the most important explanatory factor
associated with the timing and amplitude of HFMD epi-
demics. In some population-based studies of HFMD in
China, increasing amplitude of HFMD outbreaks was
shown to accompany the increase of latitude in southern
China [10, 24, 25]. Meteorological factors including
higher dew point, lower visibility, and lower wind speed
were significantly associated with the rise of epidemics.
In addition, the temperature-related measurements also
showed higher range in Japan than in other areas, which
indicated the variations which occurred within Japan.
Together with the decreasing trend of mean temperature
from south to north, we inferred that latitude played an
important role in change in temperature and would be
associated with HFMD epidemics.
In this study, we propose a novel statistical approach

based on linear regression models to detect the future
trend of HFMD epidemics rather than detecting out-
breaks of HFMD. The goals of this study were to
characterize the influences of latitude variation on
HFMD epidemics, to identify large epidemics of HFMD
sufficiently early, allowing time for intervention, and to
detect and predict HFMD epidemic trends with greater
precision. The proposed approach would be used to
facilitate efficient HFMD control.

Methods
Study area and surveillance data
Japan is an archipelago nation in East Asia comprising
four major islands and many small islands extending
along the Pacific coast of Asia. It lies between 24° to 46°
north latitude and 123° to 146° east longitude (Fig. 1a).
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There are 47 prefectures (local government administra-
tive divisions). Japan lies mainly in the temperate zone,
and is characterized by four distinct seasons.
The prefecture-level HFMD surveillance data from

Japan, combined with latitudes of all Japanese prefec-
tures, were used in this study. In Japan, infectious dis-
ease surveillance is designated as one of the important
components for disease control, and its sentinel surveil-
lance program was revised in 1999 to combine with the
national notifiable diseases program, and incorporated
into the national epidemiological surveillance infectious
diseases (NEISD). The NESID in Japan, which was
started in July 1981, is organized by the Ministry of
Health, Labour and Welfare (MHLW), and encompasses
the sentinel surveillance system for HFMD. NESID
guidelines specify the method for selecting sentinel

medical institutions [26, 27]. According to the guide-
lines, prefectural governments select sentinels as ran-
domly as possible, and the numbers of sentinels per
district public health center coverage area are deter-
mined in proportion to the population of the area in
order to adequately assess any HFMD epidemic. HFMD,
one of the sentinel reporting diseases in Japan, should be
reported weekly by designated sentinels rather than re-
ported immediately by all physicians; data are displayed
by weekly reported number per sentinel. The designated
sentinels send weekly HFMD data to the district health
center on Tuesday of the next week. The health centers
tabulate the district data and send it to the local health
department on Wednesday. The weekly data are for-
warded to MHLW by the local health departments the
next day [26, 27].

Fig. 1 A map showing Japan's prefectures (a), and heat map of Z rate for HFMD by 47 prefectures of Japan (b). a A map showing Japan's
prefectures. Japan is divided for administrative purposes into 47 prefectures stretching from Hokkaido in the north to Okinawa in the south.
Tokyo is the capital of Japan, and is situated in the center of the Japanese archipelago. Kyoto, an ancient center of Japanese culture, is to the
southwest of Tokyo. The original basemaps were downloaded from public available website, GADM database of Global Administrative Areas
(http://www.gadm.org/) and further analyzed by the authors in this study. b The prefectures were ordered by latitude from southernmost
(bottom) to northernmost (top). Note: The HFMD data of Fukushima in March of 2011 were not available due to the Great East Japan Earthquake,
causing a white block on the heat map. The white blocks in Yamanashi, Tottori, Shimane, Kagawa and Tokushima are due to missing values
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In this study, latitudes of all Japanese prefectures,
which were determined by the geographical center of
each prefecture, and prefecture-level data from HFMD
cases in Japan were collected online during the period
from the 1st week of 2008 to the 52nd week of 2014 (a total
of 365 weeks), from the National Institute of Infectious Dis-
eases (NIID). These data are available at http://idsc.nih.
go.jp. The HFMD dataset comprises weekly reported cases
and cases per sentinel to provide an understanding of the
epidemic situation and disease trends in different prefec-
tures. To reflect the relative amplitude and severity of
HFMD epidemics for each prefecture, we standardized the
reported cases per sentinel separately in each prefecture
during the study period, which are called Z rates in this
study. The formula for the Z rate calculation is as follows:

Zkt ¼ Skt−μk
� �

=σk ;

where Zkt is the value of Z rate in prefecture k at week t,
Skt is the cases per sentinel in prefecture k at week t, and
μk and σk are the mean and standard deviation of cases
per sentinel in prefecture k during the study period.
Thus, a positive Z rate indicates a datum above the
mean of cases per sentinel, while a negative Z rate indi-
cates a datum below the mean of cases per sentinel. The
data we used were statistics publicly available online,
and thus informed consent was not needed.

Statistical method
With the assumption that HMFD epidemics spread from
the south to the north, we propose three rules for estimat-
ing the trend of HFMD epidemics and predicting the cases
per sentinel for the next week. First, we examine whether
differences between the means of Z rates in areas south of
a designated area and those north of it are increasing. If
an increasing trend is identified, we activate the surveil-
lance system and move to the second step to determine
whether an aberration of HFMD cases is likely to occur in
this area over the coming month. Finally, we predict the
HFMD epidemic in the area one week ahead.
For convenience, all areas under study were sorted

from southernmost to northernmost; for example, the
latitude of the kth area was the kth lowest among all
areas. To detect an unusual signal of HFMD activities in
the kth area, we calculate the difference between the
means of Z rates in areas south of the kth area and in
areas north of the kth area for the tth week. The south–
north Z rate difference is defined as

Dkt ¼ 1
m

Xk−1
j¼k−m

Zjt−
1
n

Xkþn

j¼kþ1

Zjt;

where m and n represent the number of areas under
study located to the south and to the north of the kth

area, respectively, with constraints of m < k and n ≤ J − k;
J is the total number of areas under study; let Zjt be the
Z rate of the tth week in the jth area for t = 1,…,T, j = 1,
…, J.
To detect HFMD epidemics future trend, we limit our

focus on positive values of these differences. With the
assumption that HMFD epidemics spread from the
south to the north, positive Dkt,…,Dk,t − s values in con-
secutive weeks indicate that the Z rates may have in-
creased in the areas south of the kth area in the past s
weeks before the tth week. When Dkt values have been
increasing during the previous few weeks, we expect that
the HMFD epidemics may spread from the south to the
kth area. If the area may be affected soon by the assump-
tion that HMFD epidemics spread from the south to the
north, the surveillance system should be activated. For
determining whether an increasing Z rate in the coming
weeks will occur for the kth area, we propose a rule as
follows:

Rule 1: Sending an activation signal
If Dkt > 0,⋯,Dk,t − s > 0 and Dk,t − s − 1 ≤ 0 for s > 1, we fit a
linear regression model to these south–north Z rate differ-
ences, Dk,t − i = μt + θt × i + εt ‐ i, for i = 0, 1,…, s and s ≤ 12.
If autocorrelation in the residuals has been shown to

be present at week t, then an autoregressive model of
order 1 is considered for the error term. That is, we as-

sume εt − i = φεt − i − 1 +wt − i and wt−i ei:i:d: N 0; σ2ð Þ . The
generalized least squares (GLS) regression analysis was
used to estimate regression coefficients and their confi-
dence limits.
The slope, θt, represents the trend of the Z rate differ-

ences during the past s weeks. The 95 % lower bound of
each θt was also calculated for judging whether the trend
was significantly increasing during the few weeks before

week t. Let θ̂ t
t and θ̂ L

t be, respectively, the estimate and
the 95 % lower bound of the slope θt from the fitted
model. We found that there was a considerable lag be-
tween the south–north Z rate differences and Z rates of
a designated area. For most prefectures in Japan, the
correlation coefficients between the south–north Z rate
differences and Z rates reached statistically significant
maximum values with a three-week or four-week lag. In
a statistical sense, short and sporadic signals did not
form a large-scale epidemic. Therefore, we consider the
likelihood of HFMD aberration in areas south of the
designated area to be increasing if the trend estimates
were significant in three consecutive weeks. The desig-
nated area will very likely be hit in the coming weeks
based on the assumption of HFMD epidemics spreading
from the south. Therefore, we propose the first rule:
send a signal to activate the surveillance system at the

tth week when we observe θ̂ L
t > 0, θ̂ L

t−1 > 0 and θ̂ L
t−2 > 0.
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Rule 2: Issuing an aberration alert
When an activation signal appears in the kth area, we
then determine whether an aberration of HFMD cases is
likely to occur in this area over the coming month
(4 weeks). We assume that the Z rates of a designated
area would be increasing in the coming month when an
epidemic has started in the area. Suppose the aberration
started at the jth week; then we can use the slope es-
timate π̂ j

j from the fitted linear regression model as a

measure of intensity of the epidemic in the kth area,
Zk, j + u = αj + πj × u + εj + u, for u = 0, 1, 2, 3.
The larger the estimate π̂ j

j is, the more sharply the Z

rate will increase from the jth week. However, at the tth

week, we have to wait three more weeks to obtain an es-
timate of πt from the above linear regression model. We
propose to use the relationship between two available

trend estimates, θ̂ j
j and π̂ j

j, for j < t to construct a model

for estimating πt at the tth week. Let S ⊂ {1, 2,…, t} be a
set of indexes in which element s corresponds to the

week when θ̂ L
s−u > 0 for u ¼ 0; 1; 2 . We have also ob-

tained π̂ s for each s ∈ S\{t − 3, t − 2, t − 1, t}. We propose

to first fit the linear regression model π̂ s ¼ β0 þ β1θ̂ s

þεs for s∈S t−3; t−2; t−1; tf g.
Then we use the model estimates β̂0 and β̂1 to obtain the

estimate of Z rate trend at the tth week, i.e., π̂ t ¼ β̂0 þ β̂1θ̂ t .
Our second rule is then proposed: issuing an HFMD

epidemic alert in the kth area at the tth week when both

θ̂ t
t > 0 and π̂ t

t > 0.
In order to forecast the possibility and intensity of

future epidemics, an epidemic monitoring indicator
was set up. The slope estimate, π̂ t

t , which contains in-
formation about epidemic activity in the coming
4 weeks, is a suitable indicator for monitoring the
trend of the HFMD epidemic. We categorized the epi-
demic trend of HFMD in the coming month as mild,
moderate or strong based on the magnitude of this
slope estimate. The slope can be interpreted as the
percentage increase of Z rate per week. In this study,
we choose 10 % and 30 % as cut-points to categorize
the degree of severity of the designated area. The
epidemic trend of HFMD in the coming month was
categorized as mild if the value of percentage increase
of Z rate in the coming month was below 10 %, mod-
erate if it was between 10 % to 30 %, and strong if
larger than 30 %.
Combined with Rule 1, we adopted a four-color

gauge for visualizing the HFMD epidemic monitoring
process, indicating the degree of severity of the epi-
demic, in which yellow represents an activation signal,
while orange, red and purple stand for alerts of mild,
moderate and strong epidemic trends in the coming
month, respectively.

Rule 3: Predicting future epidemics
Since we have observed the influence of latitude vari-
ation on the temporal feature of HFMD epidemics, in
which the annual timing of HFMD epidemics was earlier
in southern than in northern areas, this relationship can
also be used for improving prediction accuracy. A linear
regression model was conducted to predict the HFMD
epidemic one week ahead. However, the relevant data
for constructing the predictive model are critical. Pear-
son’s correlation coefficient was used to identify areas in
the south which are significantly associated with the des-
ignated area using the HFMD data of the past year. The
HFMD data of the current year for those identified
southern areas were then used for estimating regression
parameters. Specifically, the regression model for predic-
tion is

Zh;t ¼ γ0;t þ γ1;t Zh;t−1 þ εt ; for 1≤h≤k;

where h includes the identified southern areas and the
designated area. With the estimates of model parame-
ters, the Z rate of the kth area at week t + 1 could be pre-
dicted by

Ẑ k; tþ1 ¼ γ̂ 0;t þ γ̂ 1;t Zk; t:

In the next section, we use HFMD data of the two se-
lected prefectures in Japan, Tokyo and Kyoto, to illus-
trate the proposed approach. Tokyo, the capital of Japan,
is the largest city in terms of population and is located
roughly in the middle of the Japanese archipelago. Kyoto
prefecture, the cultural center of Japan, is located south-
west of Tokyo.

Results
Japan has experienced nationwide epidemics of HFMD
since the first HFMD case was diagnosed in Tokyo in
1963 [28]. The peak of the HFMD epidemic is usually
seen in summer (June to August). However, epidemics
may also occur in autumn and winter. A summary of an-
nual data from 2008 to 2014 is shown in Table 1. The
number of sentinels in Japan during 2008–2014 was
about 3,100 for HFMD surveillance. There have been
two large-scale HFMD epidemics since 2008, the first in
2011 (total 347,407 cases; 110.89 per sentinel) and the
second in 2013 (total 303,339; 96.54 per sentinel). The
year 2011 experienced the largest HFMD epidemic since
the establishment of NESID.
Table 2 provides the prefecture-level HFMD data sum-

mary during 2008–2014. In 2011 and 2013, the two
large-scale HFMD epidemic years, the weekly averages
of cases per sentinel were 1–4 cases. The maximum
values of cases per sentinel were between 4 to 42 in
2011 and 2013. The maximum value of cases per senti-
nel was 42.26 cases per sentinel in Saga prefecture in

Tang et al. BMC Medical Informatics and Decision Making  (2015) 15:113 Page 5 of 14



2011. The weekly averages of cases per sentinel were less
than one case for most prefectures in other years. The
number of sentinels is determined in proportion to the
population of a prefecture.
To further explore the relationships of geographical lo-

cations of prefectures in Japan to features of HFMD epi-
demics, a heat map created using the gplot package in R
software is provided in Fig. 1b. The heat map summa-
rizes information on week of year in columns, and inte-
grates prefecture-level HFMD Z rate data sets during
the study period in rows. Larger values are represented
by lighter color blocks and smaller values by darker
color blocks. From bottom to top, prefectures in Japan
were sorted by latitude from low to high. Lighter color
blocks in each row indicated the timing of the HFMD
peak period of each prefecture in Japan. The two bright-
est timing bands in Fig. 1b display two large-scale
HFMD epidemics for 2011 and 2013, respectively. From
bottom to top, the two brightest timing bands show that
the HFMD peak time of each prefecture in Japan moved
from left to right gradually. This phenomenon reveals
the prefecture-level HFMD peak time in Japan moving
in a south–north direction over time.
Figure 2a indicates that there have been three large

HFMD epidemics in Tokyo during 2008–2014, the first
in 2010, the second in 2011, and the last in 2013. Most
HFMD epidemics in Tokyo have displayed a common
trend of steady increase beginning in April or May,
rapid increase during May or June, a peak from July to
August, a quick decline in September, and finally,
steady decrease until the next February. Figure 2b pre-
sents four large-scale epidemics in Kyoto during 2008–
2014 which occurred in 2008, 2010, 2011 and 2013.
The Z rates were low in January to March in Kyoto,
then began to ascend starting in April, and a sharp in-
crease appeared during June to July. A comparison be-
tween Figs. 2a and b reveals that the epidemic of 2013
was the largest one since 2008 in Tokyo, while the epi-
demic of 2011 was the largest one in Kyoto. Overall,
the epidemic peaks in Tokyo mostly occurred in weeks
28–31, later than in Kyoto, where the peaks mostly
occurred in weeks 26–31.
The south–north Z rate differences of Tokyo and

Kyoto are shown in Figs. 3a and b, together with their
weekly Z rates. It is clear that the two weekly series had
similar patterns and that the cycles of the south–north
Z rate differences are ahead of the HFMD epidemic

cycles in both figures. The peak of the south–north Z
rate differences is much earlier than the peak of Z
rates.
Figures 4a and b illustrate HFMD epidemic moni-

toring indicators in Tokyo and Kyoto in 2011 and
2013, respectively. The monitoring indicators gauge
the epidemic trend of HFMD in the following weeks.
In Fig. 4a, the monitoring indicators in Tokyo
showed colors of activation or mild signals before
week 20. Purple signals, indicating the momentum of
the epidemic was strong, started to flash from week
23 to week 28, and the peak was reached at week 31
in 2011. Figure 4b reveals that the monitoring indi-
cators in Tokyo began to send an activation signal at
week 11, then alerts turned from mild to moderate;
finally the monitoring indicators also registered a 6th

consecutive strong trend at week 27, and the peak
was reached at week 30 in 2013. In Kyoto, the first
alert, an activation signal, was issued at week 2, and
the monitoring indicators flashed 6 consecutive pur-
ple signals starting from the 21st week; the peak was
reached at week 28 in 2011. The epidemic in Kyoto
in 2013 was smaller but more irregular than the epi-
demic in 2011. Figure 4d shows that it seems to
have two peaks in Kyoto in 2013. The monitoring
indicators in Kyoto began to send an activation sig-
nal at week 11, and registered a third consecutive
purple signal at the 25th week in 2013. There were
no alerts issued for the second peak in Kyoto in
2013. In Fig. 4, we can also observe that there are
no alerts issued during the second half of 2011 and
2013 (the non-epidemic periods) except a total of 3
activation alerts in Tokyo in 2013.
Major epidemics during 2011 and 2013 in Tokyo and

Kyoto were predicted and are shown for these two years
separately in Tables 3 and 4. The predicted values of Z
rates are converted to weekly cases per sentinel and
listed in these two tables. Although most 95 % predicted
intervals cover true values, the predictive model slightly
underestimates weekly cases per sentinel during the peak
weeks. The average absolute errors of predicted values
for 2011 and 2013 in the two cities were 0.14, 0.49, 0.23
and 0.17 cases per sentinel, respectively. Figures 4a and
b also clearly demonstrate the relationship between the
true values and the predicted values. Overall, the pre-
dicted model provides effective prediction of HFMD epi-
demic trends.

Table 1 Annual data summary of HFMD sentinel surveillance, Japan, 2008–2014

Year 2008 2009 2010 2011 2012 2013 2014

Cumulative reported cases 145,185 68,578 151,021 347,407 72,822 303,339 83,683

Cumulative cases per sentinel 48.12 22.69 49.87 110.89 23.17 96.54 26.62

Numbers of sentinels 3017 3022 3028 3133 3143 3142 3144
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Table 2 Weekly prefecture-level HFMD data summary, Japan, 2008–2014

2008 2009 2010 2011 2012 2013 2014

Prefecture Min Max Mean
(per sentinel)

Min Max Mean
(per sentinel)

Min Max Mean
(per sentinel)

Min Max Mean
(per sentinel)

Min Max Mean
(per sentinel)

Min Max Mean
(per sentinel)

Min Max Mean
(per sentinel)

aNumber of
Sentinels

bPopulation
(thousand)

Okinawa 0.06 1.68 0.63 0.00 4.97 0.70 0.06 1.32 0.33 0.18 5.97 1.86 0.03 2.79 0.92 0.18 5.24 1.39 0.00 4.38 1.19 34 1,421

Kagoshima 0.00 9.42 1.98 0.00 1.62 0.37 0.00 3.73 0.97 0.02 8.80 2.28 0.02 2.51 0.60 0.05 8.16 2.54 0.05 2.45 1.13 55 1,668

Miyazaki 0.03 14.89 3.06 0.00 3.50 0.82 0.11 6.25 1.99 0.14 14.28 2.97 0.00 5.17 1.20 0.00 7.08 2.16 0.33 4.94 1.72 36 1,114

Kumamoto 0.04 4.88 1.47 0.00 4.79 0.82 0.00 3.17 0.83 0.00 32.65 3.86 0.00 1.06 0.26 0.10 12.30 2.11 0.38 2.78 1.48 50 1,794

Oita 0.06 8.36 1.65 0.00 6.17 0.95 0.00 12.08 2.02 0.00 22.03 3.40 0.00 0.72 0.23 0.19 19.92 2.43 0.00 5.08 1.63 36 1,171

Nagasaki 0.05 4.73 1.33 0.00 3.77 0.64 0.02 1.30 0.45 0.02 19.32 2.94 0.00 0.43 0.12 0.00 13.57 2.09 0.07 1.59 0.63 45 1,386

Saga 0.00 4.96 1.27 0.00 6.13 1.36 0.00 1.74 0.45 0.00 42.26 4.63 0.00 0.61 0.09 0.05 12.30 2.52 0.04 3.65 1.07 23 835

Kochi 0.00 1.87 0.58 0.00 1.03 0.24 0.00 13.33 2.09 0.03 10.37 2.14 0.00 0.33 0.07 0.00 8.17 1.74 0.00 3.80 0.54 30 738

Fukuoka 0.03 3.21 0.83 0.03 8.63 1.46 0.08 4.15 0.94 0.03 40.96 4.41 0.00 1.08 0.08 0.40 11.12 2.46 0.23 5.18 1.38 121 5,091

Ehime 0.19 3.41 1.18 0.00 6.60 0.85 0.00 10.22 2.07 0.00 30.97 3.67 0.00 0.49 0.19 0.00 8.76 1.56 0.00 4.19 0.99 36 1,395

Wakayama 0.00 0.71 0.20 0.00 0.71 0.16 0.00 3.29 0.83 0.03 9.97 1.85 0.00 0.61 0.14 0.00 6.63 1.12 0.00 1.42 0.31 32 971

Tokushima 0.00 3.74 0.80 0.00 2.39 0.45 0.00 3.71 0.80 0.00 21.91 2.36 0.00 0.65 0.13 0.00 6.17 1.32 0.00 0.91 0.16 23 764

Yamaguchi 0.16 4.44 1.20 0.00 1.20 0.25 0.02 10.10 2.09 0.00 26.77 3.54 0.00 0.29 0.08 0.00 17.15 1.99 0.00 2.77 0.91 47 1,408

Kagawa 0.04 3.46 1.01 0.00 1.36 0.25 0.00 5.50 1.12 0.00 13.17 2.09 0.07 0.87 0.44 0.00 14.45 1.54 0.00 0.72 0.13 29 981

Nara 0.00 4.80 0.78 0.00 0.97 0.25 0.00 2.94 0.64 0.00 8.57 1.34 0.00 0.37 0.12 0.00 5.88 1.18 0.00 1.06 0.24 34 1,376

Mie 0.00 11.07 1.86 0.00 0.84 0.16 0.00 4.89 1.04 0.02 12.73 2.26 0.02 0.69 0.24 0.04 12.58 2.66 0.00 2.33 0.52 45 1,825

Hiroshima 0.10 3.11 0.89 0.00 0.82 0.24 0.00 3.40 1.19 0.03 12.51 2.43 0.00 0.22 0.08 0.08 11.42 1.84 0.00 1.28 0.35 72 2,833

Osaka 0.07 3.34 0.79 0.01 0.90 0.21 0.07 5.02 0.97 0.07 14.87 2.03 0.02 0.63 0.20 0.01 8.03 1.43 0.02 0.51 0.22 199 8,836

Shizuoka 0.00 8.76 1.34 0.01 1.33 0.25 0.00 8.19 1.19 0.00 14.19 2.16 0.00 0.52 0.14 0.00 12.01 2.14 0.00 0.75 0.20 89 3,705

Okayama 0.04 3.50 0.87 0.00 1.15 0.24 0.02 2.06 0.74 0.02 10.61 2.19 0.02 0.82 0.24 0.04 8.63 1.40 0.00 0.87 0.21 54 1,924

Aichi 0.07 4.06 0.96 0.02 0.86 0.20 0.03 3.88 0.84 0.04 10.87 2.29 0.01 0.33 0.11 0.01 11.10 1.65 0.03 1.71 0.51 182 7,455

Hyogo 0.04 3.88 0.87 0.01 1.16 0.21 0.05 7.20 1.34 0.03 26.38 2.84 0.01 0.28 0.10 0.00 9.69 1.45 0.01 0.65 0.24 128 5,541

Shimane 0.04 1.48 0.52 0.00 2.52 0.60 0.00 3.35 0.75 0.00 17.13 3.06 0.00 0.44 0.07 0.00 8.39 2.34 0.00 0.78 0.21 22 697

Shiga 0.00 3.06 0.65 0.00 2.00 0.41 0.00 7.38 1.22 0.06 20.34 3.08 0.00 1.22 0.31 0.00 7.22 1.79 0.00 0.66 0.30 32 1,416

Kyoto 0.05 4.45 0.89 0.00 0.92 0.20 0.00 3.85 0.83 0.00 13.42 1.74 0.00 0.49 0.17 0.00 5.27 1.26 0.00 0.96 0.28 74 2,610

Tottori 0.00 4.16 1.13 0.00 0.84 0.16 0.00 3.63 0.81 0.00 9.11 1.87 0.00 0.42 0.06 0.00 13.42 2.50 0.00 0.47 0.08 20 574

Kanagawa 0.00 5.89 1.08 0.01 2.56 0.47 0.04 3.75 0.67 0.01 10.20 1.80 0.01 1.23 0.46 0.04 11.43 1.75 0.00 1.98 0.40 204 9,096

Chiba 0.02 2.23 0.53 0.02 3.02 0.53 0.04 2.68 0.70 0.02 7.95 1.65 0.02 0.96 0.36 0.00 11.59 1.96 0.00 1.38 0.51 133 6,197

Yamanashi 0.00 0.58 0.14 0.00 1.29 0.29 0.00 1.17 0.30 0.00 11.00 1.42 0.00 0.71 0.20 0.00 17.92 2.44 0.00 1.13 0.23 24 841

Tokyo 0.01 2.04 0.59 0.03 1.98 0.44 0.05 4.69 0.82 0.02 11.07 1.84 0.01 1.38 0.40 0.05 15.75 2.21 0.01 1.55 0.45 258 13,390

Gifu 0.00 2.72 0.68 0.00 2.08 0.28 0.00 1.89 0.45 0.02 10.91 1.75 0.00 0.40 0.11 0.00 7.08 1.21 0.00 2.38 0.54 52 2,041
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Table 2 Weekly prefecture-level HFMD data summary, Japan, 2008–2014 (Continued)

Fukui 0.00 2.82 0.61 0.00 1.73 0.36 0.09 8.91 2.60 0.14 16.23 2.32 0.09 9.86 1.60 0.00 11.64 2.01 0.00 2.36 0.44 22 790

Saitama 0.03 2.07 0.56 0.03 1.69 0.45 0.08 3.65 0.80 0.03 7.96 1.44 0.01 1.44 0.52 0.06 18.69 2.73 0.01 1.61 0.55 156 7,239

Nagano 0.02 8.40 1.45 0.00 1.26 0.22 0.00 3.16 0.70 0.00 9.04 1.50 0.02 4.87 0.63 0.00 14.25 1.96 0.00 1.35 0.41 53 2,109

Ibaraki 0.01 1.31 0.49 0.00 1.25 0.38 0.00 1.51 0.36 0.00 4.09 0.76 0.00 2.15 0.55 0.08 9.41 1.45 0.00 1.38 0.42 75 2,919

Gunma 0.02 6.37 1.01 0.00 0.66 0.18 0.02 7.90 1.25 0.00 5.18 1.04 0.00 1.48 0.36 0.02 7.37 1.31 0.00 1.19 0.36 59 1,976

Toyama 0.00 9.59 1.54 0.00 0.79 0.21 0.03 5.07 1.27 0.00 8.69 1.59 0.00 1.24 0.45 0.07 7.62 2.03 0.00 1.52 0.40 29 1,070

Tochigi 0.00 1.17 0.40 0.00 5.23 0.90 0.00 3.02 0.67 0.02 2.54 0.77 0.00 2.15 0.57 0.02 10.35 1.67 0.00 0.94 0.31 48 1,980

Ishikawa 0.00 11.41 1.97 0.00 0.93 0.20 0.00 6.79 1.35 0.00 12.03 1.91 0.03 2.14 0.85 0.10 7.62 1.62 0.03 6.62 1.32 29 1,156

Fukushima 0.00 1.60 0.44 0.00 0.92 0.29 0.02 4.42 0.93 0.00 5.63 1.49 0.00 2.58 1.01 0.04 10.04 1.49 0.00 1.13 0.32 45 1,935

Niigata 0.02 12.43 1.94 0.00 1.31 0.35 0.05 10.46 1.57 0.00 5.85 1.06 0.07 12.08 1.90 0.11 21.03 3.41 0.00 1.28 0.29 62 2,313

Yamagata 0.00 1.47 0.51 0.00 4.00 0.94 0.17 7.17 1.48 0.00 14.70 2.80 0.00 7.40 1.36 0.03 8.31 1.62 0.00 2.77 0.70 29 1,131

Miyagi 0.00 2.62 0.71 0.00 0.70 0.18 0.02 6.17 1.12 0.00 10.64 2.69 0.00 6.93 1.45 0.02 6.17 1.54 0.00 0.62 0.18 59 2,328

Iwate 0.00 1.25 0.36 0.03 1.28 0.40 0.03 3.13 0.88 0.00 14.03 3.09 0.00 4.65 1.18 0.00 7.26 1.28 0.00 1.88 0.32 40 1,284

Akita 0.00 1.83 0.53 0.00 4.97 0.74 0.00 1.69 0.48 0.00 16.17 2.05 0.00 3.60 1.04 0.00 7.71 1.07 0.00 0.50 0.10 34 1,037

Aomori 0.00 2.50 0.62 0.02 4.91 1.12 0.00 2.33 0.52 0.05 14.20 2.50 0.00 7.29 1.62 0.00 6.12 1.17 0.00 0.50 0.13 41 1,321

Hokkaido 0.00 3.48 0.72 0.00 1.27 0.24 0.01 2.93 0.82 0.03 5.91 1.30 0.06 3.62 0.69 0.01 12.73 1.56 0.01 1.31 0.50 143 5,400

Notes. aThe HFMD data of 2014 is interim, not final
bThe official population estimates of Japan's prefectures are according to those reported by the Statistics Bureau of Japan (http://www.e-stat.go.jp/) as of October 1, 2014
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Discussion
Our study of the influence of latitude on the spatiotem-
poral characteristics of HFMD epidemics has yielded
several notable findings. The two brightest timing bands
in Fig. 1b reveal the influence of latitude variation on
the spatiotemporal features of the HFMD epidemic, with
the peak time moving in a south–north direction over
time. The influence of latitude variation on the spatial
spreading of HFMD is clear and provides an important
basis for detecting HFMD epidemic trends in this study.
In other words, the annual epidemic of HFMD started in
the south and then gradually spread to the north. We
adopt the correlation coefficient as the evaluation indica-
tor to identify the relationship between the south–north
Z rate differences and Z rates of a designated area in
Rule 1. For most prefectures in Japan, the correlation co-
efficients between the south–north Z rate differences
and Z rates reached statistically significant maximum
values with a three-week or four-week lag. These lag
values indicate that the south–north Z rate differences
are ahead of the HFMD epidemic cycles and provide an
important basis for Rule 1. A four-color gauge for the
HFMD epidemic monitoring process, indicating the

degree of severity of the epidemic, is provided in Rule 2.
The monitoring results show that the proposed statis-
tical approach, which takes into consideration the im-
pact of latitude variation on HFMD epidemics,
performed well in early aberration detection and predict-
ing the epidemic trend. On the basis of the temporal fea-
ture of HFMD epidemics, this study also developed
models for prediction of the activity of HFMD epidemics
one week ahead, with an alert issued by the proposed
aberration detection rules. For HFMD epidemics exhibit-
ing annual variation, the predictive model is used to cal-
culate a predicted value for the next week based on
current year data.
Weekly prefecture-level data from 2008 to 2014

were adequate for exploring spatiotemporal trends of
HFMD epidemics in Japan. When many spatial re-
gions are under surveillance, aberration detection
methods that contain spatial information may be
more powerful, but they require an understanding of
the nature of the spatial pattern, including how it
changes over time. Zhuang et al. [25] extracted the
spatial distribution of HFMD infections in China and
found that regions with a higher monthly incidence

Fig. 2 Weekly Z rates distribution of HFMD, Tokyo, 2008 to 2014 (a), and weekly Z rates distribution of HFMD, Kyoto, 2008 to 2014 (b). a The
epidemic peaks in Tokyo mostly occurred in weeks 28–31 during the study period. b The epidemic peaks in Kyoto mostly occurred in weeks
26–31 during the study period
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rate of HFMD periodically shifted, following the pat-
tern of south–north–south from March to Decem-
ber. In this study, only the south–north Z rate
differences were used in the regression model to de-
tect the spatial spreading of HFMD. Spatial autocor-
relation may be simultaneously taken into account in
the future work so as to faithfully determine the in-
fluence of latitude variation [29, 30].
The spatiotemporal characteristic of latitude was iden-

tified in this study. For more comprehensively and ob-
jectively understanding the influences of surrounding
factors on spatiotemporal trends of HFMD epidemics,
more factors with potential impact, such as population
density, population flow, medical level, etc., should be
taken into consideration in the spatiotemporal modeling
for further study [30–32].

The idea of categorizing the epidemic trend of HFMD
into three groups (mild, moderate and strong) was for
convenience of distinguishing the different severity levels
of the future HFMD epidemic trends. However, it is cru-
cial to choose the cut-off points to determine which kind
of aberration alert should be issued. In this study, the
value of slope was expressed in terms of percentage in-
crease to reflect the severity levels of the future epidemic
trend in Japan. The relative amplitude and severity of
HFMD epidemic vary according to different causative vi-
ruses and different geographical regions, so cut-off
points of the slope estimates for determining these three
categories may be chosen to suit local circumstances. In
this study, we also tried to detect and predict HFMD ep-
idemics trend by considering only the spatial differences
and the timing of the aberrations. Although the

Fig. 3 The south–north Z rate differences together with weekly Z rates, Tokyo, 2008–2014 (a), and the south–north Z rate differences together
with weekly Z rates, Kyoto, 2008–2014 (b). a Blue lines represent the difference between the means of Z rates in areas south of Tokyo and in
areas north of Tokyo for each week in the study period. b Blue lines represent the difference between the means of Z rates in areas south of
Kyoto and in areas north of Kyoto for each week in the study period

Tang et al. BMC Medical Informatics and Decision Making  (2015) 15:113 Page 10 of 14



predicted model fits the epidemic trend well, producing
accurate predictions remains a challenge. To enable the
proper strategies for both prevention and timely control,
more variables with potential impact, including environ-
mental factors (e.g. climate variables) and socioeconomic
factors should be considered in further studies to in-
crease the predictive power of the model, because
HFMD is a complex communicable disease [30, 31].
One limitation of this study is due to the assumption

that HFMD epidemics were influenced by latitude vari-
ation and followed a spatial spread pattern from the
south to the north. It is possible that our results will not
generalize to other infectious diseases without such a
spatiotemporal characteristic. The objective of this study,
however, was to explore the influence of the variation in
latitude on HFMD epidemics. It is possible that using a

large amount of surveillance data and taking into ac-
count more characteristics of the studied infectious dis-
ease could further improve detection performance.
The use of a regression approach may induce another

limitation of this paper. Regression analysis is widely
used for aberration detection and prediction, but regres-
sion modeling generally requires a considerable amount
of data to provide stable parameter estimates. In some
areas such as a designated area located at or near the
southernmost or the northernmost part of a geographic
range (e.g. Okinawa and Hokkaido in Japan), it may not
be feasible to monitor HFMD epidemics by using the
proposed approach. For such areas, time series models,
such as SARIMA models, may be utilized for interpret-
ing and applying the HFMD surveillance data for disease
control and prevention.

Fig. 4 HFMD epidemic monitoring indicators, Tokyo, 2011 (a) and 2013 (b) and HFMD epidemic monitoring indicators, Kyoto, 2011 (c) and 2013
(d). The epidemic trend of HFMD in the coming weeks were categorized as mild (orange), moderate (red) and strong (purple). The yellow
represents an activation signal
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Due to a reporting hierarchy of public health systems,
there is an inherent reporting lag in sentinel surveil-
lance data. The time lag between disease onset and the
date of report publication was up to one week in Japan.
We know the timeliness is a key performance measure
of public health surveillance systems. However, the
timeliness can vary by disease, intended use of the data,
and public health system level. The incubation period
of HFMD is 3 to 5 days (with a range from 2 days to
2 weeks). In Japan, the time lapse between onset date
and the date of report was short enough to initiate pre-
ventive measures and provide early health warnings to
the public. In Hong Kong, Malaysia, Japan, the Repub-
lic of Korea and Singapore, sentinel surveillance sys-
tems have been implemented to monitor HFMD
epidemics on weekly basis in order to allow the health
authorities to issue early warning of seasonal activity,

detect abnormal aberrations and assess the impact of
public health control measures. Current sentinel
reporting timeliness in Japan may be sufficient to sup-
port an immediate public health response in the event
of an HFMD epidemic.
Finally, HFMD is caused by several enteroviruses. In

this study, there was insufficient information on causal
agents, for example, on whether enterovirus 71 (EV71)
or coxsackievirus A16 (CVA16) was responsible for the
epidemics in Japan during the study period. This may
have affected the disease duration or epidemic peaks [33].
In addition, the HFMD case identification depended
mainly on clinical presentation, without confirming the
diagnosis by microbiological or serological tests, hence
resulting in potential misdiagnosis. However, HFMD is
considered to be an easily recognized disease by pediatri-
cians [16, 34, 35].

Table 3 Weekly reported and predicted cases per sentinel of major HFMD epidemics, Tokyo, 2011 and 2013

Year Week Monitoring
indicator

Reported Predicted 95 % predicted interval Absolute
errorLower limit Upper limit

2011 17 mild 0.054 0.084 0.030 0.137 0.030

18 mild 0.054 0.093 0.030 0.156 0.039

19 mild 0.069 0.088 0.041 0.135 0.019

20 moderate 0.122 0.181 0.059 0.303 0.059

21 moderate 0.157 0.165 0.000a 0.341 0.008

22 moderate 0.273 0.211 0.086 0.337 0.062

23 strong 0.556 0.467 0.244 0.689 0.089

24 strong 0.714 0.841 0.608 1.075 0.127

25 strong 1.342 1.347 1.004 1.690 0.005

26 strong 2.540 2.596 2.085 3.107 0.056

27 strong 5.038 4.881 4.163 5.600 0.157

28 strong 8.341 7.241 6.337 8.145 1.100

29 activation 9.531 9.569 8.712 10.426 0.038

Average 0.138

2013 18 moderate 0.090 0.162 0.118 0.206 0.072

19 moderate 0.130 0.103 0.052 0.155 0.027

20 mild 0.330 0.198 0.147 0.248 0.132

21 moderate 0.450 0.448 0.387 0.510 0.002

22 strong 0.470 0.598 0.514 0.682 0.128

23 strong 0.640 0.595 0.499 0.691 0.045

24 strong 0.990 0.895 0.814 0.977 0.095

25 strong 2.050 1.270 1.125 1.415 0.780

26 strong 4.000 3.138 2.774 3.501 0.862

27 strong 6.010 5.878 5.335 6.420 0.132

28 mild 10.970 8.265 7.355 9.175 2.705

29 activation 13.710 14.565 12.410 16.721 0.855

Average 0.486
aThe negative value is replaced with zero
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Conclusions
The frequency and scale of HFMD outbreaks are ex-
pected to increase [3, 12], and threaten the health secur-
ity of various nations due to continuing viral mutation
[3], climate change [1, 23], and the lack of health re-
sources and effective surveillance systems in some coun-
tries [3]. A reliable early warning model can help public
health agencies to take preventive actions to control
HFMD epidemics at an early stage, thus reducing their
impact on the health system and society.
This paper first attempts to explore the influence of

latitude variation on HFMD epidemics. We have used
only the latitude, one spatiotemporal feature of HFMD,
to develop rules for early aberration detection and pre-
diction. We have also demonstrated that the proposed
rules performed well on real data in terms of accuracy
and timeliness. Although our approach may provide

helpful information for controlling epidemics and min-
imizing the impact of diseases, the performance could
be further improved by including other influential me-
teorological factors along with the proposed latitude-
based approach, which is worth further investigation.
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Table 4 Weekly reported and predicted cases per sentinel of major HFMD epidemics, Kyoto, 2011 and 2013

Year Week Monitoring
indicator

Reported Predicted 95 % predicted interval Absolute
errorLower limit Upper limit

2011 17 mild 0.000 0.073 0.011 0.135 0.073

18 mild 0.054 0.068 −0.012 0.147 0.014

19 moderate 0.122 0.085 0.038 0.132 0.037

20 moderate 0.233 0.279 0.161 0.396 0.046

21 strong 0.257 0.450 0.276 0.623 0.193

22 strong 0.703 0.326 0.177 0.475 0.377

23 strong 1.081 1.168 0.950 1.386 0.087

24 strong 1.808 1.641 1.390 1.891 0.167

25 strong 2.905 2.671 2.385 2.957 0.234

26 strong 5.917 4.902 4.500 5.303 1.015

27 activation 9.581 9.299 8.530 10.069 0.282

Average 0.230

2013 15 mild 0.000 0.000a 0.000a 0.063 0.000

16 mild 0.010 0.000a 0.000a 0.029 0.010

17 mild 0.040 0.000a 0.000a 0.065 0.040

18 moderate 0.040 0.065 0.012 0.117 0.025

19 moderate 0.160 0.050 0.000a 0.107 0.110

20 mild 0.310 0.208 0.167 0.249 0.102

21 mild 0.340 0.462 0.384 0.540 0.122

22 mild 0.520 0.451 0.297 0.605 0.069

23 strong 0.510 0.612 0.498 0.726 0.102

24 strong 0.360 0.698 0.597 0.799 0.338

25 strong 0.850 0.474 0.305 0.643 0.376

26 moderate 1.970 1.258 1.050 1.466 0.712

27 moderate 2.890 3.125 2.835 3.416 0.235

28 – 3.660 3.747 3.462 4.031 0.087

Average 0.166
aThe negative value is replaced with zero
–: Not available
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