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Abstract

Background: Estimating the value of medical treatments to patients is an essential part of healthcare decision
making, but is mostly done implicitly and without consulting patients. Multi criteria decision analysis (MCDA) has
been proposed for the valuation task, while stated preference studies are increasingly used to measure patient
preferences. In this study we propose a methodology for using stated preferences to weigh clinical evidence in
an MCDA model that includes uncertainty in both patient preferences and clinical evidence explicitly.

Methods: A probabilistic MCDA model with an additive value function was developed and illustrated using a
case on hypothetical treatments for depression. The patient-weighted values were approximated with Monte Carlo
simulations and compared to expert-weighted results. Decision uncertainty was calculated as the probability of rank
reversal for the first rank. Furthermore, scenario analyses were done to assess the relative impact of uncertainty in
preferences and clinical evidence, and of assuming uniform preference distributions.

Results: The patient-weighted values for drug A, drug B, drug C, and placebo were 0.51 (95 % CI: 0.48 to 0.54),
0.51 (95 % CI: 0.48 to 0.54), 0.54 (0.49 to 0.58), and 0.15 (95 % CI: 0.13 to 0.17), respectively. Drug C was the most
preferred treatment and the rank reversal probability for first rank was 27 %. This probability decreased to 18 %
when uncertainty in performances was not included and increased to 41 % when uncertainty in criterion weights
was not included. With uniform preference distributions, the first rank reversal probability increased to 61 %. The
expert-weighted values for drug A, drug B, drug C, and placebo were 0.67 (95 % CI: 0.65 to 0.68), 0.57 (95 % CI: 0.56
to 0.59), 0.67 (95 % CI: 0.61 to 0.71), and 0.19 (95 % CI: 0.17 to 0.21). The rank reversal probability for the first rank
according to experts was 49 %.

Conclusions: Preferences elicited from patients can be used to weigh clinical evidence in a probabilistic MCDA
model. The resulting treatment values can be contrasted to results from experts, and the impact of uncertainty
can be quantified using rank probabilities. Future research should focus on integrating the model with regulatory
decision frameworks and on including other types of uncertainty.
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Background
Decisions in healthcare policy regarding research portfolio
management, market access, reimbursement and price-
setting all depend (in part) on the added value of medical
treatments for patients. This treatment valuation task is
difficult because it has to be based on a large set of
(possibly uncertain) clinical evidence and on subjective
assessments of the desirability of clinical endpoints. Multi
criteria decision analysis (MCDA) is a decision analytic
modelling approach that has been used for such treatment
valuation tasks [1, 2], primarily because it can support
decision makers by structuring the available evidence
[3, 4] and by guiding informed discussions through
visualizations [5]. In MCDA, the decision goal (in our
case, valuing treatments) is decomposed into a set of
concrete and measurable criteria (in our case, clinical
endpoints or treatment characteristics like mode of ad-
ministration). The identification of this set of criteria can
be done, for example, by interviewing patients and clinical
experts. Then, the set of relevant decision options (termed
alternatives) is defined. These are often a given in a treat-
ment valuation task. Now that the structure of the MCDA
model is built, two main inputs are required: criterion
weights and performance scores. Criterion weights in-
dicate the relative importance of criteria. Performance
scores measure the experts’ assessment of how well the
alternatives perform on each of the criteria. Criterion
weights and performance scores can be aggregated to
come to an overall value of each included treatment [6].
This overall value can then be used to select a most pre-
ferred treatment, to rank treatments from best to worst,
or to sort treatments into categories.
Studies applying MCDA to the treatment valuation

task can, for example, be found in the decision contexts
of market access [7–9] and reimbursement [10–12]. These
applications of MCDA have mostly used expert input to
construct the criterion weights and performances scores.
However, it has been argued that the patient perspective
forms an essential part of treatment value [13–16]. In an
MCDA framework this could be operationalized by letting
patients set the criterion weights. One approach for this is
to involve individual patient representatives in the deci-
sion making process, but a more representative approach
would be to use stated preference methods to elicit
preferences from a large group of patients [17, 18].
These patient preferences could then be used to weigh the
available clinical evidence [19]. In that way, treatment
value can be estimated from the patient’s perspective in a
transparent and representative manner. The results from
such analyses could then be used as input for the decision
makers’ decision making process.
In its simplest form, this combination of patient

preferences with clinical evidence can be done deter-
ministically. This would imply that the mean criterion

weights and mean performance scores are used as
input for the MCDA. However, including an assess-
ment of uncertainty in a decision analysis would be
advantageous because 1) it can help assess confidence
in the outcomes of the model, 2) it can help ascertain
the usefulness of performing additional research [20],
and 3) can prevent bias in non-linear models [21].
Several approaches exist for taking into account un-
certainty in MCDA. A recent review into uncertainty
analysis approaches that are potentially useful for the
specific context of healthcare identified deterministic sen-
sitivity analysis, probabilistic sensitivity analysis, Bayesian
frameworks, grey theory and fuzzy set theory [22]. The
review concluded that deterministic sensitivity analysis is
likely sufficient for most decisions in healthcare but that
for decisions where the views of multiple stakeholders are
combined or when uncertainty in multiple parameters is
to be considered simultaneously, approaches that allow
distributions (such as the probabilistic approach) would
be more appropriate [22]. The treatment valuation task
considered in this paper requires the combination of the
views from multiple stakeholders (namely, a large group
of patients) and requires the combination of uncertainty
in multiple parameters (namely, all weights and perform-
ance scores), and the probabilistic approach is therefore
adopted in this study.
The aim of this study is to illustrate how patients’

criterion weights derived from a stated preference study
together with performance scores derived from clinical
evidence can be used to value treatments from the
patient’s perspective, taking into account parameter un-
certainty in both criterion weights and performance
scores. A hypothetical case based on earlier studies
concerning three antidepressants and placebo will be
presented to illustrate the developed model. Its main
outputs are patient-weighted treatment values with asso-
ciated 95 % confidence intervals. It will be shown how
the patient valuation can be contrasted to an expert-
based valuation and the utility of the developed modeling
approach for practical decision making will be further il-
lustrated by present the results from three scenario
analyses.

Methods
Suppose I treatments have to be valued in an MCDA
based on n criteria simultaneously. We define treatments
with a higher value to be preferred to treatments with a
lower value. The clinical performance of drug i on
criterion k is denoted with θik. The partial value function
vk(θ) for criterion k maps the criterion-specific perform-
ance values θik onto a linear scale between 0 at a ‘worst
imaginable’ performance of θk

− and 1 at a ‘best imagin-
able’ performance of θk

+ for treatment i:
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The weights of the criteria are denoted with wk. These

criterion weights indicate the relative importance of
scale swings from θk

− to θk
+ on a criterion, and should be

estimated using the swing direct method or the MAC-
BETH pairwise comparisons method [4]. To come to an
overall value Vi for each treatment i, the partial values in
this study are combined with an additive value function

V i ¼
Xn

k¼1
wkvk θikð Þ; ð2Þ

where it is assumed that the criteria are independent.

Taking into account uncertainty
We adopt a probabilistic framework, in which the uncer-
tainty in estimates for criterion weight and performance
scores are represented with probability distributions [22].
The partial value functions and the overall values are
stochastic variables with probability distributions that are
complex combinations of the probability distributions for
the weights and treatment performances. These are hard
to calculate analytically and will therefore be approxi-
mated by applying a Monte Carlo simulation approach. In
such an approach, for each simulation run t, weights wkt

and performances θikt are sampled from their respective
probability distributions. Then, formula’s 1 and 2 are used
to come to partial values vk(θikt) and overall values Vit.
This process is then repeated a large number of times T.
The main outcomes of the MCDA model are the mean

overall value for each treatment, the value distributions
for each treatment, and the ranking probabilities for
each treatment. The mean overall value for treatment i

is estimated with the posterior mean, that is V i ¼
X

V it

T .
The value distribution of treatment i is the empirical dis-
tribution of all vit. Rank probabilities are calculated by
ranking treatments in descending order on their overall
value each Monte Carlo simulation run. We define rxi as
the amount of Monte Carlo simulation runs were treat-
ment i attains rank x. Then, treatment i’s rank probabil-
ity for rank x is rxi

T . The probability that the treatment
with the highest mean value is not ranked first is used as
a measure of decision uncertainty. It is calculated as fol-
lows: terming treatment j the treatment with the highest
mean value, the probability that this treatment is not
ranked first is 1− r1j

T .

Illustration using a case
The model is illustrated with a case on treatments for
severe depression. As can be seen in Fig. 1, the included
treatments are compared on four criteria: response,
remission, adverse events and severe adverse events.

Fig. 1 Decision structure used in the illustrative case. Starting from the top, there is the decision goal (assessing value), that can be operationalized
with four criteria. The relative importance of the criteria is indicated by the criterion weights and the plus or minus indicates if the criterion is to be
maximized or minimized. The performance of the four decision alternatives at the bottom on the criteria is determined with performance scores.
Note that for clarity only the arrows showing the performance scores for drug A are shown
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Response is defined as the probability of an acute 50 %
reduction in depression symptoms as measured on a
depression scale such as the Hamilton rating scale [23]
for depression or the Montgomery Asberg depression
rating scale [24]. Remission is defined as the yearly prob-
ability that depressive symptoms are reduced for such a
time such that a patient can be considered to have
recovered from an acute depressive episode. Adverse
events considered are (yearly probability of) sexual dys-
function, hypertension, restlessness, sedation, dizziness,
nausea, dry mouth, sweating and weight increase. Severe
adverse events considered are (yearly probability of)
suicide and other events that lead to death, threat to life,
permanent/severe disability or hospitalization.
The response and remission criteria are to be maxi-

mized, with the best level θ+ defined as 100 % and the
worst level θ− as 0 %. The adverse events and severe
adverse events are to be minimized, with the best level θ+

defined as 0 % and the worst level θ− as 100 %. This means
that, if for a patient the weight for response is 0.4 and the
weight for remission is 0.2, that patient considers the
swing from 0 % probability of response to 100 % probabil-
ity of response to be twice as important as the swing from
0 % probability of remission to 100 % probability of remis-
sion when choosing an antidepressant.
For illustration purposes hypothetical preference and

performance datasets were used. A patient criterion
weight sample of 100 patients was constructed by boot-
strapping the results from a patient panel held in an
earlier elicitation study [25]. In that study, weights were
also elicited from five clinical experts. These are included
in our study for comparison with patient preferences.
Three hypothetical antidepressants and placebo are in-
cluded. We define drugs “A” and “B” as the currently used
drugs. They are assumed to have moderate effectiveness
and side effects. We assume that a large number of clinical
trials have been performed over the years for drugs A and
B and that therefore there is only minor uncertainty
surrounding their clinical performance. We assume there

is a new drug “C” that is potentially much more
effective than the conventional drugs. However, we
assume that due to its novelty only a small number
of patients have been enrolled in clinical trials. This
means there still is considerable uncertainty regarding
its actual clinical performance. It is assumed that pla-
cebo provides almost no effectiveness and that it is
associated with very little adverse events. It is as-
sumed that all clinical trials ran for one year. An
overview of the datasets for preferences and clinical
performances is presented in Table 1.
In each simulation run t, criterion weights wkt are

obtained by using a bootstrap resampling method.
This means that for each run a bootstrap sample of
100 cases of the weight dataset was drawn with re-
placement. Because the clinical performances of drugs
are proportions, performance samples θikt are as-
sumed to be distributed with a Beta distribution [21].
Beta distributions require two parameters: α1 and α2.
We used the number of events as α1 and the sample
size of the study minus the number of events as α2.
This ensures that the expected value of the distribu-
tion is the event’s probability, and that the variance
of the distribution is inversely related to the trial
sample size. After sampling from the Beta distribu-
tions, vkt(θikt) and Vit are calculated using Formula’s 1
and 2. In total, T = 10,000 Monte Carlo simulations
are performed. The 95 % confidence interval for each
treatment’s value was estimated with the 2.5 %th and
97.5 %th quantiles of its Vit from the simulation
output. The model was programmed in R [26].
Several scenario analyses will be performed. First of

all, a model that uses only the mean criterion weights
and mean performance scores will be run. Then, the
impact of uncertainty will be explored by running separ-
ate Monte Carlo simulations with 1) only uncertainty in
criterion weights (that is, fixing the performances at
their mean values while varying the weights as in the
base case), 2) only uncertainty in performance scores

Table 1 Hypothetical dataset used in the case study

Criterion Direction Patient weight
(SD) (n = 100)

Expert weight
(SD) (n = 5)

Drug A performance
(events / n)

Drug B performance
(events / n)

Drug C performance
(events / n)

Placebo performance
(events / n)

Probability
of response

Maximize 0.46 (0.04) 0.01 (0.03) 5500 / 7000 6000 / 7000 84 / 100 250 / 1000

Probability
of remission

Maximize 0.19 (0.02) 0.69 (0.07) 6000 / 7000 5000 / 7000 84 / 100 250 / 1000

Probability of
adverse event

Minimize 0.14 (0.03) 0.13 (0.10) 300 / 7000 300 / 7000 1 / 100 5 / 1000

Probability of
severe adverse
event

Minimize 0.21 (0.02) 0.08 (0.08) 30 / 7000 30 / 7000 0 / 100 50 / 1000

Events = number of patients in trials that experience the event. N = total sample size of the trials
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(that is, fixing the weights at their mean values while vary-
ing the performances as in the base case), or 3) uniform
probability distributions for criterion weights (keeping the
sum of weights constant at one, and varying the perform-
ance scores as in the base case).

Results
Patient and expert valuations of drugs
When using a deterministic model, that is, setting both
criterion weights and performance scores to their mean
values, the overall scores for drug A, drug B, drug C and
placebo are 0.51, 0.51, 0.54, and 0.15, respectively for
patients. For experts, the overall scores for drug A, drug
B, drug C and placebo would be 0.67, 0.57, 0.67, and
0.19, respectively. This suggests that drug C has the
highest value for patients and drugs A and C seem the
most valuable treatment according to experts. Although
this is already an insightful result, we cannot assess the
confidence of these valuation statements. Taking into
account uncertainty as described in the Methods section
gives us more insight into the treatment valuation by

patients and experts (Fig. 2). Note the more spread out
probability density for the value of drug C which indicates
that its value is more uncertain than that of drugs A and
B. Drug C seems still to be the most valuable treatment to
patients with a probability of being ranked first of 73 %.
Placebo still has the last rank, as would be expected. There
is considerable uncertainty in the treatment values: there
is a 27 % probability that drug C turns out to not be the
most valuable to patients. Furthermore, there is consider-
able decision uncertainty as to the second most valuable
drug (r2A = 37 % (and r2B = 47 %). The clinical experts’ re-
sults incorporating uncertainty show that drugs A and C
that both have a score of 0.67. The first rank probabilities
for drug A and drug C are 51 % and 49 %, respectively.
This means there is clinical equipoise between drugs A
and C according to experts. Drug B is ranked third in all
simulations with a score of 0.57 and placebo is again
ranked last in all simulations with a score of 0.19. The im-
pact of patient preferences as opposed to clinical experts
is thus that while patients seem certain that drug C has
the highest value, experts consider drugs A and C to be

Table 2 Model outcomes: overall scores and rank probabilities

Scenario Parameter Drug A Drug B Drug C Placebo

Patients Score (95 % CI) 0.51 (0.48 to 0.54) 0.51 (0.48 to 0.54) 0.54 (0.49 to 0.58) 0.15 (0.13 to 0.17)

P (Rank = 1) 10 % 17 % 73 % 0 %

P (Rank = 2) 37 % 47 % 16 % 0 %

P (Rank = 3) 53 % 36 % 11 % 0 %

P (Rank = 4) 0 % 0 % 0 % 100 %

Experts Score (95 % CI) 0.67 (0.65 to 0.68) 0.57 (0.56 to 0.59) 0.67 (0.61 to 0.71) 0.19 (0.17 to 0.21)

P (Rank = 1) 51 % 0 % 49 % 0 %

P (Rank = 2) 49 % 0 % 51 % 0 %

P (Rank = 3) 0 % 100 % 0 % 0 %

P (Rank = 4) 0 % 0 % 0 % 100 %

Patients, only preference uncertainty Score (95 % CI) 0.52 (0.50 to 0.55) 0.53 (0.50 to 0.55) 0.55 (0.52 to 0.58) 0.15 (0.14 to 0.16)

P (Rank = 1) 6 % 12 % 82 % 0 %

P (Rank = 2) 36 % 49 % 14 % 0 %

P (Rank = 3) 58 % 38 % 4 % 0 %

P (Rank = 4) 0 % 0 % 0 % 100 %

Patients, only performance uncertainty Score (95 % CI) 0.54 (0.51 to 0.56) 0.54 (0.51 to 0.57) 0.55 (0.50 to 0.60) 0.17 (0.16 to 0.19)

P (Rank = 1) 15 % 26 % 59 % 0 %

P (Rank = 2) 37 % 43 % 20 % 0 %

P (Rank = 3) 48 % 31 % 20 % 0 %

P (Rank = 4) 0 % 0 % 0 % 100 %

Uniform distributions for criterion weights Score (95 % CI) 0.40 (0.12 to 0.68) 0.38 (0.11 to 0.66) 0.42 (0.14 to 0.70) 0.11 (0.02 to 0.20)

P (Rank = 1) 33 % 28 % 39 % 0 %

P (Rank = 2) 34 % 33 % 33 % 0 %

P (Rank = 3) 31 % 37 % 26 % 7 %

P (Rank = 4) 2 % 3 % 2 % 93 %
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equally valuable. An overview of drug values and rank
probabilities can be found in Table 2.

Impact of uncertainty
The results from the scenario analyses as compared
to the base case are presented in Figure 3. When

uncertainty in either patient-assigned criterion weights
or performance scores is ignored (that is, set to their
mean values), the point estimates for all four drugs re-
main similar. However, the confidence intervals of the
drugs become smaller. This can be seen also in the rank-
ing probabilities, which are higher for each rank. The

Fig. 2 Probability density estimation plot (Gaussian kernel estimation using the density function in R) of the model results for when patient
preferences are used. Red = Drug A, green = Drug B, Blue = drug C and purple = placebo. Treatment value distributions in base case

Fig. 3 Overview of the overall values of the included treatments. From left to right: patients (with uncertainty in weights and performance
scores), experts (with uncertainty in performance scores), patients (with uncertainty in weights but no uncertainty in performance scores), patients
(with uncertainty in performance scores but no uncertainty in weights), uniformly distributed weights (with uncertainty in performance). The error
bars indicate the 95 % confidence intervals. Pts = Patients, Plc = Placebo
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rank reversal probabilities for first rank decreases to 18 %
when uncertainty in performances is not taken into account
and increases to 41 % when uncertainty in criterion weights
is not taken into account. This means that in the case
performance uncertainty seems to have a larger impact
than preference uncertainty on the confidence with which
the most valuable drug is chosen. Finally, using a uniform
distribution for criterion weights induced a very large
variation in drug scores and consequently, a high rank
reversal probability for the first rank (61 %). This large
variation in scores is logical because the criterion weights
vary between 0 and 1, whereas in the other scenarios there
is much less variation in sampled weights (Table 1).

Discussion
In this paper we have demonstrated a probabilistic multi-
criteria approach to determine the patient-weighted value
of treatments. The MCDA model developed for this pur-
pose takes into account the parameter uncertainty sur-
rounding both the elicited preferences and clinical trial
data. The model was illustrated using a hypothetical case
on three antidepressant treatments and placebo. In the
case the patient-weighted treatment values are consider-
ably different from the expert-weighted values. Further-
more, the rank order of treatments is still uncertain for
patients and experts (as reflected in the rank reversal
probabilities). Scenario analyses showed that in this case
decision uncertainty seems to depend more on uncer-
tainty in clinical evidence than on uncertainty in patient
preferences. Finally, adopting uniform criterion weight
distributions lead to the most decision uncertainty, as
reflected in the high probabilities of rank reversal.

Comparison to earlier work
Our MCDA model builds on and combines characteris-
tics from earlier approaches for evidence gathering and
evidence synthesis. First of all, the model structure and
value functions are based on value-based MCDA [3, 7].
There various “families” of MCDA methods, each with
their own (dis) advantages. In this paper a value-based
method based on multi-attribute value theory was used.
The main advantages of this method are its strong
foundation in decision theory [27] and the ease of weight
elicitation (which is especially relevant when patient pref-
erences are used). Secondly, preference data from stated
preference methods can be included in the model, allow-
ing the incorporation of uncertainty around patient
preferences. Thirdly, this uncertainty was combined with
uncertainty around clinical performance estimates using
Monte Carlo simulation methods. Although there have
been other methods to combine patient preferences and
clinical trial data in the context of healthcare policy, these
are mainly limited by not practically taking into account
multiple (concurrent) events and/or uncertainty around

preferences [28–32]. Stochastic multi-criteria acceptability
analysis (SMAA) also combines preference data with
clinical trial data, but a non-informative (uniform) distri-
bution or a single rank order of criteria is used for prefer-
ences [19, 33]. A similar approach is adopted by Caster et
al. who include a rank order of criteria importances based
on qualitative information on utilities [34]. Although both
SMAA and the method by Caster et al. can include infor-
mation about patient preferences, only including rank
orders of criteria would preclude decision makers from
considering the rich information on patient preferences
yielded by stated preference studies.

Applicability and advantages of the model
The treatment valuation task considered in this paper
forms only one ingredient of healthcare policy decisions.
This is because there is a distinction between a patient’s
preferences and values, the patient’s health-related behavior,
and the actual implementation of a decision in the context
of a specific healthcare system. Although these concepts
are clearly linked, the main distinction is that behavior and
outcomes may or may not be in line with a patient’s prefer-
ences, depending on constraints concerning the patient’s
circumstances, his/her behavior, and/or the context of the
specific healthcare system. After establishing the value of
treatments to patients using our model, further modelling
work, e.g. with dynamic (system) simulation models [35],
or fuzzy cognitive maps to estimate patients’ behaviors
[36], may support decision makers design policies that are
best in line with the patient’s preferences. On a physician-
patient interaction level where (for example) prescription
decisions are made, decision aids (based on MCDA for ex-
ample [37]) that help patients think about their prefer-
ences and the treatment options may be valuable, but the
probabilistic modelling framework adopted in this study
may be prohibitive with regard to time constraints.
Although this was a demonstration and not an empir-

ical comparison of the model to other modes of decision
making, we believe the presented approach may have
several advantages for decision makers seeking to do a
treatment valuation task as part of their decision making
process. First of all, the adopted MCDA approach can
help decision makers to structure the available prefer-
ence data and clinical evidence and can help them assess
the impact of preferences on the overall value of treat-
ments. The present study adds to this the explicit inclu-
sion and combination of patient preferences and clinical
evidence. Furthermore, to account for uncertainty in
both preferences and clinical data, the flexible probabil-
istic approach is adopted. These two additions may give
decision makers more insight into 1) the influence of
patient preferences on treatment value, and 2) into the
impact of uncertainty in both preferences and clinical
data on the decision. A final advantage is that because of
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the explicit use of evidence and the use of visualizations,
decision makers can use the model to communicate
their decision (argumentation) to stakeholders. This can
be especially true for communicating a decision to pa-
tients because patient preferences are explicitly used.
Our model considers mainly the evidence-based treat-

ment valuation task, whereas a complete regulatory
decision making process in healthcare has much more
steps. Therefore, real-world applications of our model
would require it to be applied in the context of an over-
arching decision making framework that guides the
decision making process from problem definition to final
decision. One such framework is PrOACT-URL, which
structures the decision making process with the fol-
lowing phases: problem, objective, alternatives, conse-
quences, trade-off, uncertainty, risk tolerance and linked
decisions [38]. For an inclusion of the developed model in
PrOACT-URL, criterion weights should be elicited from
patients in the process after the definition of the ‘effects
table’ in the consequences phase. These could be com-
bined with the clinical evidence according to the model
developed in this study to help decision makers assess the
benefit-risk balance from a patient’s perspective in the
trade-offs phase of PrOACT-URL and to guide the discus-
sion in the uncertainty phase that follows the ‘trade-offs’
phase. We argue that the inclusion of our proposed model
into frameworks such as PrOACT-URL would be most
useful when it is judged by decision makers that the
decision to make is characterized by uncertain clinical
evidence and/or uncertain patient preferences. Given the
explicit use of elicited patient preference, decision makers
seeking to apply our model should be aware of remaining
normative issues regarding the use of elicited patient
preferences in real world decision contexts. These are:
whose preferences should be elicited, who should perform
the preference elicitation study, and what stated prefer-
ence method should be used.
Aspects of the decision making process that may change

in real world policy decision contexts compared to our
simple illustrative case, are that more patients could be
involved and that more criteria (not all relating directly to
the patient experience) may be considered relevant by the
decision makers. Given previous experience with perform-
ing large patient preference studies [17, 18, 39] and experi-
ence with using MCDA to consider large amounts of
criteria [3, 40], it is reasonable to expect that our model
can be extended to real world use. Furthermore, even if
the real-life decision involves other criteria requiring other
normative judgments outside the patient experience (such
as societal willingness to pay), it is possible to construct an
MCDA model that includes the preferences of multiple
stakeholder groups. The relative weight of the preferences
of these (and potentially other) stakeholder groups can
then be weighed by the decision makers, who make the

final decision after considering the outcomes of the evi-
dence synthesis as facilitated by the MCDA model pre-
sented in this study. Finally, in the case of benefit-risk
assessments decision makers may be reluctant to aggre-
gate benefits and risks into one score [29]. In that case,
decision makers could elect to model benefits and risks in
separate MCDA models and use the results during the
assessment of the benefit-risk assessment.

Limitations of the model and opportunities for further
research
Our model has some limitations. First of all, a multi-
attribute method with a simple additive value function
as aggregation method was used in this study. Although
more complex methods are known, adopting such an
aggregation method may imply that the elicitation ques-
tions become too hard for patients to understand. Inde-
pendency of criteria is assumed in our MCDA model. In
real-world applications of the model this requires great
care to be taken when the decision model is built to-
gether with the stakeholders since it is essential that the
included criteria comply with the assumptions in the
MCDA model. Future studies could use modeling strat-
egies for example with joint distributions of preference
parameters such that the independency assumption can
be relaxed. Another limitation in this study was that the
overall treatment value was assumed to scale linearly
with the criterion weights. Since the lower and upper
levels were 0 % and 100 % for all criteria in the case, this
implied that criterion weights reflected the relative im-
portance of events and that (often reported) non-linear
preferences for probabilities could not be incorporated,
although methods are known for eliciting non-linear
value functions from respondents (e.g. the bisection
method [27]).
There are several categories of uncertainty in MCDA

[22]. In this study, only parameter uncertainty was con-
sidered, while patient-specific preference variation and
patient-specific variation in outcomes is increasingly be-
coming important in light of recent developments in
personalized medicine [41]. A final and practical limita-
tion is that the process of gathering relevant data on
patient preference and clinical evidence, as well as build-
ing the model can be time-consuming. What MCDA
methods to use in real-world applications of the pre-
sented model should be the topic of future research.
Aspects we believe are important include the type of
patient preferences that are to be elicited (since these
need to match the MCDA method [42]), the preferable
type of clinical evidence and specific decision maker
needs. It may be useful to look into experiences in other
disciplines where there is a longer history of using
MCDA to support decision makers (see e.g. [43–46]).
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Conclusions
In conclusion, we have developed a novel approach to
estimate the value of treatments from the patient per-
spective using a probabilistic MCDA model. The model
was illustrated with a case on antidepressants. The
model can provide insight into the patient-weighted
value of treatments and how this may differ from an ex-
pert’s assessment. It also can provide insight into the im-
pact of uncertainty that still surrounds the value of
treatments. Future work will need to address patient-
specific variation and the feasibility of the modeling ap-
proach in practical applications (specifically in existing
regulatory decision making frameworks).
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