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Abstract

Background JianPi QingRe HuaYu Methods (JOH) have been long used to treat chronic atrophic gastritis (CAG)
and precancerous lesions of gastric cancer (PLGC). However, whether JQH can inhibit the transformation of gastritis
to gastric cancer (GC) remains unclear.

Methods Herein, we first retrieved the active ingredients and targets of JQH from the TCMSP database and the tar-
gets related to the gastric inflammation-cancer transformation from public databases. Differentially expressed genes
(DEGs) related to gastric inflammation-cancer transformation were identified from the Gene Expression Omnibus
(GEO) database. Then, we obtained the potential therapeutic targets of JOH in treating gastric inflammation-cancer
transformation by intersecting drugs and disease targets. The Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG), and protein—protein interaction (PPI) analyses of the potential therapeutic targets were con-
ducted using R software. Next, we conducted molecular docking and in vitro experiments to validate our results.

Results We obtained 214 potential therapeutic targets of JQH by intersecting drugs and disease targets. We found
that the potential mechanisms of JOH in treating gastric inflammation-cancer transformation might be related to JAK-
STAT, Wnt, p53 and VEGF signaling pathways. The molecular docking indicated that quercetin, as the main active
ingredient of JOH, might inhibit gastric inflammation-cancer transformation by binding with specific receptors. Our
experimental results showed that quercetin inhibited cells proliferation (P<0.001), promoted cell apoptosis (P<0.001),
reduced the secretion of pro-inflammatory cytokines (P<0.001) and promoted the secretion of anti-inflammatory
cytokines (P<0.001) in MNNG-induced GES-1 cells. Furthermore, quercetin inhibited cells proliferation (P <0.001)

and reduced mRNA and protein level of markers of PLGC (P<0.001) in CDCA-induced GES-1 cells.

Conclusion These results provide the material basis and regulatory mechanisms of JQH in treating gastric inflamma-
tion-cancer transformation.
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Introduction

Chronic atrophic gastritis (CAG) is a common gastro-
intestinal disease characterized by mucosa atrophy,
exposed vessels, and mucosal nodules [1]. Correa cas-
cade proposed that CAG often develops into intestinal
gastric cancer (GC) in the pathogenesis of disease evolu-
tion [2]. A recent study has suggested that Helicobacter
pylori (Hp) infection plays a vital role in this process [3].
Hp eradication in patients with gastritis can prevent the
occurrence of intestinal GC to some extent [4]. How-
ever, 34-54% of patients with atrophic gastritis develop
GC even after Hp eradication [5]. Thus, finding effective
drugs to inhibit gastric inflammation-cancer transforma-
tion is urgent.

Traditional Chinese Medicine (TCM) are complemen-
tary and alternative medicine in treating gastrointestinal
diseases and has specific advantages compared to West-
ern medicine, such as less drug dependence and side
effects [6]. JianPi QingRe HuaYu, a frequently-used Tra-
ditional Chinese Medicine, is often used for treatment of
CAG and precancerous lesions of gastric cancer (PLGC)
in clinic [7]. JQH is composed of Astragalus membrana-
ceus (Fisch.) Bunge (Huangqi), Atractylodes macroceph-
ala Koidz (Baizhu), Citrus aurantium L. (Zhike), Hedyotis
diffusa Willd. (Baihuasheshecao), Scutellaria barbata D.
Don (Bazhilian), and Curcuma zedoaria (Christm.) Rosc.
(Ezhu) (Table 1). Our clinical studies have shown that
JQH could significantly ameliorate digestive tract symp-
toms and pathological conditions of gastric mucosal and
inflammatory levels in patients with CAG or PLGC [7,
8]. In experimental animal studies, JQH improved the
pathological condition of gastric mucosa and delayed the
development of intestinal metaplasia or atypical hyper-
plasia by suppressing NF-kB pathway activation in CAG
rats [9, 10]. However, whether JQH inhibits CAG from
proceeding to GC (gastric inflammation-cancer transfor-
mation) remains unclear.

Network pharmacology has become an effective
approach to investigating the mechanisms of drug ther-
apy, screening the active ingredients, and exploring
the therapeutic targets of TCM [11]. Therefore, in the

Table 1 Details of the ingredients of JianPi QingRe HuaYu Methods
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present study, we used network pharmacology, bioinfor-
matics, molecular docking, and in vitro experiments for
validation to reveal the active ingredients, targets, and
potential mechanisms of JQH to treat gastric inflamma-
tion-cancer transformation. The flow chart of this study
is shown in Fig. 1.

Materials and methods

Screen of JQH active ingredients and targets

We screened the JQH bioactive ingredients in the
TCMSP  database  (https://old.tcmsp-e.com/tcmsp.
php) according to the cut-off value of drug-like proprie-
ties>018 and bioavailability >30%. The corresponding
targets related to all these bioactive ingredients were also
retrieved from the TCMSP database, and gene symbols
were converted using the Uniport database (https://www.
uniprot.org/).

Identification of gastric inflammation-cancer
transformation targets by GEO database

The GSE130823 and GSE55696 datasets were retrieved
from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/). To identify the
genes related to gastric inflammation-cancer transforma-
tion, differently expressed genes (DEGs) among differ-
ent subgroups were identified based on FDR<0.05 and
|logFC|> 1. Then, the DEGs in the intersection of gastri-
tis versus (vs.) intraepithelial neoplasia (IN) groups and
gastritis vs. intestinal gastric cancer (IGC) groups in the
GSE130832 dataset were selected. The DEGs obtained
from chronic gastritis vs. IN groups and chronic gastri-
tis vs. early gastric cancer (EGC) groups were also inter-
sected in GSE55696 datasets. The intersected DEGs in
GSE130823 and GSE55696 datasets were regarded as the
targets for gastric inflammation-cancer transformation in

the GEO database.

Collection of gastric inflammation-cancer transformation
targets

We also collected targets using the keywords “atrophic
gastritis’, “gastric adenocarcinoma,” and “stomach

Latin binomial nomenclature Family Medicinal parts Chinese name
Astragalus membranaceus (Fisch.) Bunge Leguminosae root Huanggqi
Atractylodes macrocephala Koidz Compositae root Baizhu

Citrus aurantium L Rutaceae fruit Zhike

Hedyotis diffusa Willd Rubiaceae herb Baihuasheshecao
Scutellaria barbata D. Don Lamiaceae herb Bazhilian
Curcuma zedoaria (Christm.) Rosc Zingiberaceae root Ezhu



https://old.tcmsp-e.com/tcmsp.php
https://old.tcmsp-e.com/tcmsp.php
https://www.uniprot.org/
https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/geo/

Nie et al. BMC Complementary Medicine and Therapies (2023) 23:411

JQH

Banzhilian

Baizhu

TCMSP

Network of active ingredients and targets of JQH

Disease

6888

Page 3 of 14

Gastric inflammation-cancer transformation

—oatoten

Genes related to gastric
inflammation-cancer
transformation in databases

GSE130823 GSE55696
DEGs related to gastric inflammation-cancer transformation

Drug

The potential therapeutic tragets of JQH in the treatment
of gastric inflammation cancer transformation

GO, KEGG and PPI analysis of

Molecular docki
potential therapeutic tragets olecular docking

PPl and KEGG analysis of the
potential therapeutic target of Quercetin

Expreiments in vitro

Fig. 1 Flow chart of network pharmacology and experimental validation strategies to explore JQH in treating gastric inflammation-cancer

transformation

adenocarcinoma” in OMIM, TTD, DrugBank, Gen-
ecard, and PharmGkb databases. The targets obtained
using the keyword “gastric adenocarcinoma” were
combined with those obtained using the keyword

“stomach adenocarcinoma’. Then, we intersected these
combined targets with the targets identified by the key-
word “atrophic gastritis” in each database. Finally, we
combined the targets from the GEO and online databases
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using R software, and these targets were regarded as
gene targets related to gastric inflammation-cancer
transformation.

Potential therapeutic targets of JQH in treating gastric
inflammation-cancer transformation

The targets of gastric inflammation-cancer transforma-
tion were intersected with the targets of JQH bioactive
ingredients. These genes were regarded as the potential
therapeutic targets of JQH in treating gastric inflamma-
tion-cancer transformation. This procedure was con-
ducted using R software.

Protein-protein Interaction (PPIl) network, Gene Ontology
(GO), and Kyoto Encyclopedia Gene and Genomes (KEGG)
analyses

The potential therapeutic targets of JQH in treating gas-
tric inflammation-cancer transformation were subjected
to PPI network analysis by Cytoscape software. The
PPI network was constructed using the CytoNCA tool
in Cytoscape to identify the core genes based on spe-
cific parameters (Betweenness, Closeness, Eigenvector,
and LAC)>median value. To investigate the molecular
mechanisms of JQH in treating gastric inflammation-
cancer transformation, GO and KEGG enrichment anal-
yses were also performed using R software.

Molecular docking

The 2D structure of active ingredients was obtained from
the PubChem database. These 2D structures were con-
verted into 3D structures using ChemBio3D software.
The PDB database was used to obtain the 3D structures
of core targets. The “AutoDockTool” was used to con-
vert the 3D structure of active ingredients. The four tar-
gets were AKT1, EGFR, HIF1A and IL6R. These targets
include ligand and water removal, hydrogen addition,
and amino acid optimization and patching.Then, these
four targets were saved as PDBQT format files and we
identify the active pockets. Finally, molecular docking
was conducted using “vina” software.

Identification of the key ingredients of JQH

We intersected the targets of the active ingredients of
JQH with the therapeutic targets, and the ingredients
with the most therapeutic targets were regarded as core
JQH ingredients in the treatment of gastric inflamma-
tion-cancer transformation. Further, bioinformatics
approaches were used to investigate the molecular mech-
anisms of these therapeutic targets related to core active
ingredients.
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Cell culture

Cells were cultured in RPMI-1640 medium with 10% fetal
bovine serum and 50 mg/mL streptomycin, and 50 U/
mL penicillin in an incubator at 37 °C and 5% CO,. Then,
20 pM N-methyl-N’-nitro-N-nitrosoguanidine (MNNG)
and 100 pM chenodeoxycholic acid (CDCA) were added
to GES-1 cells for 24 h to establish an inflammatory and
intestinal metaplasia model of the gastric mucosa.

Cell proliferation assay

First, cells were seeded in a 96-well microplate (6000
cells/well, 100 pL). Then, cells were routinely incubated
for 24 h in a humidified incubator. After 24 h of pre-
incubation, the medium was aspirated and exchanged
containing celecoxib (100 uM) and/or quercetin (140 uM
in MNNG-GES-1 cells, 150 uM in CDCA-GES-1 cells).
Cell viability was measured using the Cell Counting
Kit-8 (CCK-8) after 24 h incubation. Cells were seeded in
96-well plates, 10 pL. CCK-8 solution was added to each
well, and incubated at 37 °C. The optical density (OD)
value of each well was measured at 450 nm.

Enzyme-Linked Immunosorbent Assay (ELISA)

After drug intervention for 24 h, cells supernatants were
collected to detect the expression of TNF-a, IL-1p, IL-6
(pro-inflammatory cytokines), IL-4 and IL-10 (anti-
inflammatory cytokines) by ELISA kits from Beyotime
(Shanghai, China) following the manufacturer’s instruc-
tions. Similarly, cell lysate were collected to detect the
expression of KLF4, MUC2 and VIL1(biomarkers of
PLGC) by ELISA kits. Each well received 100 pL pre-
pared standard. The whole plate was sealed with a plate
sealing membrane and incubated at 4 “C overnight. The
prepared 1 X wash solution was added to the plate washer,
washed four times, and 300 pL wash solution was added
to each well. Moreover, 100 pL prepared detection anti-
body (biotin-labeled antibody) was added to each well
and incubated at room temperature for 1 h. Next, 100 pL
HRP-streptavidin was added to each well and incubated
at room temperature for 45 min. Then, 100 yuL. TMB
chromogenic solution was added to each well and incu-
bated at room temperature in the dark for 30 min. Finally,
50 pL of termination solution was added to each well and
immediately read at 450 nm.

RT-qPCR

Total RNA from cells was isolated with the TRIzol rea-
gent (Invitrogen, CA, USA) following the manufac-
turer’s instructions. One pg of total RNA was reverse
transcribed using PrimeScript RT Master Mix Kit
(TaKaRa Bio Inc., Kusatsu, Japan). Real-time PCR was
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performed on the ¢cDNA using SYBR Green PCR Kit
(TaKaRa Bio Inc.). GAPDH mRNA was used as the
endogenous control. Primers are described in Table S1.

Alkaline phosphatase (ALP) activity measurement

Cells were seeded in 12-well microplates at a density of
1x10° cells/mL and treated with celecoxib (100 uM) or
quercetin (140 pM in MNNG-GES-1 cells, 150 pM in
CDCA-GES-1 cells) for 24 h before being assayed for
ALP activity. After drug intervention for 24 h, cells were
dissolved with non-denatured cell lysate to detect the
ALP activity at 360/450 nm by QuantiFluoTM Alkaline
Phosphatase Assay Kit (California, USA) following the
manufacturer’s instructions.

Cell apoptosis assay

Cell apoptosis kits were purchased from Beyotime
(Shanghai, China), and the experiment was conducted
following the manufacturer’s instructions. Cells were
centrifuged at approximately 1,000 g for 3—-5 min and
resuspended in phosphate-buffered saline. Next, 50,000
100,000 suspended cells were centrifuged at 1,000 g
for 5 min. After discarding the supernatants, Annexin
V-FITC binding solution (195 uL) was added to resus-
pend the cells gently. Next, Annexin V-FITC (5 pL) and
propyl iodide staining solution (10 uL) were added and
mixed. The solution was incubated at room temperature
(20-25 C) for 10-20 min in the dark and analyzed using
a CytoFLEX S flow cytometer (Beckman Coulter, CA,
USA).

Statistical analysis

The mean tstandard deviation was used to express all
data, which were subjected to normality distribution
before statistical analysis. In this study, there were at least
three samples in each group. Statistical analysis was con-
ducted using SPSS version 24.0 (IBM Corp., Armonk,
NY, USA). Images were plotted using GraphPad Prism
8.0 (GraphPad Software Inc., San Diego, CA, USA). Stu-
dent’s t-test and analysis of variance (ANOVA) were per-
formed for comparisons between groups. P-values <0.05
denoted statistically significant differences.

Results

Active ingredients and targets of JQH

We obtained 51 active ingredients and 246 potential tar-
gets of JQH in the TCMSP database based on our filter
condition (Table S2). The regulatory network between
ingredients and targets of JQH was constructed using
Cytoscape. The rectangles represent the potential tar-
gets, and the surrounding circle represents the active
ingredients of JQH. Especially the green, pink, yellow,
brown, and blue circles of Fig. 2 represent the active
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ingredients from Baizhilian, Zhike, Baizhu, Huangqi,
and Baihuasheshecao, respectively. The red triangle rep-
resents the active ingredients from more than two herbs
(Fig. 2).

Potential therapeutic targets for JQH

The GSE130823 dataset comprised 47 gastritis tissues, 31
IN samples, and 16 IGC samples. In the GSE130823 data-
set, 1473 DEGs were detected in the IN group (Fig. 3A
and Table S3) and 185 DEGs in the IGC group (Fig. 3B
and Table S4) compared to the gastritis group. Then, 121
intersecting genes were obtained from gastritis vs. IN
and gastritis vs. IGC subgroups (Fig. 4A). The GSE55696
dataset comprised 19 chronic gastritis tissues, 39 IN sam-
ples, and 19 EGC samples. In the GSE55696 dataset, 1699
DEGs were detected in the IN group (Fig. 3C and Table
S5) and 1870 DEGs in the EGC group (Fig. 3D and Table
$6) compared to the chronic gastritis group. Next, 1171
intersecting genes were obtained from chronic gastritis
vs. IN and chronic gastritis vs. EGC subgroups (Fig. 4B).
We found 1, 43, 1, 6226 and 20 therapeutic targets in
OMIM, TTD, DrugBank, Genecard, and PharmGkb
databases, respectively (Fig. 4C). A total of 7102 thera-
peutic targets were obtained by combining the targets
from GEO and online databases (Fig. 4C). To identify
the potential therapeutic targets for JQH, we intersected
the 7102 targets with the targets of all active ingredients
of JQH and obtained 214 repeated targets (Fig. 4D and
Table S7). The regulatory network of 51 active ingredi-
ents and 214 therapeutic targets is presented in Fig. 5.

GO and KEGG enrichment analysis of therapeutic targets
To explore the potential mechanisms of JQH in treating
gastric inflammation-cancer transformation, we con-
ducted GO and KEGG enrichment analysis of the 214
therapeutic targets using R software. For GO annotation,
the genes were enriched in response to lipolysaccha-
ride, cellular response to drugs, and response to oxida-
tive stress in Biological Process (BP); receptor complex,
protein kinase complex and cyclin —dependent protein
kinase holoenzyme complex in Cellular Components
(CC); and nuclear receptor activity, phosphatase bind-
ing, and cofactor binding in Molecular Function (MF)
(Fig. 6A). The KEGG pathways showed that the targets
were enriched in JAK-STAT, Wnt, p53 and VEGF signal-
ing pathways (Fig. 6B).

PPI network and identification of core genes

The PPI network of the 214 therapeutic targets was plot-
ted using Cytoscape. The network has 214 nodes and
4046 edges in this regulatory network (Fig. 6C). The PPI
network was further analyzed by the CytoNCA tool in
Cytoscape to identify the core genes based on specific
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Fig. 2 Regulatory network of active ingredients and targets of JOH

parameters (Betweenness, Closeness, Eigenvector, and
LAC)>median value, respectively. A sub-network was
obtained from the genes with Betweenness >71.42, Close-
ness>0.51, Eigenvector>0.05, and LAC>38.21(Fig. 6D).
Similarly, the genes with Betweenness, Closeness, Eigen-
vector, and LAC > median value in the subnetwork were
subjected to further analysis using the same methods.
The core network comprised 32 genes with Between-
ness>15.66, Closeness>0.74, Eigenvector>0.12, and
LAC>73.58 (Fig. 6E). These 32 genes might be the poten-
tial core targets of JQH in treating gastric inflammation-
cancer transformation.

Molecular docking

Furthermore, we conducted the molecular dock-
ing of several genes related to inflammation-cancer
transformation with quercetin in JQH. Four ingre-
dient-target pairs were analyzed: quercetin-AKT1,
quercetin-EGFR, quercetin-HIF1A, and quercetin-
IL6R. The lowest binding energies of these com-
pounds with their targets are presented in Fig. 7 and
Table S7. The interactions between ligand and target
proteins is shown in Table S8. All these results showed
quercetin mostly interacted with AKT1, EGFR, HIF1A
and IL6R.
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Fig. 3 Identification of DEGs related to gastric inflammation-cancer transformation in GSE130823 and GSE55696 datasets. Volcano plot of DEGs
and heatmap of the top 20 upregulated and downregulated genes in gastritis vs. IN groups (A) and gastritis vs. IGC groups (B) in the GSE130823
dataset. Volcano plot of DEGs and heatmap of the top 20 upregulated and downregulated genes in chronic gastritis vs. IN groups (C) and chronic

gastritis vs. EGC groups (D) in the GSE55696 dataset

Core JQH ingredients

By intersecting the targets of active JQH ingredients with
the 214 therapeutic targets, we determined that querce-
tin might be the core ingredient of JQH in the treat-
ment of gastric inflammation-cancer transformation. We
found 126 overlapped targets of quercetin and the poten-
tial therapeutic targets of gastric inflammation-cancer
transformation (Fig. 8A and Table S9). The PPI analysis
showed that the top 32 core genes were almost identical
to those of JQH (Fig. 8B). GO annotation showed that
the higher repetition rate of quercetin and JQH in BP, CC
and MF items (Fig. 8C). The KEGG analysis showed that
the repetition rate of quercetin and JQH pathways were
nearly 90%, including JAK-STAT, Wnt, p53 and VEGF
signaling pathways (Fig. 8D).

Validation with in vitro experiments

Furthermore, we found that quercetin was the active
ingredient of JQH using LC-Q-TOF-MS and GC-
MS [12]. Therefore, various functional experiments
were conducted to validate the network pharmacol-
ogy results. GES-1 cells were treated with MNNG and
CDCA to construct an inflammatory [13] and intestinal
metaplasia [14] cell model. Then, we detected the effect
of quercetin on the proliferation of MNNG-GES-1 and
CDCA-GES-1 cells in vitro. Quercetin inhibited cells

proliferation with an ICy, of about 140 uM (Fig. 9A
and B). MNNG was used to construct an inflamma-
tory cell model, and specific inflammatory cytokines
in cell supernatant were analyzed by ELISA. After
quercetin treatment, TNF-a, IL-1f, and IL-6 levels sig-
nificantly decreased compared to the model group in
MNNG-GES-1 cells (Ppypo<0.01, Py 3<0.001, Py
6<0.001; Fig. 9C), and IL-4 and IL-10 levels significantly
increased compared to the model group in MNNG-
GES-1 cells (P} ,<0.001, Py 4,<0.001; Fig. 9D). We
also investigated whether quercetin treatment affected
MNNG-GES-1 cell differentiation by detecting ALP
activity. ALP is often positive in GC cells and negative
in normal gastric cells [15]. ALP activity significantly
decreased after quercetin treatment (P<0.01; Fig. 9E),
inducing the differentiation of GC cells. Moreover, we
conducted flow cytometry analysis to investigate cell
apoptosis after quercetin intervention. The querce-
tin intervention significantly promoted apoptosis of
MNNG-GES-1 cells (P <0.001; Fig. 9K).

Moreover, we found that quercetin inhibited CDCA-
GES-1 cell proliferation with an ICg, of about 150 uM
(Fig. 9F and G). Then, we conducted RT-qPCR to inves-
tigate the mRNA expression of several intestinal markers
after quercetin intervention. The quercetin intervention
significantly reduced mRNA (Py; r,<0.001, Py, <0.001,
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Fig. 5 Regulatory network of 150 potential therapeutic targets and corresponding active ingredients

Py11<0.001; Fig. 9H) and protein level (Pyp,<0.001, CDCA-GES-1 cells (P<0.01; Fig. 9]). The flow cytometry
Py <0.001, Py ;<0.001; Fig. 9I) of KLF4, MUC2, analysis showed that quercetin intervention significantly
and VIL1 in CDCA-GES-1 cells. Similarly, after querce- promoted the apoptosis of CDCA-GES-1 cells (P<0.001;
tin treatment, ALP activity significantly decreased in  Fig. 9K).
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Fig. 7 Molecular docking of core targets with quercetin: quercetin to AKT1 (A), quercetin to EGFR (B), quercetin to HIF1A (C), and quercetin to IL6R
(D
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Discussion

JianPi QingRe HuaYu, a frequently-used Traditional
Chinese Medicine, is often used for treatment of CAG
and precancerous lesions of gastric cancer (PLGC) in
clinic [7]. Clinical and animal studies have been con-
ducted to investigate the correlation between JQH
and CAG or PLGC. Our clinical studies showed that
JQH significantly improved mental and digestive func-
tion and reduced the inflammatory level, atrophy, and
intestinal metaplasia of CAG patients [8]. JQH can also
reduce the intestinal metaplasia and atypical hyper-
plasia of PLGC patients [16]. Our animal experiments
showed that JQH could improve the ultrastructure of
chief and parietal cells of the gastric mucosa to a cer-
tain extent [9]. However, examining the features of
multi-ingredients and targets of TCM formulations
is challenging. Nevertheless, network pharmacology
allows the study of the molecular features of TCM
formulations.

Herein, we obtained 214 potential therapeutic targets
by intersecting JQH and gastric inflammation-cancer
transformation targets. The KEGG enrichment analy-
sis showed that the potential mechanisms of JQH in
the treatment of gastric inflammation-cancer transfor-
mation might be related to JAK-STAT, Wnt, p53 and
VEGF signaling pathways. STAT3, a protein composed
of 770 amino acids, plays a crucial role in intracellu-
lar signal transduction [17]. STAT3 signaling pathway
is a "bridge" between inflammation and cancer, and is
closely related to "inflammation-cancer” transformation
[17]. Zhang et al. [18] found that TRIM27 mediated the
activation of STAT3 through retromer-positive struc-
tures and promoted colitis cancer. Long non-coding
RNA (IncRNA) FAM64A promotes Thl7 differentia-
tion and colitis-related tumor formation by positively
regulating STAT3 activity [19]. Zhang et al. found [20]
that CKLF1 promotes inflammatory mediated hepa-
tocellular carcinoma formation by activating the IL6/
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Fig. 9 Quercetin inhibited inflammation and intestinal metaplasia levels in MNNG and CDCA-induced GES-1 cells. A ICs, of MNNG-GES-1 cells
after quercetin treatment for 24 h. B Cell viability of MNNG-GES-1 cells after quercetin treatment for 24 h in CCK-8 assay. C TNF-q, IL-13, and IL-6
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in CDCA-GES-1 cells after quercetin treatment for 24 h by gPCR. I MUC2, and VIL1 expression of CDCA-GES-1 cells after quercetin treatment

for 24 h by ELISA. J ALP activity of CDCA-GES-1 cells after quercetin treatment for 24h. Apoptosis of (K) MNNG-GES-1 and (L) CDCA-GES-1 cells
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STAT3 signaling pathway, and can block adriamycin
induced apoptosis. Anther study found [21] STAT3
signaling, mediated by TFF1 silencing, promotes gas-
tric inflammation-cancer transformation. Activation
of Wnt is highly correlated with gastric inflammation-
cancer transformation. For examples, activation of
Wnt/B-catenin signaling pathway promotes epithelial
mesenchymal transition of MNNG-GES-1 cells and
gastric precancerous lesions in rats [22]. Wnt activa-
tion also accelerate the progression of atrophic gastri-
tis, and TCM may inhibit the these effection [23, 24].

The correlation between the P53 pathway and gastritis
or GC has also been explored. P53 can mediate apop-
totic and gastric carcinogenesis by targeting EPSIN3
[25]. P53 degradation, induced by USF1 defect, accel-
erates gastric carcinogenesis when rats are infected by
Helicobacter pylori [26]. VEGF is a subfamily of growth
factors, specifically belonging to the platelet-derived
growth factor (PDGF) family of cystine node growth
factors. Activation of HIF-1a/VEGF angiogenesis path-
way promotes the development of MNNG-induced
atrophic gastritis [27].
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Subsequently, we identified 32 core genes by PPI and
CytoNCA in Cytoscape. Most genes were significantly
correlated with gastric inflammation-cancer transforma-
tion, such as AKT1, EGFR, and MYC. For example, Akt
can promote gastric tumorigenesis by causing PTEN
deficiency [28]. AKT1, suppressed by RUNXS3, inhib-
its gastric tumorigenesis in GC [29]. EGFR methylation
might promote the transformation of chronic gastritis
into gastric carcinoma [30]. Additionally, exosome-deliv-
ered EGFR promoter liver metastasis by regulating the
liver microenvironment in GC [31]. Another study found
[32] that EGFR degradation, induced by CMTM3, inhib-
ited GC tumorigenesis by enhancing Rab5 activity. MYC,
a classic oncogene, is significantly correlated with gastric
inflammation-cancer transformation. Zheng et al. [33]
found that c-MYC upregulation, induced by CHAF1A
and TCF4, promotes gastric carcinogenesis. Besides,
c-Myc upregulation, caused by microRNA-10b/CSMD1
axis activation, promotes the inflammation-carcinogene-
sis of GC [34].

Finally, the molecular docking and core ingredients
analysis showed that quercetin was the core ingredient
of JQH and bound well with several inflammation-cancer
targets, including AKT1, EGFR, HIF1A, and IL6A. Our
validated experiments indicated that quercetin inhibited
cell proliferation, promoted cell apoptosis, and decreased
inflammation and intestinal metaplasia levels in cell mod-
els of inflammation and intestinal metaplasia in vitro.
Additionally, Zhang et al. [35] found that quercetin can
ameliorate gastric inflammation by regulating p38MAPK
and BCL-2 expression. Hsieh et al. demonstrated that
quercetin exerts anti-inflammatory effects by inhibit-
ing the TNF/MMP9 axis in GES-1 cells [36]. Yu et al.
found [37] that quercetin can inhibit the IRF8/IFN-y axis,
reduce gastric inflammation, and enhance gastric secre-
tory function, improving CAG induced by Hp infection.
Another study [38] found that quercetin induced GC cell
apoptosis and exerted potential anti-gastric cancer effi-
cacy. Moreover, quercetin enhances the efficacy of other
anti-cancer drugs in vitro and in vivo for GC [39].

However, our current study also has some limitations.
First, some compounds of JQH were not well investi-
gated, and we only explored the function of quercetin on
gastric inflammation-cancer transformation. Then, we
did not investigate the effects of JQH and its compounds
on gastric inflammation-cancer transformation in animal
experiments. We will conduct further experiments to
validate the above mechanisms of JQH or its compounds.

In conclusion, we elucidated the potential molecu-
lar mechanisms of JQH in treating gastric inflam-
mation-cancer transformation using network
pharmacology, bioinformatics, and in vitro experiments
for validation. Moreover, quercetin might be one of the
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active ingredients of JQH that exerted drug efficacy in
gastric inflammation-cancer transformation. We pro-
vided robust evidence for the clinical application of JQH
in gastric inflammation-cancer transformation, but fur-
ther in vivo experiments are needed to validate these
findings.
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