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Abstract
Background  The liver was identified as a primary target organ for the chemo-radiological effects of uranyl acetate 
(UA). Although the anti-oxidant and anti-apoptotic properties of gallic acid (GA) make it a promising phytochemical 
to resist its hazards, there is no available data in this area of research.

Methods  To address this issue, eighteen rats were randomly and equally divided into three groups. One group was 
received carboxymethyl cellulose (vehicle of GA) and kept as a control. The UA group was injected intraperitoneally 
with UA at a single dose of 5 mg/kg body weight. The third group (GA + UA group) was treated with GA orally at a 
dose of 100 mg/kg body weight for 14 days before UA exposure. UA was injected on the 15th day of the experiment 
in either the UA group or the GA + UA group. The biochemical, histological, and immunohistochemical findings in the 
GA + UA group were compared to both control and UA groups.

Results  The results showed that UA exposure led to a range of adverse effects. These included elevated plasma levels 
of aspartate aminotransferase, lactate dehydrogenase, total protein, globulin, glucose, total cholesterol, triglycerides, 
low-density lipoprotein cholesterol, and very-low-density lipoprotein and decreased plasma levels of high-density 
lipoprotein cholesterol. The exposure also disrupted the redox balance, evident through decreased plasma total 
antioxidant capacity and hepatic nitric oxide, superoxide dismutase, reduced glutathione, glutathione-S-transferase, 
glutathione reductase, and glutathione peroxidase and increased hepatic oxidized glutathione and malondialdehyde. 
Plasma levels of albumin and alanine aminotransferase did not significantly change in all groups. Histopathological 
analysis revealed damage to liver tissue, characterized by deteriorations in tissue structure, excessive collagen 
accumulation, and depletion of glycogen. Furthermore, UA exposure up-regulated the immuno-expression of cleaved 
caspase-3 and down-regulated the immuno-expression of nuclear factor-erythroid-2-related factor 2 in hepatic 
tissues, indicating an induction of apoptosis and oxidative stress response. However, the pre-treatment with GA 
proved to be effective in mitigating these negative effects induced by UA exposure, except for the disturbances in the 
lipid profile.
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Background
The enduring presence of depleted uranium (DU) in bio-
ecological systems, its diverse entry routes, magnification 
through the food chain, and the compounded effects of 
both metallic and radiation toxicities [1, 2] establish it as 
a prominent environmental pollutant. Among vulnerable 
organs to DU-related issues, the liver stands out due to its 
role as a center for xenobiotic accumulation and metabo-
lism [3]. The intoxication with uranyl acetate (UA) led to 
a breakdown of the protective antioxidant shield in the 
liver, primarily driven by reduced nuclear translocation 
of nuclear factor-erythroid-2-related factor 2 (Nrf2). UA-
induced molecular changes resulting in apoptosis within 
the liver involved the activation of caspase-3, elevation of 
Bcl-2/Bax ratio, release of cytochrome c from mitochon-
dria, and decrease in ATP levels, all collectively promot-
ing cellular death [3–5]. The attack by free radicals and 
initiation of the apoptotic pathway lead to degenerative 
and necrotic modifications in hepatocytes, subsequently 
releasing liver metabolic enzymes into the bloodstream 
[4]. Thus, employing bioactive compounds with anti-
oxidant and cytoprotective properties could potentially 
counteract UA-induced hepatotoxicity. Although seques-
tering agents have been widely used to counteract UA 
radiotoxicity, they often yield unsatisfactory outcomes 
due to their nonspecific affinity, limited efficacy, insuf-
ficient clinical trials, and potential to induce acid-base 
imbalance and renal toxicity [1, 6, 7].

These challenges are driving a new wave of research 
focused on natural biological approaches to mitigate 
chemo-radiological risks posed by UA. Our laboratory 
demonstrated the effectiveness of thymoquinone and 
N-acetylcysteine against UA-induced testicular dam-
age in rats, primarily through their anti-apoptotic and 
cytoprotective mechanisms rather than their antioxidant 
properties [8]. Substantial evidence from animal mod-
els and cell cultures supports the protective potential of 
gallic acid (GA) on irradiated livers. Supplementation 
of mice exposed to gamma rays with GA prevented the 
depletion of antioxidant defenses and excessive lipid per-
oxidation in the liver [9]. However, the impact of GA on 
hepatic metabolic enzyme activity remains unstudied. 
Ferk et al. [10] reported that GA intervention alleviated 
gamma radiation-induced genotoxic damage and pre-
neoplastic foci in rats. They attributed these effects to the 
antioxidant potency of GA, believed to stem from redox-
related transcription regulator up-regulation, without 
solid molecular evidence. Other studies using a mouse 

model of dimethylnitrosamine-induced hepatotoxicity 
revealed that GA increased Nf2 transcript levels, which 
subsequently bound to DNA sequences to activate redox 
stabilizers’ expression [11]. Nonetheless, whether GA can 
mitigate UA-induced hepatic dysfunction remains uncer-
tain. Hence, this study aims to address this gap by evalu-
ating potential changes in plasma metabolic enzymes, 
liver redox homeostasis, histological features, as well as 
caspase-3 and Nrf2 immuno-expression in Wistar rats.

Methods
Drugs and chemicals
UA dihydrate (purity ≥ 98% and molecular weight 
424.15  g/mol) was purchased from Sigma-Aldrich 
Company (St. Louis, MO, USA). GA (purity ≥ 99%) was 
obtained from Sd Fine Chem. Limited Company, India. 
Carboxymethyl cellulose (CMC) 98% CAS: 9005-64-5 
was obtained from Alpha Global Search Company, New 
York, USA.

Experimental animals
A total of 18 adult male Wistar rats were used for this 
study. The rats were purchased from the Egyptian Com-
pany for Production of Vaccines, Sera, and Drugs, Egypt, 
and housed under natural light/dark cycles, at a tempera-
ture of 20–25  °C, and relative humidity of 55.0 ± 5.0%. 
They were provided with commercial pelleted feed and 
water ad libitum.

Experimental design
After a one-week acclimatization period, the rats were 
randomly divided into three groups, each consisting of 
six animals. The control group received carboxymethyl 
cellulose (CMC); the vehicle of GA. The second group 
(UA group) received an intraperitoneal injection of UA at 
a single dose of 5 mg/kg body weight [4]. The third group 
(GA + UA group) was orally administered GA using a 
stomach tube at a dose of 100  mg/kg body weight [12] 
dissolved in 1% CMC for 14 days prior to UA exposure. 
UA was injected on the 15th day of the experiment in 
either the UA group or the GA + UA group.

Collection and preparation of samples
At the end of the experimental period, blood samples 
were collected from the retro-orbital sinus after over-
night fasting. Plasma was separated by centrifugation at 
3000 rpm for 10 min and stored at -20 °C for subsequent 
biochemical analyses. Rats were euthanized by cervical 

Conclusions  The study suggests that GA has the potential to act as a protective agent against the adverse effects of 
UA exposure on the liver. Its ability to restore redox balance and inhibit apoptosis makes it a promising candidate for 
countering the harmful effects of chemo-radiological agents such as UA.
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dislocation under anesthesia induced by intraperito-
neal injection of sodium thiopental. Half of the liver was 
promptly excised, homogenized in 1 ml of 0.1  M phos-
phate buffer (pH 7.4), and centrifuged at 10,000  rpm 
for 15  min using IKA Yellow line DI homogenizer (18 
Disperser, Germany) to give 10% w/v homogenate. The 
homogenates were centrifuged at 10.000 rpm for 15 min, 
and the resulting supernatants were frozen at -20 °C for 
measurement of oxidant/antioxidant parameters. The 
other half of liver was fixed in 10% neutral buffered for-
malin for histopathological evaluation. The experimental 
procedure was represented in Fig. 1.

Biochemical measurements
Plasma alanine aminotransferase (ALT) (Catalog num-
ber: 264001), aspartate aminotransferase (AST) (Cata-
log number: 260001), albumin level (Catalog number: 
211001), total protein (Catalog number: 310001), glucose 
(Catalog number: 250001), total cholesterol (TC) (Cata-
log number: 230002), triglyceride (TG) (Catalog number: 
314002), and high-density lipoprotein cholesterol (HDL-
C) (Catalog number: 266001) were assessed according to 
the manufacturer’s instructions using commercial kits 
provided by Egyptian Company for Biotechnology Com-
pany, Egypt. Plasma low-density lipoprotein cholesterol 

Fig. 1  Graphical representation of the experimental procedure. UA: uranyl acetate; GA: gallic acid; Nrf2: nuclear factor-erythroid-2-related factor 2
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(LDL-C) was determined using the Friedewald formula: 
LDL-C = TC – HDL-C – [TG/5] [13]. Plasma very-low-
density lipoprotein (VLDL) was calculated according to 
[14].

Total globulins were calculated by subtracting the 
obtained albumin level from the obtained total proteins 
level [15]. Plasma lactate dehydrogenase (LDH) activ-
ity was measured by a kinetic method using a com-
mercial kit (Catalog number: 2940, Stabino Laboratory 
Company, Texas, Egypt). The levels of malondialdehyde 
(MDA) were measured by thiobarbituric acid reaction 
according to the procedure of Ohkawa et al. [16]. Nitric 
oxide (NO) was measured as nitrite concentration using 
the method of Ding et al. [17]. Total antioxidant capac-
ity (TAC) was measured using a calorimetric kit (Cata-
log number: TA2513, Biodiagnostic, Giza, Egypt). 
Superoxide dismutase (SOD) activity was determined 
based on its inhibition of epinephrine autoxidation [18]. 
Reduced glutathione (GSH) content was estimated using 
the method of Beutler et al. [19]. Oxidized glutathione 
(GSSG) levels were measured by the enzymatic recycling 
method described by Tietze [20]. Glutathione peroxidase 
(GPx) activity was determined by measuring the decrease 
in GSH content after incubating the sample in the pres-
ence of hydrogen peroxide and sodium azide [21]. Gluta-
thione reductase (GR) activity was assayed by following 
the oxidation of NADPH by GSSG [19]. Glutathione-S-
transferase (GST) activity was determined from the rate 
of increase in conjugate formation between reduced 
glutathione and 1-chloro-2,4-dinitrobenzene [22]. All 
the measured oxidant/antioxidant parameters were cor-
rected with total protein levels in the hepatic homog-
enate, and were measured using a spectrophotometer 
(S1200, Unico, USA).

Histological and histochemical examinations
Liver sections were fixed in 10% neutral buffered forma-
lin, processed using the paraffin-embedding technique, 
and then sectioned for staining. Hematoxylin and eosin 
stain was used for general histological examination [23], 
Picrosirius red stain for collagen identification [24], and 
Periodic acid Schiff (PAS) for glycogen content [23]. 
Examination and photography were carried out utilizing 
a digital camera (Toup Tek ToupView, Copyrightc 2019, 
Version:x86, Compatible: Windows XP/Vista/7/8/10, 
China), ImageJ software, and a computer connected to a 
light microscope (Olympus CX31, Japan).

Immunohistochemistry of cleaved caspase-3 and Nrf2
Formalin-fixed liver tissues were put in 10% neutral 
buffered (pH 7.2). Paraffin-embedded tissues were sec-
tioned, cleared, and rehydrated in a grade of ethanol 
solutions (100% − 70%) and rinsed in water. Extrac-
tion of antigens was done by boiling the slides in 1 mM 

ethylenediaminetetraacetic acid for 10  min, and emerg-
ing sections in 3% H2O2 for 10 min. Each section was put 
in a blocking solution at room temperature for one hour. 
The primary cleaved caspase-3 antibody (1:1000) (Novus 
Biologicals, LLC, USA) and anti-Nrf2 antibody (1:500) 
(GeneTex, Inc. North America) were then added for 24 h, 
followed by the secondary antibodies (1:5000) for two 
hours. After establishing the reaction with 3,3′-diami-
nobenzidine for 2–3 min, the sections were stained with 
hematoxylin for 2–5 min [25].

Statistical analysis
Data were represented as mean ± standard error of the 
mean (SEM). The results were analyzed by one-way 
analysis of variance (ANOVA) followed by Duncan post-
test using SPSS program version 16 (SPSS Inc., Chicago, 
USA). Differences of p < 0.05 were considered to be statis-
tically significant.

Results
Effects of GA on liver function parameters in 
UA-intoxicated rats
Exposure to UA resulted in a significant increase in AST, 
LDH, total protein, globulin, and glucose, with no signifi-
cant change in ALT and albumin. Supplementation with 
GA before UA intoxication normalized the AST, LDH, 
and glucose, although total protein and globulin became 
higher than the control group. There was no significant 
change when comparing ALT and albumin in the UA 
group with the GA + UA group (Table 1). UA-challenged 
rats exhibited hypercholesterolemia and hypertriglyc-
eridemia compared to the control group. A significant 
reduction in HDL-C and a significant elevation in LDL-C 
and VLDL were found in the UA-intoxicated rats. GA 
intervention failed to significantly improve the studied 
lipid profile compared to the UA group (Table 2).

Effects of GA on plasma total antioxidant capacity and 
hepatic redox balance in UA-intoxicated rats
A significant reduction was observed in plasma TAC in 
the UA group compared to the control group. Liver tis-
sues from UA-exposed rats demonstrated a significant 
increase in MDA and GSSG and a significant decrease in 
NO, SOD, GSH, GST, GR, and GPx. GA supplementation 
effectively returned plasma TAC and hepatic MDA, SOD, 
GSH, and GST to the control levels. The hepatic GR and 
GPx in the UA + GA group were significantly improved 
compared to the UA group, but they were still signifi-
cantly lower than the UA group. The hepatic NO in the 
GA + UA group was significantly higher than the control 
group. The hepatic GSSG was significantly reduced in the 
GA + UA group but still significantly higher than the con-
trol group (Table 3).
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The effects of GA on the histological features of the liver of 
UA-intoxicated rats
Hematoxylin and Eosin staining of liver tissue from the 
control group revealed normal structure (Fig.  2a,b). 
The hepatocytes radiated in cords from the central 
vein. Blood sinusoids were located in between these 
cords. The hepatocytes contained one or two rounded 
vesicular nuclei and granulated cytoplasm. The portal 
area included the hepatic artery, portal vein, and bile 

ductule (Fig. 2b). UA exposure led to degenerated hepa-
tocytes characterized by irregular nuclei and vacuolated 
cytoplasm. Fibrotic areas with cellular infiltration and 
extravasated blood cells were observed (Fig. 2c,d,e). GA 
supplementation prior to UA exposure resulted in nearly 
normal hepatocytes, with minimal fibrosis and cellular 
infiltration (Fig.  3a,b). Histopathological scoring con-
firmed the significant increase in degenerative param-
eters (vacuolated cytoplasm, irregular nuclei, karyolysis, 

Table 1  The effect of gallic acid on the plasma liver function parameters following uranyl acetate-induced liver dysfunction in rats
Parameters/Groups Control UA GA + UA P value
Plasma ALT activity (U/L) 9.007 ± 0.389 8.604 ± 0.222 9.063 ± 0.206 0.474

Plasma AST activity (U/L) 0.141 ± 0.011 0.222 ± 0.020# 0.146 ± 0.017& 0.0150

Plasma LDH activity (U/L) 24.645 ± 3.170 227.880 ± 76.316# 65.410 ± 9.306& 0.011

Plasma albumin level (g/dl) 2.836 ± 0.106 2.939 ± 0.061 2.954 ± 0.188 0.785

Plasma globulin level (g/dl) 1.790 ± 0.159 3.850 ± 0.524# 4.422 ± 0.813Ω 0.004

Plasma TP level (g/dl) 4.693 ± 0.205 6.375 ± 0.613# 7.536 ± 0.800Ω 0.009

Plasma glucose level (mg/dl) 87.594 ± 15.807 193.892 ± 20.750# 116.462 ± 22.152& 0.003
UA: uranyl acetate; GA: gallic acid; AST: aspartate aminotransferase; ALT: Alanine aminotransferase; LDH: lactate dehydrogenase; TP: Total protein

Results are expressed as mean ± SEM of 6 rats per group (One-way ANOVA followed by Duncan post-test)

#= significant difference between UA and the control groups

&= significant difference between GA + UA and UA groups

Ω = significant difference between GA + UA and the control groups

Table 2  Effect of gallic acid on the plasma lipid profile following uranyl acetate-induced liver dysfunction in rats
Parameters/Groups Control UA GA + UA P value
Plasma TC level (mmol/l) 65.812 ± 3.897 92.943 ± 6.280# 97.534 ± 5.432Ω 0.001

Plasma TG level (mg/dl) 54.456 ± 2.904 85.737 ± 8.115# 99.373 ± 6.262Ω 0.001

Plasma HDL-C level (mg/dl) 41.167 ± 2.212 24.700 ± 1.327# 22.642 ± 1.217Ω 0.000

Plasma LDL-C level (mg/dl) 24.453 ± 1.314 36.600 ± 1.621# 40.755 ± 2.190Ω 0.000

Plasma VLDL level (mg/dl) 13.162 ± 0.779 18.643 ± 1.089# 19.475 ± 0.794Ω 0.000
UA: uranyl acetate; GA: gallic acid; TC: total cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; 
VLDL: very-low-density lipoprotein

Results are expressed as mean ± SEM of 6 rats per group (One-way ANOVA followed by Duncan post-test)

#= significant difference between UA and the control groups

Ω = significant difference between GA + UA and the control groups

Table 3  Effect of gallic acid on oxidant/antioxidant parameters following uranyl acetate-induced liver dysfunction in rats
Parameters/Groups Control UA GA + UA P 

value
Liver MDA level (nmol/mg protein) 3.649 ± 0.454 5.082 ± 0.558# 2.820 ± 0.413& 0.015

Liver NO level (nmol/mg protein) 96.138 ± 8.952 68.085 ± 6.149# 149.783 ± 11.535&Ω 0.000

Plasma TAC (nmol/ml) 0.236 ± 0.043 0.069 ± 0.007# 0.192 ± 0.032& 0.005

Liver SOD activity (nmol/mg protein) 20.483 ± 1.332 7.077 ± 1.691# 19.230 ± 1.878& 0.001

Liver GSH level (nmol/mg protein) 15.385 ± 0.614 13.010 ± 0.363# 15.412 ± 0.587& 0.004

Liver GSSG level (nmol/mg protein) 0.372 ± 0.010 0.595 ± 0.017# 0.446 ± 0.013&Ω 0.000

Liver GST level (µmol CDNB-GSH conjugate formed/min/mg protein) 62.969 ± 2.226 57.244 ± 2.023# 40.071 ± 1.416& 0.000

Liver GR activity (nmol of GSSG utilized/min/mg protein) 16.289 ± 0.842 8.144 ± 0.421# 13.031 ± 0.674&Ω 0.000

Liver GPx activity (nmol of GSH oxidized/min/mg protein) 254.577 ± 5.732 178.204 ± 4.012# 229.119 ± 5.158&Ω 0.000
UA: uranyl acetate; GA: gallic acid; MDA: malondialdehyde; NO: nitric oxide; TAC: total antioxidant capacity; SOD: superoxide dismutase; GSH: reduced glutathione; 
GSSG: oxidized glutathione; GST: glutathione-S-transferase; CDNB: 1-chloro-2,4-dinitrobenzene; GR: glutathione reductase; GPx: glutathione peroxidase

Results are expressed as the mean ± SEM of 6 rats per group (One-way ANOVA followed by Duncan post-test)

# = significant difference between UA and the control groups

& = significant difference between GA + UA and the UA groups

Ω = significant difference between GA + UA and the control groups
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hemorrhage, and cellular infiltration) in the UA group, 
while the GA + UA group exhibited insignificant changes 
compared to the control group (Fig. 3c).

The effects of GA on the collagen deposition and glycogen 
content in the liver of UA-intoxicated rats
Examination of collagen fibers by Picrosirius red stain 
in the control group showed a tiny amount around the 
central vein (Fig.  4a). Huge amount of collagen fibers 
was observed in the UA group, evidenced by the red 
color (Fig.  4b). A significant increase in the percentage 
of collagen area in the UA group was found compared 
to the control group (Fig. 4d). GA supplementation miti-
gated collagen deposition, resembling the control group 
(Fig. 4c). The percentage of the area of collagen amount 

in the different experimental groups was represented in 
Fig. 4d.

Glycogen content examination by PAS stain in the con-
trol group showed a great amount of glycogen content 
(Fig. 5a). Noticeable depletion in the glycogen content in 
most of the hepatocytes was observed in the UA group 
(Fig. 5b). GA supplementation restored glycogen content 
to levels similar to the control group (Fig.  5c). The per-
centage of the area of glycogen amount in the different 
experimental groups was represented in Fig. 5d.

The effects of GA on the immunohistochemistry of cleaved 
caspase-3 in the liver of UA-intoxicated rats
Immunohistochemical analysis of cleaved caspase-3 
revealed a negative immunoreaction in the control group 

Fig. 2  Photomicrographs in the liver sections stained by H&E, bars = 50 μm (a) In control group showing a central vein (cv) from which mono- (↑) and 
binucleated (↑↑) hepatocytes are radiating in cords. The hepatocytes are with rounded vesicular nuclei and granular cytoplasm. Blood sinusoids are 
between the hepatic cords (Δ). (b) In control group showing a portal area (red circle). Mono- (↑) and binucleated (↑↑) hepatocytes are with rounded 
vesicular nuclei and granular cytoplasm. (c) In UA group showing massive fibrotic area (asterisk) enclosing connective tissue cells (↑↑). Hepatocytes are 
with pale vacuolated cytoplasm and irregular nuclei (Δ). Features of Karyolysis observed in some hepatocytes (▲). Some oval cells with dense flat nuclei 
noticed between hepatocytes (↑). (d) In UA group showing extravasated blood cells in between hepatocytes (↑). Some hepatocytes are with vacuolated 
cytoplasm and dense nuclei (Δ). (e) In UA group showing massive cellular infiltration (↑) around the portal area
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(Fig. 6a), contrasting the highly positive immunoreaction 
observed in the UA group (Fig. 6b). GA supplementation 
showed mostly negative immunoreaction, with minimal 
positive staining (Fig. 6c). The area of cleaved caspase-3 
protein expression significantly increased in the UA 
group compared to the control group, while the GA 
group exhibited insignificant changes compared to the 
control group (Fig. 6d).

The effects of GA on the immunohistochemistry of Nrf2 in 
the liver of UA-intoxicated rats
Positive immunoreaction of Nrf2 was observed in the 
control group (Fig. 7a), while UA-exposed rats exhibited 
negative immunoreaction (Fig. 7b). GA supplementation 
resulted in positive immunoreaction similar to the con-
trol group (Fig. 7c). The area of Nrf2 protein expression 
significantly decreased in the UA group compared to the 
control group, with GA supplementation increased it to a 
level resembling that of the control group (Fig. 7d).

Discussion
The significant increase in plasma AST and LDH activi-
ties mirrors observations from a previous study [4]. In 
our experimental model, the oxidative burden triggered 
by UA led to hepatocyte cytolysis, causing the release of 
cytosolic enzymes into the bloodstream. The elevation 
in AST activity can be linked to increased production of 
Krebs cycle intermediates, contributing to fueling glu-
coneogenesis to meet cellular metabolic demands while 
maintaining antioxidative capacities to counteract redox 
imbalances [26]. The increased LDH activity is associ-
ated with lactic acidosis, which is implicated in apop-
tosis through opening the mitochondrial permeability 
transition pore and inducing cytosolic Ca2+ bursts that 
activate caspases [27]. Conversely, GA effectively nor-
malized plasma AST and LDH activities, consistent with 
findings in paraquat-induced hepatotoxic rats [28]. The 
hepatoprotective mechanisms of GA involve hindering 
the access of oxygen-derived species to the lipid bilayer, 
reversing oxidative/nitrosative-mediated membrane dis-
ruptions, and stabilizing tight junctions and epithelial 
barriers [29–31].

Fig. 3  Photomicrographs in the liver sections of GA + UA group stained by H&E, bars = 50 μm (a&b). (a) Showing nearly normal appearance of hepato-
cytes with rounded vesicular nuclei (↑). Few cells are with condensed nuclei (Δ) and the others showing Karyolysis (▲). (b) Showing cellular infiltration 
around the portal area (↑), and appearance of some fibers (Δ). The majority of hepatocytes are nearly normal (▲). (d) Liver histopathological score for all 
the experimental groups. Results are expressed as mean ± SEM of 3 rats per group (One-way ANOVA followed by Duncan post-test). # significant differ-
ence between UA and the control groups. & significant difference between GA + UA and UA groups
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The UA-associated hyperglobulinemia in our experi-
mental irradiated rats aligns with increased serum immu-
noglobulin levels observed in orally supplemented mice 
[32]. This suggests enhanced B cell differentiation to 
boost specific immunity against xenobiotic contamina-
tion or potential impairment in the ability of the liver 
to clear immunoglobulins from circulation [33, 34]. As 
part of a compensatory response to reactive damaging 
molecules, accelerated protein generation supports the 
biosynthesis of antioxidants and cytoprotective agents 

[35]. The hyperproteinemia observed in the UA group 
contradicts findings by Zimmerman and colleagues 
[36], who reported no significant change in total pro-
tein. However, it could serve as a symptomatic marker 
of hepatic dysfunction [37]. Hyperproteinemia may 
instigate generation of reactive free radicals and activa-
tion of programmed cell death through the endoplasmic 
reticulum-calcium ion signaling pathway [38] following 
UA exposure. It was hypothesized that the increase in 
albumin and ALT by hepatocellular injury was masked by 

Fig. 4  Collagen fibers examination in the experimental groups. (a-c) photomicrographs of liver sections stained by Picrosirius red stain, bar = 50 μm. (a) 
In control group, showing tiny amount of collagen fibers around the central vein. (b) In UA group, showing huge amount of collagen fibers represented 
by the red color. (c) In GA + UA group, showing few amounts of collagen fibers nearly as those of control group. (d) Percentage of area of collagen fibers in 
the different experimental groups. Results are expressed as mean ± SEM of 3 rats per group (One-way ANOVA followed by Duncan post-test). # significant 
difference between UA and the control groups. & significant difference between GA + UA and UA groups
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its reduced production due to extensive fibrosis [26, 39], 
resulting in an insignificant change in ALT and albumin 
following UA exposure.

Similar to gamma-irradiated rats [40], our experi-
mental irradiated model displayed a marked increase 
in plasma glucose levels, attributed to mobilization of 
hepatic glycogen reserves as confirmed histologically. 
Reduced renal glucose excretion, decreased beta cell 
number, and impaired glucose uptake [41–43] contrib-
ute to this hyperglycemic state. Hyperglycemia-induced 

overproduction of reactive oxidants may disrupt endo-
thelial tight junctions and the barrier function, leading to 
leakage of blood from vasculature into surrounding tis-
sues [44]. UA-associated hyperglycemia appears to down-
regulate gene expression of Nrf2 and its regulators [45]. 
Additionally, it down-regulates anti-apoptotic proteins, 
up-regulates pro-apoptotic factors, and promotes cyto-
chrome c translocation from mitochondria to the cytosol 
[46]. In contrast, GA supplementation restored glucose 
homeostasis as demonstrated by Variya and colleagues 

Fig. 5  Glycogen examination in the experimental groups. (a-c) photomicrographs of liver sections stained by Periodic acid–Schiff stain (PAS), bar = 50 μm. 
(a) In control group, showing great amount of glycogen represented as the positive reaction of PAS. (b) In UA group, showing noticeable depletion in 
glycogen content in most of the hepatocytes. (c) In GA + UA group, showing positive PAS reaction resembling those of control group. (d) Percentage of 
area of glycogen amount in the different experimental groups. Results are expressed as mean ± SEM of 3 rats per group (One-way ANOVA followed by 
Duncan post-test). # significant difference between UA and the control groups. & significant difference between GA + UA and UA groups
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[47], achieved by delaying intestinal glucose absorption, 
enhancing beta-cell insulin secretion, and encouraging 
glucose uptake and peripheral insulin sensitivity [48].

The disturbances in lipid profile observed in the UA 
group are similar to the findings in gamma-irradiated rats 
[49]. Elevated activity of hepatic metabolizing enzymes 
responsible for fatty acid synthesis and mobilization 
contributes to radiation-induced hyperlipidemia [49]. 
Up-regulation in the transcript levels of sterol regula-
tory element-binding protein 1c might participate in this 
effect [50]. TG enrichment of HDL particles, enhance-
ment of hepatic lipase activity, and inhibition of hepatic 

production of apolipoprotein A-1 may be responsible 
for the drop in plasma HDL-C [51]. Damage to the pan-
creas is a leading cause of inhibiting lipoprotein lipase 
[52], closely associated with the observed lipoprotein 
patterns [53]. A two-way relationship exists between 
hyperlipidemia and hyperglycemia. Hyperlipidemia pro-
motes insulin resistance by blocking insulin signals and 
destroying pancreatic beta cells, giving rise to hypergly-
cemia [54]. As a consequence of excess glucose loading, 
lipid metabolism is impaired. For instance, glucose can 
be converted to fatty acids and cholesterol through de 
novo lipid biosynthesis pathways, and excessive lipids are 

Fig. 6  Immunohistochemical detection of cleaved caspase-3 protein in the liver. (a-c) Photomicrographs of liver sections of rats from the experimental 
groups, bar = 50 μm. (a) In control group, showing negative immunoreaction for cleaved caspase-3. (b) In UA group, showing highly positive immuno-
reaction as represented by brown color specially in the nuclei of hepatocytes. (c) In GA + UA group, showing negative immunoreaction in most of the 
hepatocytes except few ones still with brown nuclei. (d) Percentage of area of cleaved caspase-3 protein expression in the different experimental groups. 
Results are expressed as mean ± SEM of 3 rats per group (One-way ANOVA followed by Duncan post-test). # significant difference between UA and the 
control groups & significant difference between GA + UA and UA groups
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secreted in lipoproteins or stored in lipid droplets [55]. 
Hyperglycemia can predispose to hypercholesterolemia 
by up-regulating 3-hydroxy-3-methylglutaryl-coenzyme 
A reductase, and hamper fecal cholesterol excretion 
and bile acid biomanufacturing [56, 57]. Peroxidation of 
membrane phospholipids exacerbates cholesterol biogen-
esis in the liver and other organs through overgeneration 
of peroxides and disruption of membrane structure-
function attributes [58]. Hyperlipidemia induces hepatic 
oxidative stress, inflammation, and apoptosis [59]. The 
current GA intervention dosage and duration may be 
insufficient to counter UA-associated hyperlipidemia, 
as observed in atherosclerosis-prone apolipoprotein E 

knockout mice fed a high-fat Western-type diet [60]. 
Factors affecting gut microbial community and xenobi-
otic detoxification systems may play a dominant role in 
modulating the stability, absorption, and metabolism of 
phytochemicals [61].

The substantial increase in lipid peroxidation end prod-
ucts after UA intoxication concurs with findings by Yuan 
et al. [4]. UA stimulates excessive free radical production 
while inhibiting the intracellular redox stabilizing net-
work in rat hepatocytes [62]. This impairment not only 
affects polyunsaturated fatty acids but can also impact 
other biological macromolecules, thereby affecting cel-
lular membrane levels and subcellular components [63]. 

Fig. 7  Immunohistochemical detection of Nrf2 protein in the liver. (a-c) Photomicrographs of liver sections of rats from the experimental groups, bar 
= 50 μm. (a) In control group, showing positive immunoreaction of Nrf2 as represented by the brown color. (b) In UA group, showing negative immuno-
reaction (c) In GA + UA group, showing positive immunoreaction. (d) Percentage of area of Nrf2 protein expression in the different experimental groups. 
Results are expressed as mean ± SEM of 3 rats per group (One-way ANOVA followed by Duncan post-test). # significant difference between UA and the 
control groups. & significant difference between GA + UA and UA groups
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Our work, along with others [64], confirms the ability 
of GA to counteract the lipid peroxidation cascade in 
hepatic tissues due to its free radical scavenging proper-
ties. GA suppresses the Fenton reaction, which reduces 
the production of free radicals and the amount of iron 
available to combine with oxygen to initiate lipid peroxi-
dation [65].

Matched with the depletion of NO in the testicular 
tissues of UA-exposed rats [8], our finding revealed a 
remarkable exhaustion of hepatic NO owing to a reduc-
tion in NO-secreting cells and inducible NO synthase 
activators and elevation in NO inhibitors [32]. Reduced 
NO bioavailability could result from its binding with 
superoxide radicals to form peroxynitrite or uncoupling 
of nitric oxide synthase under oxidative stress, further 
exacerbating the redox imbalance [66]. Disturbances 
in lipid metabolism in our irradiated model could con-
tribute to NO depletion through mechanisms including 
L-arginine exhaustion (a key player in NO synthesis), NO 
synthase dysfunction, increased NO turnover, limited 
vascular response to its vasodilatory effects, and impaired 
translocation to target tissues [67]. The elevation in apop-
totic signaling and reduction in cell proliferation capacity 
often correlate with a deficit in NO formation. This is evi-
dent from the cytoprotective properties of NO through 
S-nitrosylation of apoptotic mediators [68]. In contrast, 
GA supplementation increased hepatic NO levels, sur-
passing even control levels. This effect is due to the abil-
ity of GA to slow NO turnover and enhance endothelial 
NO synthase phosphorylation [69, 70]. Increased NO 
levels activate the pentose-phosphate pathway [71], a 
major NADPH producer that regenerates reduced GSH 
from its oxidized form. The elevation in NO levels cor-
relates with the increase in SOD activity, suggesting a 
causal link. As SOD catalyzes the dismutation of super-
oxide radicals into molecular oxygen and hydrogen per-
oxide, heightened SOD activity clears superoxide anions, 
thus preserving NO bioavailability [72]. Additionally, NO 
is essential for up-regulating SOD expression, preventing 
superoxide radical-mediated NO degradation [73].

Similar to the findings of Hao et al. [74] and Pourah-
mad et al. [62], GSH redox network was altered in the 
UA group. This outcome indicates a failure in a critical 
component of the xenobiotic detoxification system [75], 
rendering the hepatic microenvironment more suscep-
tible to the radiological hazards of UA. Lactic acidosis 
prompts metabolic reprogramming to enhance NADPH 
synthesis, shifting the glutathione redox couple towards 
the oxidized form to counter reactive oxidative stress 
[76]. Moreover, utilization of glutamine for ATP pro-
duction under acidic stress contributes to the depletion 
of other glutamine-related metabolites, including GSH 
[76]. Reactive oxidant generation caused by UA triggers 
GSH oxidation and inactivation of GSH-related enzymes 

[77]. GST eliminates lipid peroxidation end-products 
and contaminants-derived electrophilic compounds 
[78, 79], thereby preventing cell membrane damage. The 
reduction in GST could be due to the down-regulation 
of its gene expression [80]. GSH is necessary for ensur-
ing the continuation of thiol group reduction in mito-
chondrial membrane proteins [81]. When these thiol 
groups are oxidized, the pore complex undergoes struc-
tural modifications, resulting in a mitochondrial perme-
ability transition that is a leading factor in both necrosis 
and apoptosis mechanisms [82]. Restoration of hepatic 
GSH redox cycle in the GA + UA group is compatible 
with what happened in doxorubicin-induced hepatotoxic 
[77] and streptozotocin-induced diabetic rats [65]. The 
increase in hepatic GSH levels in UA-irradiated rats pre-
supplemented with GA is attributed to the up-regulation 
of gamma-glutamylcysteine synthetase, a rate-limiting 
enzyme in GSH biosynthesis [83]. Activation of Nrf2 
results in increased transcript abundance of downstream 
antioxidants-related genes, including those belonging to 
the GSH redox system [84].

Total antioxidant capacity (TAC) provides a holistic 
view, accounting not only for the sum of individual anti-
oxidants but also for their complex interactions [85]. 
The normalization of TAC reflects the ability of GA to 
restore the overall body’s redox balance. The improved 
redox potency of hepatic tissue in the GA + UA group is 
attributed to increased transcript levels of antioxidants 
and scavenging of free radicals [86, 87]. This is supported 
by the increase in Nrf2 immuno-expression, a crucial 
transcription factor that plays a pivotal role in defend-
ing against peroxidative damage by up-regulating vari-
ous enzymatic antioxidants. The Nrf2 signaling pathway 
is a critical mediator in controlling the transcription of 
numerous antioxidant genes, including enzymes involved 
in GSH and SOD synthesis [88]. GA disrupts the inter-
action between kelch-like ECH-associated protein 1 and 
Nrf2 in drug-induced hepatic dysfunction, leading to 
increased nuclear translocation of Nrf2 [83]. Sirtuin 1 
overexpression resulting from GA supplementation facil-
itates Nrf2 nuclear translocation, stabilizes Nrf2 protein 
expression, and enhances nuclear accumulation, DNA 
binding activity and transcriptional function of Nrf2 [89, 
90]. Targeting Nrf2 may offer a promising therapeutic 
strategy to enhance cellular stability against redox imbal-
ances, a key factor in driving and exacerbating radiation-
associated hepatic damage.

The hepatic histoarchitectural deteriorations induced 
by UA exposure are consistent with other reports [4, 91]. 
These cellular changes could arise from mitochondrial 
dysfunction and disruption of oxidative phosphoryla-
tion [1]. Vacuolated cytoplasm in the liver could result 
from dysregulated fatty acid metabolism, leading to neu-
tral fat accumulation, which gets dissolved during tissue 
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preparation, leaving empty unstained vacuoles [92]. Kary-
olysis in hepatocytes, similar to uranium-contaminated 
mice [93], is attributed to endonuclease activity secreted 
by Kupffer cells, causing destructive fragmentation of 
genomic material [94]. The heightened release of reactive 
oxygen species, as indicated by increased MDA levels in 
the UA group, drives the excessive formation of extra-
cellular matrix proteins ensuring optimum conditions 
for hepatic fibrosis [95]. Hyperlactemia resulting from 
increased LDH activity triggers transforming growth 
factor-beta, leading to fibroblast differentiation [96]. The 
marked occurrence of apoptotic hepatocytes follow-
ing UA contamination aligns with findings in testicular 
germ cells [8]. UA triggers genotoxic damage indirectly 
through single-strand breaks, facilitated by oxidative 
DNA damage via Fenton redox reactions, and directly 
through covalent binding to DNA [97]. GA excretes anti-
fibrotic activity by reducing hepatic pro-fibrogenic cyto-
kines and blocking hepatic stellate cells activation and 
proliferation [98]. The anti-apoptotic effect of GA against 
UA-induced hepatotoxicity corresponds to its protection 
against ultraviolet radiation-induced damage in zebrafish 
and human keratinocytes [99]. Scavenging free radicals, 
reducing transcript levels of Bax and caspase-3, increas-
ing Bcl-2 transcript levels, and enhancing genomic repair 
[9, 100] underlie the cytoprotective properties of GA.

Conclusion
Pre-treatment of UA-exposed rats with GA efficiently 
restored the liver’s redox stability and cyto-functionality 
by inhibiting lipid peroxidation, up-regulating Nrf2, and 
suppressing the apoptotic cascade. This discovery holds 
significant value in guiding the scientific community 
toward recognizing the beneficial role of natural phyto-
chemicals in mitigating the health risks associated with 
DU exposure. Further studies are highly recommended to 
highlight the molecular mechanisms underlying the pro-
tective effects of GA against UA intoxication.
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