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Abstract

Background: For researchers and public health agencies, the complexity of high-dimensional spatio-temporal data
in surveillance for large reporting networks presents numerous challenges, which include low signal-to-noise ratios,
spatial and temporal dependencies, and the need to characterize uncertainties. Central to the problem in the context
of disease outbreaks is a decision structure that requires trading off false positives for delayed detections.

Methods: In this paper we apply a previously developed Bayesian hierarchical model to a data set from the Indiana
Public Health Emergency Surveillance System (PHESS) containing three years of emergency department visits for
influenza-like illness and respiratory illness. Among issues requiring attention were selection of the underlying
network (Too few nodes attenuate important structure, while too many nodes impose barriers to both modeling and
computation.); ensuring that confidentiality protections in the data do not impede important modeling day of week
effects; and evaluating the performance of the model.

Results: Our results show that the model captures salient spatio-temporal dynamics that are present in public health
surveillance data sets, and that it appears to detect both “annual” and “atypical” outbreaks in a timely, accurate
manner. We present maps that help make model output accessible and comprehensible to public health authorities.
We use an illustrative family of decision rules to show how output from the model can be used to inform false
positive–delayed detection tradeoffs.

Conclusions: The advantages of our methodology for addressing the complicated issues of real world surveillance
data applications are three-fold. We can easily incorporate additional covariate information and spatio-temporal
dynamics in the data. Second, we furnish a unified framework to provide uncertainties associated with each
parameter. Third, we are able to handle multiplicity issues by using a Bayesian approach. The urgent need to quickly
and effectively monitor the health of the public makes our methodology a potentially plausible and useful
surveillance approach for health professionals.

Keywords: Conditional autoregressive process, Influenza, Gaussian Markov random field, Spatial statistics,
Spatio-temporal, Syndromic surveillance

Background
Syndromic surveillance uses syndrome (a specific col-
lection of clinical symptoms) data as indicators of a
disease outbreak, and monitors syndromes in public
health-related information sources for early detection
of adverse disease events. Many health agencies are
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adopting and implementing syndromic surveillance sys-
tems. These systems meet a critical need for effective
prevention, detection and management of infectious dis-
ease outbreaks, which occur either naturally or by bioter-
rorism attacks. However, there are numerous challenges
in developing such systems, including: (i) incorporat-
ing situation-specific characteristics such as covariate
information for certain diseases; (ii) accommodating the
spatial and temporal dynamics of the disease; (iii) inte-
grating data from multiple sources; and (iv) providing
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analysis and visualization tools to help detect unexpected
patterns. New methods that improve the overall detec-
tion capabilities of these systems while also minimizing
the number of false positives can have a broad social
impact.
There exists a plethora of surveillance methods in the

literature. One of the methods widely used by public
health departments is the CUSUM chart [1]. It was devel-
oped specifically to detect changes in patterns over time.
Other variants followed in the areas of quality control
and disease surveillance [2-5]. These are constructed by
cumulative recording of events over time. The CUSUM
technique detects shifts in single or multiple parame-
ters while usually assuming the target parameters are
constant. However, disease incidences, as well as their
associated background counts, vary naturally in space
and time. Techniques that do not account for these spa-
tial and temporal dynamics, such as the CUSUM, can
lead to unsatisfactory results for syndromic surveillance
purposes.
Spatial heterogeneities occur naturally when the study

involves a large geographical area. For instance, strong
correlations emerge between the infectious individuals
and their interactions, which are usually spatially aggre-
gated. One can capture the wave-like spread of invading
diseases within a population by using certain time series
models. There are also heterogeneities between distinct
populations, such as different towns and cities, or differ-
ent geographic regions. Models for such scenarios must
incorporate the correlation between the populations and
the effects of the transmission between them. To accom-
modate this, a network of sites/nodes is assumed where
dependencies among adjacent sites are modelled with
spatial correlations and edges between sites determine
the adjacency structure of the network. In our exam-
ples, sites are a collection of counties (regional labor
markets) and “adjacent” means geographically contigu-
ous or “sharing a common border”. Data are syndrome
counts attributed to the nodes in the network through
time.
In the surveillance context, spatial scan statistics [6]

have been applied to a wide variety of epidemiologi-
cal studies for disease cluster detection. However, this
method lacks measures of uncertainty associated with the
identified clusters, and it is unable to account for covariate
information. Bayesian hierarchical models have become
increasingly popular in the analysis of spatial and spatio-
temporal data. Banks et al. [7] used the CAR model to
account for spatial dependence among the locations of
drug abuse reporting centers. Zou et al. [8] proposed
to accommodate spatio-temporal variations in syndromic
surveillance using a Bayesian conditional probabilistic
approach. Heaton et al. [9] applied a similar absorbing
state model to influenza/pneumonia fatality data. Similar

model-based approaches have been considered in Knorr-
Held and Richardson [10], Martínez-Beneito et al. [11],
and Zhou and Lawson [12].
In this paper, we focus on the early and accurate detec-

tion of outbreaks of diseases, which could be either conta-
gious or noncontagious. In syndromic surveillance, there
is no definitive diagnosis of an outbreak at the early stage.
Our methodology has been created exclusively to detect
disease outbreak early, to monitor the spatio-temporal
spread of an outbreak, and to provide decision supporting
tools for immediate analysis and feedback to public health
authorities. This approach will speed up the decisionmak-
ing process and the implementation of countermeasure
procedures.
We propose using a flexible hierarchical Bayesian model

to partition the variability and quantify uncertainties
in a unified framework. Our model can accommo-
date both spatial effects and temporal dynamics. It also
assumes that the spatial aspects arise from a nonsepara-
ble spatio-temporal conditional autoregressive (STCAR)
model, where the temporal aspect is a direct result of
a plausible Markov structure. We introduce a rigorous,
probabilistic, epidemiological model to explicitly account
for the disease dynamics based on human contact, and
other exogenous variables such as local population.
Our hierarchical model decomposes the source vari-

abilities into different components, which have reason-
able epidemiological interpretations. Numerical results
suggest that the model performs sensibly and is robust
to various less than ideal settings and conditions. In a
companion study, we are conducting sensitivity analy-
sis with respect to signal-to-noise ratio (SNR), choice
of priors, missing and superfluous edges in the network
structure, and other possible model misspecifications. We
also considered a particular model misspecification when
the underlying true model has a dynamic Susceptible-
Infected-Recovered (SIR) structure (See e.g., Keeling
and Rohani [13]). We have demonstrated that account-
ing for spatio-temporal correlation improves assessing
the impact of outbreak distributions, produces accu-
rate maps of occurrence, and allows for good prediction
performance.
In this paper we illustrate our methodology using

data from Indiana Public Health Emergency Surveillance
System (PHESS). The data set is based on emergency
department (ED) visits for influenza-like illness (ILI) and
respiratory illness over the three-year period 2008–2010.
Besides the usual methodology issues described in the
next section, two major challenges were encountered. The
first involved masking of the day of the week for confi-
dentiality reasons and the second was the effect of choice
of the network to avoid zero counts and provide more
accurate results. Details are provided in the next section.
This paper has several innovative features compared to
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previous studies as in Zou et al. [8] and Heaton et al. [9],
since we have incorporated the Day of Week effect, the
different network structures and decision rules.
This paper is organized as follows. In Section Methods,

we introduce a spatio-temporal methodology for syn-
dromic surveillance, and describe some properties of the
model. In Section Results and discussion, we present some
numerical studies and results on a real surveillance data
set. We also illustrate how one decision-making frame-
work behaves when it is applied to the output of our
model in Section An illustration of the trade-off between
false positives and timeliness of detection. Finally, in
Section Conclusions, we give a conclusion and discuss
possible improvements of our current methods and future
research directions.

Methods
In this paper, we mainly focus on changes happening in
discrete time and on contagious diseases. The basic model
described in Zou et al. [8] is adopted here. Specifically,
let Yi(t) be the number of individuals with a specific syn-
drome recorded at site i on day t, where i = 1, . . . ,m and
t = 1, . . . ,T . We assume that when a disease outbreak
occurs, both the level and the spatio-temporal structure of
Yi(t) change.

Basic model
We model the number of counts Yi(t) by a Bayesian hier-
archical model. We assume the first stage is Poisson with
canonical link (log linear), so that in the absence of an epi-
demic, the mean function of the Poisson count at location
i is μi(t). When there is an epidemic, a second compo-
nent is added to the baseline. The additional intensity in
epidemic state is represented by λi(t). We use an indi-
cator function δi(t) as the mark of whether an epidemic
is present. Thus, conditional on μi(t), λi(t) and δi(t), the
first stage model becomes

Yi(t) ∼ Pois (μi(t) + δi(t)λi(t)) , independently, i = 1, · · · ,m.
(1)

Let μ(t) = (μ1(t), · · · ,μm(t))T ,λ(t) = (λ1(t), · · · ,
λm(t))T and δ(t) = (δ1(t), · · · , δm(t))T . We assume μ(t),
λ(t) and δ(t) are mutually independent.

Model forμ(t)
Let θi(t) = log(μi(t)). We assume that θi(t) = XT

i (t)βμ +
εi(t), where X i(t) = (1,Xi,1(t), · · · ,Xi,p(t))T , i =
1, . . . ,m, represent covariates such as population size,
βμ = (βμ, 0,βμ, 1, · · · ,βμ, p)T are regression coefficients,
and εi(t) ∼ N

(
0, σ 2

μ

)
, i = 1, · · · ,m, are independently

and identically distributed. Spatial and temporal varia-
tions can be incorporated in the covariates.

Model for λ(t)
When there is an outbreak, we presume that the additional
intensity λi(t) follows a model with spatio-temporal con-
ditional autoregressive (STCAR) structure. Specifically, let
ηi(t) = log(λi(t)); then,

ηi(t) = UT
i (t)βλ + ξi(t),

where U i(t) = (1,Ui,1(t), · · · ,Ui,p(t))T , i = 1, . . . ,m, can
be epidemic-specific covariates, and βλ = (βλ,0,βλ, 1, · · · ,
βλ, q)T are covariate coefficients. We assume that the first
column of U i(t) consists entirely of ones, in which case
βλ, 0 becomes a scaling factor that can be interpreted as
the relative size of the outbreak compared to the baseline.
Spatial relationships between sites are represented by an
adjacency matrix W = (wij): if sites i and j are adjacent,
then wij = 1, and otherwise wij = 0. Also, by convention,
wii = 0. The ξi(t) are stipulated to satisfy

ξi(t)|ξ−i(t), ξ(t − 1) ∼ N

⎛
⎝ ρ1
wi+

∑
j
wijξj(t)

+ ρ2ξi(t − 1),
σ 2

λ

wi+

)
,

(2)

where wi+ = ∑
j wij. In (2), ξ(t) = (ξ1(t), · · · , ξm(t))T ,

and ξ−i(t) is the vector ξ(t) excluding the ith component.
Here ρ1 is a spatial correlation and ρ2 is a temporal corre-
lation parameter. We take ξ(1) = (0, · · · , 0)T as the initial
values at t = 1.

Model for δ(t)
Let δi(t) = 1 if the disease is present at site i on day t and
δi(t) = 0 otherwise. Currently, we employ an absorbing
state model for δ:

P (δi(t + 1) = 1|δ(t))

=
{
1 if δi(t) = 1,
ps1(δj(t) = 0 ∀j ∈ Ni)+1−(1−pc)τi

∑
j∈Ni τjδj(t) if δi(t) = 0,

(3)

where Ni is the set of spatial neighbors of i, that is, Ni =
{j : wij = 1}. We assume that the δi(t + 1) are condi-
tionally independent given δ(t). The two parameters in
(3) have straightforward interpretations: ps is spontaneous
generation rate for outbreaks, i.e., the probability of an
outbreak when neither the site nor any of its neighbors has
an outbreak, and pc is contagion rate for transfer of out-
breaks at neighbors to a site without an outbreak. τi is the
population in site i. In this formulation, we can incorpo-
rate spatial heterogeneity and disease transmission due to
the population effect. It is analogous to the transmission
mechanism in the SIR model, where the transmission rate
is proportional to the product of populations at two sites.
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Since we assume the three components μi(t), δi(t) and
λi(t) are mutually independent, then {Yi(t); t ≥ 1} has the
same distribution as

Yi(t) = Yμ
i (t) + δi(t)Y λ

i (t), (4)

where Yμ
i (t) ∼ Pois(μi(t)), Y λ

i (t) ∼ Pois(λi(t)), and
Yμ
i (t), δi(t) and Y λ

i (t) are conditionally independent given
λ and μ. The components of this decomposition reveal
insights into the variability of the observed data. In spite of
the seemingly simple count data structure, the model can
lead to rapid and accurate detection methods for disease
outbreak.

The day of week effect
There are some challenging issues involved in this data
set. Health Insurance Portability and Accountability Act
(HIPAA) regulations require significant confidentiality,
therefore the data are supplied in a very controlled fash-
ion. Initially the data were provided with perturbed dates
of the ED visits to preserve confidentiality and share-
ability. Such perturbing smoothes the daily ILI and res-
piratory illness counts, which attenuates the signal of the
start of an illness outbreak. This makes correctly predict-
ing the start of the outbreak much more difficult, if not
impossible.
In addition, perturbing the day of ED visit leads to a uni-

form distribution of the counts over the seven-day week.
This contradicts the DoW effect that is prominent in ED
visits [14]. Hafen et al. [15] also document that the distri-
bution of ED visits varies according to the day of the week.
For example, the average number of visits on Monday is
significantly greater than the average visits over the other
days of the week. The day of the week regularity is not lim-
ited to only the hospital data, but is also present in other
patient care facilities.
Therefore, we requested and were granted a new data

set with correct dates to warrant a valid and accurate
analysis. (Of course, extra safety measures were taken to
preserve confidentiality). We conducted simulations on
date perturbation and confirmed that it removes the day
of effect pattern from the distribution.
The analysis reported in Section Results and discussion

is of daily reports of ILI and respiratory syndrome at hos-
pital emergency departments. The actual disease process
is latent, and is not directly observable. From this real data
set, we observe that ED reports have a pronounced day-
of-week effect: reports are high on Sundays, when other
facilities, such as urgent care centers, are not available, and
low in the middle of the work week. Therefore, it becomes
apparent that it is necessary to account for the DoW effect
in syndromic surveillance.
According to the literature, there are several possible

methods to represent a DoW effect. For example, one
can adopt the indicator (dummy) variable approach. It

is easy to implement but may not be flexible enough to
capture other complicated patterns. One can also apply
other more complicated seasonal ARIMA models as in
Box et al. [16].
Themethods with time series roots, such as trigonomet-

ric functions or ARIMAmodels, are not well-suited to our
modeling structure. Instead, we employ a day of week indi-
cator covariate. We mainly focus on the multiplicative day
of week effect on the two components μ and λ. That is, we
include additive terms XT

DoWβμ, DoW and XT
DoWβλ, DoW

in the expression of log(μ) and log(λ). So the full model
becomes

μi(t) = exp
(
XT

μ (t)βμ + XT
DoWβμ, DoW + εi(t)

)
;

εi(t) ∼ N
(
0, σ 2

μ

)
,

(5)

λi(t) = exp
(
XT

λ (t)βλ + XT
DoWβλ,DoW + ξi(t)

)
, (6)

where βμ, DoW and βλ, DoW quantify the multiplicative
day of week effects in the syndrome counts, XDoW =
(1, 1, 0, 0, 0, 0, 0)T . This suggests that the DoW effects are
configured as 1 for Sunday andMonday, and 0 for Tuesday
through Saturday.

Some comments on the absorbing state model
Note that the absorbing state model (3) emphasizes the
ability of early detection of outbreaks, but is not designed
to predict the end of an epidemic. Surveillance data must
be disseminated quickly to public health practitioners
and decision makers. The more quickly outbreaks can
be detected, the more effectively a public health agency’s
intervention and disease control programs can prevent
further morbidity or mortality. For example, an anthrax
outbreak occurred in the Fall 2001, and was identified
by a clinician and immediately reported to public health
officials. This led to a prompt reaction to treatment of
exposed individuals and informing the general public
(CDC 2001). It becomes critical that the main purpose
of a surveillance method lies in its timeliness and effec-
tiveness of detecting new outbreaks or epidemics. Pub-
lic health surveillance data can also provide information
about when a disease outbreak fades out and ends. This
information could result in saving public health resources
and create less anxiety in the general public.
This research was approved by the Indiana University

Institutional Review Board (IRB), Protocol Number
1011003359. Access to the relevant de-identified patient
data was approved by the Indiana Network for Patient
Care (INPC) Management Committee.

Results and discussion
In this section, we will present results regarding a real
data application of the analysis of the 2008–2010 Indiana
respiratory syndrome counts.
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Figure 1 Indiana state map with 11 regional labor markets.

Data description
Our data set is derived from emergency department
visits for Influenza-like illness and respiratory illness in
the Indiana Public Health Emergency Surveillance Sys-
tem (PHESS) [17]. The system integrates data flows

from a network of hospitals across Indiana for use in
public health disease surveillance and clinical research.
Started in 2004, the network has grown to include over
110 hospitals covering more than 90% of ED visits in
Indiana. Advances in electronic medical record systems
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and health information exchange are refocusing public
health efforts toward greater use of information sys-
tems to automate disease surveillance. Indiana hosts the
Indiana Network for Patient Care (INPC), the largest and
longest-running health information exchange (HIE) in the
U.S. Observational clinical data gathered by the INPC
primarily supports clinical care processes, and are also
repurposed to support public health initiatives such as
PHESS.
For the last several years, the PHESS system has received

real-time data from participating hospitals, accumulating
more than 2 million transactions per year, and has aided
detection of public health outbreaks including gastroin-
testinal illness and carbon monoxide poisoning. It also
supports monitoring of influenza and other diseases at the
population level. The system’s ability to track data from
physician offices andmedical facilities across Indiana pro-
vides public health officials with early warning of out-
breaks of influenza and other communicable diseases in
Indiana. It can support identification of weather-related
health conditions or food-borne illnesses, enabling more
timely actions including the alerting of appropriate med-
ical personnel and policymakers. Public health authori-
ties may identify outbreaks more rapidly than they could

before by employing the unique capabilities of the system
to securely exchange health information when and were it
is needed. It is crucial to detect events quickly so that they
can respond early enough to intervene and prevent greater
disease spread [18].
ED visit data are collected in near real-time and are

transmitted to the PHESS system within minutes of actual
visits. For this study, the variables in the analysis data set
include date of visit, patient age, gender and residence
ZIP code. Further, the patient’s free-text chief complaint
is categorized using a naive Bayes classifier from the
University of Pittsburgh’s Real-time Outbreak and Disease
Surveillance (RODS) laboratory [19].
However, there are several difficulties in analyzing these

real surveillance data. First, the data streams contain
complex dependency structures in space and time. Sec-
ond, different classification rules convert patient chief
complaints into different syndromes. We adapted the
classification rules from the RODS project to con-
vert patient chief complaints into different syndromes.
The mapping is many-to-many. For example, a patient
could have both “influenza” and “respiratory” syn-
dromes. Third, the Indiana State Department of Health
employs existing surveillance methods such as the CDC’s

Figure 2 Respiratory syndrome data stream for the whole state in spring 2008.
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Electronic Surveillance System for the Early Notifica-
tion of Community-Based Epidemics (ESSENCE) system,
which may generate many false alarms due to multi-
ple comparison issues. As a result, the routine unfiltered
ESSENCE results may be of limited value for daily oper-
ational purposes. Finally, data perturbations protecting
patient privacy and confidentiality are often needed (and
were implemented in this analysis) in order to produce
sharable results while still maintain the same validity and
credibility.

The Choice of the Network. It is interesting to note that
daily syndrome counts at county level create problems
with zeros, especially in the summer months where reg-
ular influenza activity is low. This could cause unstable
inference results and additional model complexity.
One can proceed with a zero inflated model where a

point mass is added at zero in order to accommodate the
excessive zeros in the observations. However, this would
pose additional complexity in the model and potentially
make the computing slow. Therefore, in this empirical
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Figure 3 Real-Time (P(δ(t) = 1|Y1:t)) probabilities for each individual region in spring 2008, where dates are represented as Rmmdd, e.g,
R0113 stands for the real-time probability on January 13.
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study, we opt to aggregate to a network that contains 11
regional labor markets in Indiana, which reflects one pri-
mary transmission path for most commutable diseases
and is also considered a viable surveillance network by
the public health agencies. By applying our methodol-
ogy on the alternative aggregated spatial structure, we not
only eliminate the zero counts issues, but also are able to
borrow additional information from other economic and
workforce indicators for surveillance purposes. We fur-
ther comment on how surveillance might be improved by
broadening the spatial region, while still assuring validity
and consistency. Figure 1 shows the Indiana map divided
into eleven regional labor markets. The most populated

area is the Indianapolis greater metropolitan area in cen-
tral Indiana, which contains the state capital and many of
the state’s largest employers.
This was the first meaningful confidentiality issue we

faced with the data that we were initially provided. We
applied a simple date perturbation by adding random ±
1,2,3 days to the real date variable, which made the distri-
bution of days of the week uniform and completely elim-
inated the day of week effect, and affected the accuracy
of detecting the start of an outbreak. We stress that there
are many interesting data confidentiality issues in terms of
public health surveillance records with spatial and tempo-
ral characteristics. Ensuring privacy and security of health

Figure 4 Real-Time (P(δ(t) = 1|Y1:t)) probabilities for a four-week period in spring 2008.
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information, including information in electronic health
records, is the key component to building a successful
syndromic surveillance system.

Implementation
The PHESS data set for this study contains over sevenmil-
lion observations for ILI and respiratory syndrome and
classification counts from ED visits through the three-year
period between 2008 and 2010. The date of visit variable
contains information of exact date and time of the actual
visit. However, for confidentiality and simplicity, we use
only daily counts in this analysis, which comprises of 1095
days of data. The PHESS data are rich in the sense that
they not only have valuable individual information such
as patients’ residence zip code, gender and age, but also
contain different data streams including daily counts of
ICD-9 code, patient chief complaints.
The covariate included in this analysis is the population

size based on the 2010 national census data for Indiana.
The model is then completed with the prior specifications
for the hyperparameters (βμ,βλ, σμ, σλ, ρ1, ρ2, ps, pc).
Here we take diffuse priors on the covariate coeffi-
cient parameters, inverse gamma priors on the variance

parameters, uniform priors restricted to the interval (-1, 1)
for ρ1 and ρ2, and log normal priors restricted to the inter-
val (0, 1) for ps and pc. The choices of hyperparameters
represent vague prior information and ensure posterior
propriety. The choices of priors are considered to be stable
and robust to misspecifications in our simulation stud-
ies (not reported here). To improve Markov chain Monte
Carlo(MCMC) convergence and model inference, we also
use the previous one-year data to inform the following
year’s prior distribution parameters.
While the methodology itself is rather involved, being

based on the theory of Gaussian Markov random fields,
the actual computations are reasonably fast. All com-
putations were carried out in the open source statis-
tical software package R on a Windows desktop. The
computations related to period I and III in Section A
surveillance case study took approximately 4 hours per
time period to fit the model, estimate the parameters
and compute the real-time probabilities. Running the
MCMC simulations and computing the probability esti-
mates for period II took about 9 hours. This makes
our approach potentially useful for daily surveillance
purposes.

Figure 5 Respiratory syndrome data stream for the whole state in fall 2009.
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A surveillance case study
In this section, we present a three-part case study for
surveillance with distinctive features and interesting find-
ings. The data are daily respiratory syndrome counts
based on the Indiana PHESS system definition. Cases
were emergency department visits for respiratory ill-
ness from the whole state of Indiana over a three-year
period from January 1, 2008 to December 31, 2010.
We looked at three time periods that had definite out-
breaks confirmed via retrospective analysis by public
health domain experts. The three periods are spring 2008,
fall 2009 and fall 2010, i.e., January 1, 2008–March 31,
2008, June 1, 2009–December 31, 2009, and August 1,
2010–October 31, 2010. The results are listed in the
following.

Period I: Only a very limited training data set is
available for the first period to test the
method; namely, the first two weeks of data,
i.e., January 1–14, 2008, could be used. We
ran the detection model for the three-month
period. Figure 2 illustrates the overall state
total counts for respiratory syndromes over

the three-month period. The daily
aggregated syndrome counts are plotted for
the whole state with day of week symbols
superimposed to highlight the weekly
pattern. In the plot, the DoW effect is clearly
evident. Most of the high counts occur at
either Sunday or Monday, while counts are
usually low on Fridays.
The model inference was then performed
with DoW effect on this data set as in Models
(1)–(6). Figure 3 demonstrates the model
inference results for each individual region
over the time course. We ran MCMC using
all the data up to the current time t for each
day to determine the posterior. The real-time
posterior probability that δ(t) = 1 (RT) is
plotted for each node with the incidence rate
(y.rate) scaled and superimposed on the same
graph. This can highlight the fact that our
model is robust to low signal (low incidence
rates at some nodes) with high precision
(timely detection and low false alarms even
for sites with very low incidence rates).
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Figure 6 Respiratory syndrome data stream for individual regions in fall 2009, where dates are represented as Ymmdd, e.g, Y0809 stands
for the real-time probability on August 09.
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Figure 4 shows the spatial and temporal
dynamics of the outbreak evolution from our
model inference. The total counts for the
state in Figure 2 indicate that the outbreak
occurred around February 1. Figure 4
indicates that the possible outbreak starts in
Regions 5 and 6 on January 21, though this
appears to be a false positive. This is also
confirmed in Figure 3 for nodes 5 and 6
which demonstrates that the outbreak
probably started in node 6 on January 24 or
January 25 and then spread to nodes 3, 5 and
9 on January 27. This also indicates that the
slightly elevated counts in Figure 2 for

January 26–31 are due to an outbreak in the
state, but are so subtle for January 26 and
January 27 that they could not be called
without the more detailed spatio-temporal
analysis in Figures 3 and 4.
Period I is very challenging due to the limited
information from the training data, however,
our method works reasonably well and is
able to show the spatio-temporal evolution
with uncertainty measures associated with
each location and time point.

Period II: For the second period, we looked at the
seven-month period in 2009, June 1–
December 31, 2009. This is when the H1N1

Y0809 Y0810 Y0811 Y0812 Y0813 Y0814 Y0815

Y0816 Y0817 Y0818 Y0819 Y0820 Y0821 Y0822

Y0823 Y0824 Y0825 Y0826 Y0827 Y0828 Y0829

Y0830 Y0831 Y0901 Y0902 Y0903 Y0904 Y0905

0.656

5.37

7.39

10.1

12.2

16.4

32.2

Figure 7 Rates of respiratory syndrome per 100,000 population for a four-week period in fall 2009.
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outbreak occurred. As shown in Figure 5,
there is an unusual high peak in mid/late
October due to the large-scale outbreak of
H1N1 in the fall season. However, the
increasing trend started well before the peak,
which occurred around mid/late August. To
better appreciate the difference due to spatial
heterogeneity of the H1N1 outbreak, Figure 6
demonstrates the evolution of the outbreak
over time for each individual region. We can
see that by only observing the time series of
the syndrome counts, some regions have a
prominent outbreak pattern while others

show little to no sign of severe activity. This
can be misleading to public health officials.
By taking into account the spatial and
temporal correlation among the regions, we
analyze the data using the background level
based on the summer average counts
between June and August. From the
incidence rate in Figure 7, we see that regions
with low population have the highest rates
and are misleading visually. However, our
model can successfully detect the outbreak
starting at the Indianapolis metropolitan area
in a timely fashion with high precision, as

Figure 8 Real-Time (P(δ(t) = 1|Y1:t)) probabilities for a four-week period in fall 2009.
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shown in Figure 8. It turns out that the
outbreak first started in the Indianapolis
metropolitan at August 16. In the next two
days it spread to neighboring regions
Bloomington and its neighbor Evansville
area. The outbreak developed into a
state-wide epidemic in just a couple of days.
If the public health agencies relied on
monitoring just the overall state-wise
syndrome counts or the individual
county-wise incidence rate plot, they would
miss the early start of the epidemic.
Consequently, they would miss the most
effective period of intervention, which would
result in significant costs in public health.

Period III: For the third case, we look at the time period
of August 1–October 31, 2010. Figure 9
shows the overall state total counts for
respiratory syndromes over the three-month
period. This case is interesting because in the
year following the H1N1 outbreak, Indiana
had a very mild fall flu season compared to
previous years. Therefore, timely and
effective outbreak detection is quite
challenging due to low signals compared to

the background. Figure 10 shows the results
of the real-time probability for each
individual region. We note that the model is
still able to detect the outbreak in a timely
fashion. In Figure 11, we can see that the
outbreak started in the Indianapolis
metropolitan area and Columbus area
simultaneously, then it quickly spread to
other regions in the following days.
This case study shows that our methodology
can, indeed, yield satisfactory surveillance
performance in an applied setting. Here we
emphasize timeliness and apply real-time
analysis and visualization tools to syndrome
(not actual diagnosis) data in electronic form
so as to detect unexpected patterns that
warrant investigation. The lead-time our
method provides is crucial to public health
authorities to take more effective public
health actions. In this study, while we focus
on maps showing spatial and temporal
dynamics of disease outbreaks, the Bayesian
posterior distributions contain much more
information such as uncertainty measures
and predictive probabilities for the

Figure 9 Respiratory syndrome data stream for the whole state in fall 2010.
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Figure 10 Real-Time (P(δ(t) = 1|Y1:t)) probabilities for each individual region in fall 2010.

outbreaks. For example, the posterior mean
estimate of the pc parameter for period II is
0.9047, which is consistent with the rapid
spread pattern shown in Figure 8.

An illustration of the trade-off between false positives and
timeliness of detection
For syndromic surveillance systems, another valuable tool
for public health authorities is to provide some deci-
sion rules under different scenarios. The ideal solution is

quickest detection of outbreaks with as few false alarms
as possible. The first of these is important because failure
to detect means failure to act. On the other hand, fre-
quent false alarms are expensive and lead to distrust of
the system by the public. Of course, these two goals are
incompatible, and ultimately decision makers must make
tradeoffs.
One note about false positives is that it is very com-

mon to have false alarms when the study involves a large
spatial region and a long time period. Existing methods
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Figure 11 Real-Time (P(δ(t) = 1|Y1:t)) probabilities for a four-week period in fall 2010.

such as spatial scan statistics require multiple hypothe-
sis tests. Thus, one needs to control the false alarms very
carefully. As an illustration, we set up decision rules such
that for a given threshold � , the alarm is sounded when
the probabilities exceed the threshold for N consecutive
days. For example, if N = 2, then we declare a start of
outbreak at min{t : P(δ(t) = 1|Y1:t) > � and P(δ(t +
1) = 1|Y1:t+1) > � }. This way, we can limit false pos-
itives while still detecting abnormal patterns early and
accurately.
As a form of illustration for the impact of different

decision rules on the performance of our surveillance

methodology, we analyzed the PHESS data using the
aforementioned decision rule with different threshold �

and number of days N for the same three time periods
as in Section Results and discussion. Results are reported
in Tables 1, 2 and 3. These tables contain declared epi-
demic start dates based on the decision rules that the
posterior probability of P(δ(t) = 1|Y1:t) > � for N con-
secutive days. In order to show the trade-off between early
detection and false alarms heuristically, we choose � =
0.2, 0.5, 0.8 and N = 1, 2, 3 respectively. As illustrated in
Table 1, if one should select N = 1, the system becomes
very sensitive and declares the ILI epidemic start at Region
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Table 1 Declared start of ILI epidemic in 2008 for each region, under various decision rules

Decision rule Declared start of epidemic in region

Days N Threshold � 1 2 3 4 5 6 7 8 9 10 11

1 .2 1/24 1/24 1/21 1/21 1/21* 1/21 1/21 1/21 1/21 1/27 1/27

1 .5 2/02 1/31 1/27 1/28 1/21* 1/21 1/29 1/28 1/27 1/28 1/28

1 .8 2/02 2/02 1/27 1/29 1/21* 1/21 1/30 1/29 1/27 1/29 1/29

2 .2 1/29 1/29 1/26 1/27 1/26 1/21 1/28 1/27 1/27 1/27 1/27

2 .5 2/02 1/31 1/27 1/28 1/27 1/24 1/29 1/28 1/27 1/28 1/28

2 .8 2/02 2/02 1/27 1/29 1/27 1/25 2/02 1/29 1/27 2/02 1/29

3 .2 1/29 1/29 1/26 1/27 1/26 1/24 1/28 1/27 1/27 1/27 1/27

3 .5 2/02 1/31 1/27 1/28 1/27 1/24 1/29 1/28 1/27 1/28 1/28

3 .8 2/02 2/02 1/27 1/29 1/27 1/25 2/02 1/29 1/27 2/02 2/02

The epidemic is declared when P(δ(t) = 1Y1:t ) exceeds the threshold � for N consecutive days. “*” represents a case of potential false alarm.

5 on 01/21 in 2008, regardless of what the threshold �

is. However, if we increase to N = 2, the alarm is not
sounded until 01/26 for � = 0.2 and 01/27 for � =
0.5, 0.8, respectively. This suggests that the declaration on
01/21 could be a potential false positive. Similarly, in 2009,
the model declares a start of epidemic at Node 10 on
08/16 for � = 0.2, 08/17 for � = 0.5 and 08/22 for
� = 0.8, no matter what N is. Since � = 0.2 is very
low, 08/16 may be a potential false positive. Nevertheless,
the public health agencies have to decide the trade-off
between the two other thresholds. If � = 0.5 is chosen,
then they would gain five days of time to verify the cases
and evaluate different courses of intervention and preven-
tion measures. As the threshold goes from � = 0.5 to
� = 0.8, we get rid of some potential false positives, but
if the outbreak did happen on 08/17, we lose five days and
potentially cause huge loss in morbidity and mortality. We
were pleasantly surprised that our model performs almost
ideally without any ambiguity in 2010, since the declared
start date are very consistent with different threshold and

number of consecutive days. It will further facilitate quick
dissemination of the findings to those who need to know,
and rapid decisions on proper course of actions can be
made by health care agencies.
We stress that these rules are simply an illustration of

how the quantitative outputs of our model applied to a
real data setting, and how they illuminate the false posi-
tive - false negative tradeoffs that public health agencies
make. We did not attempt to address the complexities in
real life, which include loss functions, limited resources,
other sources of information, how agencies interpret
and react to uncertainty, and data quality issues, among
others.

Conclusions
In this paper, we used a Bayesian methodology that adapts
the existing Gaussian Markov random fields class of mod-
els to accommodate spatio-temporal surveillance data.
By applying this methodology to real data, we gained
insights into both the methodology and the real world

Table 2 Declared start of ILI epidemic in 2009 for each region, under various decision rules

Decision rule Declared start of epidemic in region

Days N Threshold � 1 2 3 4 5 6 7 8 9 10 11

1 .2 8/17 8/17 8/16 8/17 8/16 8/16 8/16 8/16 8/16 8/16* 8/16

1 .5 8/23 8/23 8/17 8/17 8/16 8/17 8/17 8/17 8/17 8/17* 8/17

1 .8 8/23 8/23 8/23 8/22 8/17 8/22 8/21 8/18 8/22 8/22 8/18

2 .2 8/21 8/21 8/16 8/17 8/16 8/16 8/16 8/16 8/16 8/16* 8/16

2 .5 8/23 8/23 8/21 8/17 8/16 8/17 8/17 8/17 8/17 8/17* 8/17

2 .8 8/30 8/27 8/23 8/22 8/17 8/22 8/21 8/18 8/22 8/22 8/18

3 .2 8/21 8/21 8/16 8/17 8/16 8/16 8/16 8/16 8/16 8/16* 8/16

3 .5 8/23 8/23 8/21 8/21 8/16 8/17 8/17 8/17 8/20 8/17* 8/17

3 .8 8/30 8/30 8/23 8/22 8/17 8/22 8/21 8/18 8/22 8/22 8/18

The epidemic is declared when P(δ(t) = 1Y1:t ) exceeds the threshold � for N consecutive days. “*” represents a case of potential false alarm.
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Table 3 Declared start of ILI epidemic in 2010 for each region, under various decision rules

Decision rule Declared start of epidemic in region

Days N Threshold � 1 2 3 4 5 6 7 8 9 10 11

1 .2 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22

1 .5 8/23 8/23 8/22 8/22 8/22 8/22 8/22 8/23 8/22 8/23 8/23

1 .8 8/23 8/23 8/22 8/23 8/22 8/23 8/23 8/23 8/22 8/23 8/23

2 .2 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22

2 .5 8/23 8/23 8/22 8/22 8/22 8/22 8/22 8/23 8/22 8/23 8/23

2 .8 8/23 8/23 8/22 8/23 8/22 8/23 8/23 8/23 8/22 8/23 8/23

3 .2 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22

3 .5 8/23 8/23 8/22 8/22 8/22 8/22 8/22 8/23 8/22 8/23 8/23

3 .8 8/23 8/23 8/22 8/23 8/22 8/23 8/23 8/23 8/22 8/23 8/23

The epidemic is declared when P(δ(t) = 1Y1:t ) exceeds the threshold � for N consecutive days.

problems. Features of the model include timely detection
of outbreaks, robust inference to model misspecification,
reasonable prediction performance, and analytical results
and visualization to assist public health authorities in risk
assessment.
Controlling false positives is a critical issue in a real

surveillance setting, and a proper decision rule is the key.
One can avoid this issue in the Bayesian formulation by
considering the posterior joint distribution to control the
overall false alarms (cf. Scott and Berger [20]). We con-
trol false positives by introducing the variables δi(t), which
indicate an outbreak. From an operational aspect, we illus-
trate a decision rule under which an alarm is sounded only
when the posterior probability is greater than a certain
threshold � for N consecutive days. A sensitivity anal-
ysis based on the decision rule for the PHESS data set
was carried out and highlighted to show the impact of
the settings chosen (false positive vs. waiting too long to
report an outbreak). Additional simulations on this topic
are planned in a parallel study. Based on the real data
applications, we demonstrated that the model is capable
of capturing outbreaks rapidly, while still limiting false
positives.
Using our methodology, we analyze real surveillance

data consisting of 2008–2010 Indiana respiratory syn-
drome counts from the PHESS data set. A three-part
case study was presented in this article that has unique
and interesting outbreak patterns. Finally, the advan-
tages of our methodology for addressing the complicated
issues of real world surveillance data applications are
three-fold. We can easily incorporate additional covariate
information and spatio-temporal dynamics in the data.
Second, we furnish a unified framework to provide
uncertainties associated with each parameter. Third, we
are able to handle multiplicity issues by using a Bayesian
approach. The urgent need to quickly and effectively mon-
itor the health of the public makes our methodology a

potentially plausible and useful surveillance approach for
health professionals.
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