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Abstract

Background With fast rising incidence, papillary thyroid carcinoma (PTC) is the most common head and neck cancer.
Parthenolide, isolated from traditional Chinese medicine, inhibits various cancer cells, including PTC cells. The aim was
to investigate the lipid profile and lipid changes of PTC cells when treated with parthenolide.

Methods Comprehensive lipidomic analysis of parthenolide treated PTC cells was conducted using a UHPLC/Q-TOF-
MS platform, and the changed lipid profile and specific altered lipid species were explored. Network pharmacology
and molecular docking were performed to show the associations among parthenolide, changed lipid species, and
potential target genes.

Results With high stability and reproducibility, a total of 34 lipid classes and 1736 lipid species were identified. Lipid
class analysis indicated that parthenolide treated PTC cells contained higher levels of fatty acid (FA), cholesterol ester
(ChE), simple glc series 3 (CerG3) and lysophosphatidylglycerol (LPG), lower levels of zymosterol (ZyE) and Monoga-
lactosyldiacylglycerol (MGDG) than controlled ones, but with no significant differences. Several specific lipid species
were changed significantly in PTC cells treated by parthenolide, including the increasing of phosphatidylcholine (PC)
(12:0e/16:0), PC (18:0/20:4), CerG3 (d18:1/24:1), lysophosphatidylethanolamine (LPE) (18:0), phosphatidylinositol (PI)
(19:0/20:4), lysophosphatidylcholine (LPC) (28:0), ChE (22:6), and the decreasing of phosphatidylethanolamine (PE)
(16:1/17:0), PC (34:1) and PC (16:0p/18:0). Four key targets (PLA2G4A, LCAT, LRAT, and PLA2G2A) were discovered when
combining network pharmacology and lipidomics. Among them, PLA2G2A and PLA2G4A were able to bind with
parthenolide confirmed by molecular docking.

Conclusions The changed lipid profile and several significantly altered lipid species of parthenolide treated PTC cells
were observed. These altered lipid species, such as PC (34:1), and PC (16:0p/18:0), may be involved in the antitumor
mechanisms of parthenolide. PLA2G2A and PLA2G4A may play key roles when parthenolide treated PTC cells.

Keywords Lipidomics, Network pharmacology, Parthenolide, Phosphatidylcholine, Thyroid cancer

*Le-Tian Huang and Tie-Jun Li contributed equally to this work and share first
authorship.

*Correspondence:

Yi-Bing Wang

ybwang@cmu.edu.cn

Jia-He Wang

wangjh1@sj-hospital.org

Full list of author information is available at the end of the article

©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12906-023-03944-7&domain=pdf

Huang et al. BMC Complementary Medicine and Therapies

Introduction

Thyroid carcinoma is the most frequent type of head and
neck cancer, with an incidence rate among women that is
three times greater than that among men, accounting for
around 5% of cancer cases reported among women [1].
Papillary thyroid carcinoma (PTC) is the most common
pathologic subtype, comprising 70-80% of all thyroid
cancers [2], and has a relatively favourable prognosis,
with a 90% 10-year survival rate [3]. However, with the
global incidence of PTC rising rapidly, an increasing
number of these patients are unable to be controlled due
to distant metastases [1], making it imperative to explore
deeper into its pathogenesis and to develop better treat-
ments, with the aim of improving the overall prognosis of
thyroid cancer.

Parthenolide is a sesquiterpene lactone, which is iso-
lated and purified from traditional herbal medicine
feverfew (Tanacetum parthenium). It has been widely
utilized for its anti-inflammatory and antioxidant prop-
erties, with many studies demonstrating its effectiveness
in treating headaches, fever, and rheumatoid arthritis
[4, 5]. In recent years, numerous studies have explored
its potential in inhibiting the growth of certain cancer
cells, such as those found in breast, lung, and colorectal
cancers [6-8]. The antitumor effects of parthenolide are
thought to be due to its ability to inhibit signal transducer
and activator of transcription 3 (STAT3) and nuclear fac-
tor kB (NF-«kB), resulting in epithelial-mesenchymal tran-
sition (EMT) and other processes [9-11].

A recent study from our team has revealed that par-
thenolide can promote apoptosis of PTC cells in a con-
centration-dependent manner [5]. To investigate the
pharmacological effects of parthenolide on PTC cells,
metabolomics were utilized and it was observed that
these metabolites were mainly involved in the lipid
metabolism, tricarboxylic acid cycle, choline metabolism,
and amino acid metabolism. These findings indicate that
parthenolide can inhibit the growth and proliferation of
PTC cells by enhancing oxidative stress response and
metabolic imbalance, particularly in terms of amino acid
and lipid changes [5, 12]. Furthermore, we demonstrated
that parthenolide can lead to proteomic differences in
PTC cells (BCPAP cells) [13].

Lipids play a pivotal role in cell membrane structure,
cell differentiation, proliferation, and metabolism regula-
tion. Additionally, aberrations in lipid biosynthesis and
metabolism have been linked to cancer cell invasiveness
and metastasis. Consequently, it is essential to further
investigate the alterations in lipid metabolism that occur
during malignancy and treatment [14—17].

In recent years, the development of lipidomics has been
accelerated by advances in mass spectrometry. Several
studies have proposed that certain aberrant lipid classes
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or species may be novel biomarkers for tumors; for exam-
ple, glycerolipids have been used to detect early-stage
breast cancer [18], and a combination of phosphatidyl-
choline (PC) (14:0/18:2), phosphatidylethanolamine (PE)
(16:1e/18:2), and PE (15:1e/22:6) have been used to iden-
tify early stage cervical cancer [19]. After exposing endo-
crine disruptors to prostate cancer cells, some significant
lipid changes were identified, with vital lipid-metabolism
pathways being involved [20]. Thus, lipidomic analysis
can not only identify potential biomarkers and therapeu-
tic targets for cancer, but also help understand the patho-
genesis of cancer and the mechanism of antitumor drugs.

The present study utilized network pharmacology and
molecular docking to analyze the potential targets of
parthenolide in PTC cells, and to further investigate the
upstream molecular mechanisms and drug-binding affin-
ity of parthenolide. Specifically, network pharmacology
was used to identify the targets that parthenolide acted
on, and the proteins that modulated the lipid metabolites
identified from lipidomics [21, 22]. Additionally, molecu-
lar docking was employed to predict the binding strength
between parthenolide and its targets at the spatial level
[23]. The above methods will be used to initially explore
the key targets of parthenolide in PTC cells.

In this research, an untargeted lipidomic analysis was
performed using chemometric analysis tools in order to
explore the lipid profile and changes of PTC cells treated
with parthenolide. Additionally, network pharmacol-
ogy and molecular docking were conducted to explore
the potential targets of parthenolide against PTC. The
aim of this study was to explore the lipid profile and lipid
changes and to identify the potential targets of parthe-
nolide against PTC.

Materials and methods

Reagents

Parthenolide was purchased from Absin (Shanghai,
China), and human PTC cell line BCPAP was purchased
from Shanghai Institutes for Biological Sciences, China.
RPMI 1640 medium was purchased from Corning, USA.
Fetal bovine serum was purchased from Shuangru Biol-
ogy ScienceandTechnology Co.Ltd. HPLC-grade formic
acid and HPLC-grade ammonium formates were pur-
chased from Sigma. MS-grade acetonitrile, MS-grade
methanol, and HPLC-grade 2-propanol were purchased
from Thermo Fisher.

Cell culture and treatment

BCPAP containing 10% fetal bovine serum, 100 U/mL
streptomycin, and 100 U/ml penicillin, was maintained
in a complete RPMI 1640 medium. BCPAP were cul-
tured in an environment of 5% CO,, 37 °C. Sufficient cell
samples were divided into 12 groups. According to the
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appropriate concentration (IC50) explored in the pre-
liminary experiment [13], parthenolide was dissolved in
0.05% DMSO and diluted with PBS to 10 uM and was
added to each treatment group (n=6) for 24 h, and 6
control groups were added with the same amount of
complete culture medium.

Lipid extraction and sample preparation

The samples were homogenized with 200 pL water and
240 pL methanol. Then 800 pL of MTBE was added and
the mixture was managed by ultrasound at 4 degree
centigrade for 30 min at room temperature. Finally, the
solution was centrifuged at 14,000 rpm for 15 min at 10
degree centigrade to obtain the supernatants and dried
with nitrogen.

LC-MS/MS method for lipid analysis

Reverse phase chromatography was used for liquid chro-
matography separation with a column (Waters, CSH
C18, 1.7 pm, 2.1 mm x 100 mm). The lipid extracts were
re-dissolved in 200 pL 90% isopropanol /acetonitrile,
then centrifuged at 14,000 rpm at 10 degree centigrade
for 15 min, at last 3 pL of each sample was injected onto
the CSH C18 column. Solvent A contained acetoni-
trile—water (6:4, v/v) with 0.1 mm ammonium formate
and 0.1% formic acid. Solvent B contained acetonitrile—
isopropanol (1:9, v/v) with 0.1 mm ammonium formate
and 0.1% formic acid. With a flow rate of 300 pL/min,
30% solvent B was maintained for 2 min. After that, sol-
vent B increases to 100% in 23 min, and then it was bal-
anced at 5% for 10 min. Mass spectra was performed
on a Q-Exactive Plus in positive and negative mode,
respectively. ESI parameters were adopted for all meas-
urements as follows: heater temperature, 300 degree cen-
tigrade; sweep gas flow rate 1 arb; aux gas flow rate 15
arb; sheath gas flow rate 45 arb; spray voltage 3.0 kV and
2.5 kV for positive and negative electrospray ionization
mode, respectively; S-Lens RF Level 50% and 60% for
positive and negative, respectively; and the scan ranges
200-1800 m/z and 250-1800 m/z for positive and nega-
tive, respectively.

Based on MS/MS math, LipidSearch was used for the
identification of lipid species. LipidSearch contains more
than 1,500,000 fragment ions and more than 30 lipid
classes in the database. Both mass tolerance for precursor
and fragment were set to 5 ppm.

Pharmacology network construction

In order to discover the related disease targets, the
keyword “papillary thyroid carcinoma” was searched
from OMIM Database (http://omim.org/), GeneCards
Database (http://www.genecards.org/), and DrugBank
(http://go.drugbank.com/). In addition, the targets of
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parthenolide were retrieved from SEA search server
(http://sea.cbkslab.org/), STITCH (http://stitch.embl.
de/), SwissTargetPrediction (http://swisstargetprediction.
ch/), and PharmMapper server (http://www.lilab-ecust.
cn/pharmmapper/). The intersection of the above tar-
gets was considered the potential targets of parthenolide
against PTC. Afterward, the standard target names were
obtained from UniProtKB (http://www.uniprot.org/). The
lipid targets were generated from the differential lipid
metabolites by using MetScape in Cytoscape 3.8.0 soft-
ware. Then, a protein—protein interaction (PPI) network
was presented by STRING 11.5 (http://cn.string-db.org/)
to show the link between these predicted targets and
lipid targets. Hub targets were obtained via CytoHubba
in Cytoscape. As a result, the compound-targets-metab-
olites network was constructed containing relationships
among parthenolide, relevant target genes, and lipid
metabolites.

Molecular docking

The three-dimensional structure of parthenolide was
acquired from PubChem Compound (PubChem CID:
7,251,185). The structure was preprocessed by adding
hydrogen atoms and extracting water molecules. The
protein structures of the hub targets were obtained from
PDB database (http://www.rcsb.org/). Four protein tar-
gets were studied: PLA2G4A (PDB ID: 1RLW), LCAT
(PDB ID: 4X90), LRAT (PDB ID: 4DPZ), and PLA2G2A
(PDB ID: 3U8I). Then, the molecular docking was per-
formed using LibDock with the default docking param-
eters, and the results were sequenced according to the
LibDockScore of each protein.

Statistical analysis

The data extracted by LipidSearch were analyzed, includ-
ing univariate statistical analysis, multivariate statistical
analysis, as well as hierarchical clustering and correlation
analysis. Student’s t-test and multiple of variation analy-
sis were used for univariate statistical analysis. The lipid
profiles showing differences with lower than 0.67 fold
decrease or more than 1.5 fold increase along with p
value<0.05 were supposed to be significantly different
lipids among parthenolide treated cells. Multivariate sta-
tistical analysis included un-supervised principal com-
ponent analysis (PCA), supervised partial least squares
discrimination analysis (PLS-DA), as well as orthogonal
partial least squares discrimination analysis (OPLS-DA).
Discriminant lipids were determined by the variable
importance in the projection (VIP) parameter (VIP>1,)
and p value (P value<0.05). Lipid Pathway Enrichment
Analysis (LIPEA) software was used to perform the path-
way enrichment analysis of metabolites [24].
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Results

Lipidomic analysis showed high stability

and reproducibility

To evaluate the stability and repeatability of the experi-
ment, each group of samples was equally mixed into the
quality control sample (QC). The results of QC UHPLC-
obitrap MS base peak were compared with overlapping
spectra, which showed that the response intensity over-
lapped significantly, as well as the retention time of chro-
matographic peaks, indicating that this experiment was
highly reproducible. The results of pearson correlation
analysis showed that the coefficient between QC samples
is above 0.9, indicating good reproducibility. All QC and
experimental samples were extracted and PCA analy-
sis was performed after Pareto-scaling. The QC samples
were closely clustered, indicating that lipidomic analysis
was highly reproducible (Additional file 1).

Characterization of lipid composition
The data obtained from positive- and negative-ion modes
were analyzed qualitatively and quantitatively by using
the LipidSearch software. In total, 34 lipid classes and
1736 lipid species were identified. The specific results are
presented in Additional file 2. Figure 1 shows the lipid
class identified in this study and the number of lipid class.
Lipid class analysis indicated that parthenolide treated
BCPAP PTC cells contained higher levels of fatty acid
(FA), cholesterol ester (ChE), simple glc series 3 (CerG3)
and lysophosphatidylglycerol (LPG), lower levels of
zymosterol (ZyE) and monogalactosyldiacylglycerol
(MGDG) than controlled ones, but with no significant
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differences. The levels of other lipid classes were similar
in both groups. (Fig. 2, Additional file 3).

Parthenolide markedly altered the lipid profile

Visible separation was not identified clearly between the
two groups from the score plot of PCA (Fig. 3A). PLS-DA
and OPLS-DA model (Fig. 3B and C), however, showed
a complete separation of detected ions in parthenolide
treated groups from control groups, with a R2X (cum)-
value of 0.384, a R2Y (cum)-value of 0.907, a Q2 (cum)-
value of 0.44, and with a R2X (cum)-value of 0.384, a R2Y
(cum)-value of 0.907, a Q2 (cum)-value of 0.509, respec-
tively. Permutation tests were performed for avoiding
overfitting (Fig. 3D and E).

The VIP obtained by the OPLS-DA model can be used
to measure the impact strength of various lipid species
on the discrimination of each group of samples. Univari-
ate analysis can be used to visualize the significance of
lipid species changes between the two groups (Fig. 4A),
thus helping us to screen potential marker lipid species
based on VIP and P-values (P-value<0. 05 and VIP >1).
A total of 10 lipid species were selected and listed in
Table 1, including PC (12:0e/16:0), PC (18:0/20:4), CerG3
(d18:1/24:1), lysophosphatidylethanolamine (LPE) (18:0),
phosphatidylinositol (PI) (19:0/20:4), lysophosphatidyl-
choline (LPC) (28:0), ChE (22:6), and the decreasing of
PE (16:1/17:0), PC (34:1) and PC (16:0p/18:0).

In order to assess the rationality of different lipid spe-
cies, and to show the association between the samples
and the expression patterns of lipid species in different
samples more comprehensively, a hierarchical clustering
(based on analysis of the Pearson correlation coefficients)
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Fig. 1 The lipid class and number identified in this study
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Fig. 3 AVisible separation was not identified clearly between the two groups from the score plot of principal component analysis (PCA). B Partial
least-squares determinant analysis (PLS-DA) showed a complete separation of detected ions in parthenolide treated groups from control groups
[R2X (cum)=10.384, R2Y (cum)=0.907, Q2 (cum)=0.44]. C Orthogonal projections to latent structures discriminant analysis (OPLS-DA) showed a
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Table 1 Ten significant changed lipid species of parthenolide treated papillary thyroid carcinoma cells

Lipidlon Class lonFormula CalMz RT-(min) Fold Change P-value VIP

PE(16:1/17:0)-H PE C38H73 08 N1 P1 7025079 10.2916 0.751478 0.0013 3.050149
PC(34:1)+H PC C42 H83 O8 N1 P1 760.5851 11.2935 0.516481 0.024864 2369579
LPC(28:0)+H LPC C36 H75 07 N1 P1 664.5276 9.12472 2341388 0.019202 2.103261
PC(18:0/20:4) +HCOO pPC C47 H85 O10 N1 P1 854.5917 10.46383 1488194 0.000975 1.749522
CerG3(d18:1/24:1)+H CerG3 C60H112018 N1 1134.787 1145426 1.507216 0.034294 1.248035
PC(12:0e/16:0) + HCOO pC C37H75 09 N1 P1 708.5185 9.155024 2497935 0.017275 1.236085
ChE(22:6) +NH4 ChE C49 H80 02 N1 7146184 15.11703 1.920327 0.021625 1.219279
PC(16:0p/18:0)+ Na pPC C42H84 O7 N1 P1 Nal 768.5878 10.90136 0.793529 0.043174 1.087524
LPE(18:0)-H LPE C23 H47 O7 N1 P1 480.3096 3.931845 1.398238 0.042449 1.079679
PI(19:0/20:4)-H PI C48 H84 013 NO P1 899.5655 9.793264 1.509611 0.035162 1.041106

CerG3 simple glc series 3, ChE Cholesterol ester, LPC Lysophosphatidylcholine, LPE Lysophosphatidylethanolamine, PC Phosphatidylcholine, PE
Phosphatidylethanolamine, P/ Phosphatidylinositol, VIP the variable importance in the projection

was performed to demonstrate the 10 lipid species
that have changed significantly. As shown in Fig. 4B, it
revealed that these significantly changed lipid species
formed a cluster, which means that they have similar
expression patterns and may have close relation during
the lipid metabolic process.

The correlation analysis was performed to obtain the
correlation degree between the significant lipid species,

and help measure the closeness of differences between
lipid classes and species in the lipid metabolic process,
further understand the relationship between lipid spe-
cies in the process of biological changes. In this study, the
correlation analysis of selected ten lipid species showed
significant positive correlations between LPE (18:0) and
PC (12:0e/16:0), ChE(22:6), and LPC (28:0), respectively,
between LPC (28:0) and PC (12:0e/16:0), and between
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CerG3(d18:1/24:1) and PI (19:0/20:4) (P<0.01, |r|>0.5,
Fig. 4C, Additional file 3). The significant negative cor-
relations were found between PC (18:0/20:4) and PC
(16:0p/18:0), as well as PC (18:0/20:4) and PE (16:1/17:0)
(P<0.01, |r|>0.5, Fig. 4C, Additional file 4).

Pathway enrichment analysis

LIPEA software was used to analyze the pathway enrich-
ment of metabolites. The results demonstrated that
glycerophospholipid was highly ranked (64%) and it was
closely related to a group of significant lipid species iden-
tified in this study after PTC cells treated with parthe-
nolide. Other pathways identified included ferroptosis
(27%), glycosylphosphatidylinositol—anchor biosynthesis
(18%), autophagy—other (18%), and autophagy—animal
(18%) (Table 2).

Network pharmacology analysis of parthenolide

against PTC

Based on the OMIM Database, GeneCards Database,
and DrugBank database, a total of 297 target genes were
related to PTC. There were 238 target proteins of parthe-
nolide based on the PharmMapper server, SEA search
server, STITCH, and SwissTargetPrediction. When these
selected genes were intersected, 14 potential targets of
parthenolide against PTC were obtained. Besides, the 6
differential lipid metabolites regulated by parthenolide
were introduced into MetScape in Cytoscape 3.8.0 soft-
ware, and a total of 51 lipid metabolite targets were
obtained.

Subsequently, the 51 lipid metabolite targets and
14 potential targets of parthenolide against PTC were
linked by using STRING 11.5 to establish the PPI net-
work (Fig. 5). Finally, the compound-targets-metabolites
network was constructed consisted of 72 nodes (par-
thenolide, 65 relevant target genes, and 6 lipid metabo-
lites) and 120 edges (Fig. 6). PLA2G4A, LCAT, LRAT,
and PLA2G2A were selected as the key targets in this

Table 2 Lipid Pathway Enrichment Analysis (LIPEA)
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network based on parameters including degree, between-
ness, closeness, and stress in this network (Table 3).

Molecular docking analysis of parthenolide binding

to predicted targets

We performed molecular docking studies to further
explore the interaction between parthenolide and pre-
dicted hub targets by using LibDock. The results proved
that parthenolide could be docked into PLA2G2A and
PLA2G4A, but not LCAT or LRAT. The docking analy-
sis of PLA2G2A showed that parthenolide made hydro-
gen-bonding interactions with LYS A:62 and VAL B:30
residues at the active site. The van der Waals interac-
tions included HIS A:6, GLY A:22, OLD A:47, GLY A:29,
PHE B:23, GLY B:22, GLY B:29, ALA B:18, and HIS
B:6 residues. The binding energy was 80.2222 between
PLA2G2A and parthenolide (Fig. 7A). The docking
analysis of PLA2G4A showed that parthenolide made
hydrogen-bonding interactions with SER A:110 residue.
The van der Waals interactions included ASP A:80, ASN
A:85, GLU A:84, GLN A:83, ASN A:82, THR A:108, LEU
A:136, LYS A:113, VAL A:114 and MET A:112 residues.
The binding energy of parthenolide and PLA2G4A was
75.6353 (Fig. 7B). These docking analysis results pre-
sented the high affinities between parthenolide and the
key targets, PLA2G2A and PLA2G4A.

Discussion

For the first time, to our knowledge, this study inves-
tigated the lipid profile and lipid changes of PTC cells
treated with parthenolide. We successfully identified 34
lipid classes and 1736 lipid species from PTC cells uti-
lyzing LC-MS/MS. Several specific lipid species were
found to have changed significantly in PTC cells treated
by parthenolide, while different lipid classes were
found in PTC cells treated by parthenolide, but with-
out significance. The results of this lipidomics study
were then further supplemented by network pharma-
cology to expand the mechanism of lipid metabolites

Pathway name Pathway Converted lipids ~ Converted lipids P-value Benjamin
lipids (number) (percentage) correction
Glycerophospholipid metabolism 26 7 63.64 0.0000 0.0000
Ferroptosis 1 3 27.27 0.0010 0.0043
Glycosylphosphatidylinositol—anchor biosynthesis 3 2 18.18 0.0011 0.0043
Autophagy—other 3 2 18.18 0.0011 0.0043
Autophagy—animal 4 2 18.18 0.0023 0.0068
Choline metabolism in cancer 5 2 18.18 0.0037 0.0093
Retrograde endocannabinoid signaling 8 2 18.18 0.0101 0.0217
Pathogenic Escherichia coli infection 1 1 9.09 0.0206 0.0386
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of parthenolide against PTC. Through combining net-
work pharmacology and lipidomics, four key targets
(PLA2G4A, LCAT, LRAT, and PLA2G2A) were identi-
fied, and PLA2G2A and PLA2G4A were further con-
firmed to be able to bind with parthenolide through
molecular docking.

A previous study demonstrated that parthenolide could
promote apoptosis of PTC cells [5]. Metabolomics analy-
sis revealed that the most important metabolic pathways
affected by parthenolide treatment were amino acid
metabolism and glycerophospholipid metabolism [5]. We
have previously demonstrated that parthenolide led to
proteomic differences in BCPAP cells [13]. Furthermore,
previous studies have suggested that lipid metabolism
is involved in the PTC progression [25, 26]. However,
the precise lipid profile and lipid changes of PTC cells
treated by parthenolide have not been fully elucidated. In
this study, we further provide evidence that most of the
top ten significant lipid species, such as PC, PE, LPC, PI
and LPE, belong to glycerphospholipid, which may be
involved in the mechanism of parthenolide in the treat-
ment of PTC. This data was further supported by the
results of an analysis of LIPEA, which showed a high level

of glycerphospholipid metabolism and a significant cor-
relation with the lipids identified in our study.

Former studies have shown that abnormal PC distribu-
tion may alter the microenvironment of the cellular lipid
membrane, resulting in the variation of membrane fluid-
ity and function [27, 28]. As a component of cell mem-
brane, PC is increased in rapidly growing cancer cells.
Abnormal distributions of PC have been observed in
areas of cancer, including lung, colorectal, breast, oral,
and gastric cancer [29, 30].

In recent years, the lipid composition of thyroid
cancer patients has undergone considerable changes,
which may play a key role in the pathogenesis of the
disease. [31]. Ishikawa et al. conducted a tissue lipi-
domic study in seven PTC patients compared to
non-cancerous tissues using imaging mass spectrom-
etry [15]. They demonstrated that PC (16:0/18:1), PC
(16:0/18:2) and sphingomyelin (SM) (d18:0/16:1) were
elevated significantly in PTC tissues [15]. Wojakowska
et al. also observed that multiple PC (32:0, 32:1, 34:1
and 36:3) and SM (34:1 and 36:1) concentrations in
three PTC patients were significantly higher compared
to the normal tissue [32]. Guo et al. highlighted that
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Fig. 6 The compound-target-metabolite network of parthenolide treated papillary thyroid carcinoma cells. (Red: Compound, Blue:
predicted-targets, Green: lipid metabolite targets, Yellow: lipid metabolites)

Table 3 The top 8 nodes based on degree, betweenness, closeness and stress

Rank Gene Name Degree Gene Name Betweenness Gene Name Closeness Gene Name Stress

1 PLA2G4A 4 PLA2G4A 243.89251 PLA2G2A 34.83333 PLA2G4A 1842

2 LCAT 3 LCAT 138.16667 PLA2G4A 335 LCAT 614

3 PLA2G2A 3 LRAT 33.16667 PLA2G12A 3066667 PLA2G2A 294

4 LRAT 2 PLA2G2A 4.10973 PLA2G2E 30.66667 LRAT 108

5 PLA2G2E 2 PLA2G12A 4.10973 PLA2G2D 30.66667 PLA2G2E 108

6 PLA2G2D 2 PLA2G2E 4.10973 PLA2G2F 30.66667 PLA2G2D 108

7 PLA2G2F 2 PLA2G2D 4.10973 LCAT 29.58333 PLA2G2F 108

8 PEMT 2 PLA2G2F 4.10973 LRAT 2791667 PEMT 108

PC (34:1) in both tissue and serum could effectively
distinguish between malignant thyroid cancer patients
and healthy individuals [33]. Therefore, PC may serve
as important lipid class associated with the pathogen-
esis of thyroid cancer. Besides, PE (16:1p, 18:0p, 36:1,
38:3, and 38:6) and LPE (16:0, 18:1, and 18:2) were
found to be markedly high in the plasma of thyroid
cancer patients when compared with healthy controls
[34]. Benesch et al. demonstrated that thyroid cancer
cell division can be stimulated by LPC [35]. Previously,

no studies examining the association of thyroid cancer
with PI, CerG3 or ChE had been conducted.

In our research, the significant difference of lipid class
was not found from PTC cells treated by parthenolide,
but several lipid species were changed significantly in
PTC cells, such as increased levels of LPE (18:0), LPC
(28:0), PC (12:0e/16:0) and PC (18:0/20:4), as well as
decreased levels of PE (16:1/17:0), PC (34:1) and PC
(16:0p/18:0). One of the mechanisms of parthenolide for
treating thyroid cancer may be achieved by lowering the
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Fig. 7 The binding mode of parthenolide and PLA2G2A (A) and PLA2G4A (B)

levels of PC (34:1) and PC (16:0), which have been found
to be diagnostic markers for thyroid cancer [15, 32, 33].

The two key targets, PLA2G2A and PLA2G4A, which
were discovered through network pharmacology and lipi-
domics and were subsequently confirmed via molecular
docking, may play a crucial role in the treatment of par-
thenolide against PTC. As family members of phospholi-
pase A2 (PLA2), PLA2G2A and PLA2G4A have a variety
of biological functions, including involvement in cell
signaling and inflammatory response [36, 37]. Further-
more, PLA2G2A and PLA2G4A have been implicated
in the pathogenesis of various cancers, such as gastric
cancer, colorectal cancer, and prostrate cancer [38—41].
Studies have also demonstrated that the expression of
the PLA2G2A gene in mice can be suppressed by thyroid
hormone [42, 43]. Nontheless, no studies have examined
the association of the two key genes and the pathogenesis
of PTC.

This study has some limitations. First, due to limited
time and funds, the roles of PLA2G2A and PLA2G4A in
the parthenolide-induced antitumor effect have not yet

been validated through more experiments. Second, the
sample size is relatively small, which may be related to
the unstable results of PLA and insignificant difference
in lipid classes between two groups. As we found altered
lipid profile and changes of PTC cells treated with par-
thenolide, as well as the key targets from network phar-
macology and molecular docking, it suggests that further
research should use a larger sample size and more in vitro
experiments.

Conclusion

This study is the first of its kind to report the lipid profile
and changes of PTC cells following treatment with par-
thenolide. We observed alteration in lipid species, such
as PC (34:1), and PC (16:0p/18:0). To better elucidate
the mechanisms by which this occurs, network pharma-
cology and molecular docking were employed to iden-
tify two key targets (PLA2G4A and PLA2G2A) that are
able to bind parthenolide. This research provides novel
insights into the underlying mechanisms of PTC, and
further exploration is warranted.
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