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Abstract 

Background: Muscle disuse results in loss of skeletal muscle mass and function. Hochu-ekki-to (TJ-41; Bu-Zhong-Yi-
Qi-Tang in Chinese) is an herbal medicinal formulation used to treat patients with frailty, fatigue and appetite loss. It 
has been suggested that two atrogenes, atrogin-1 and muscle Ring finger 1 (MuRF1), are ubiquitin ligases involved in 
disuse-induced muscle atrophy and that 5’ adenosine monophosphate-activated protein kinase (AMPK) is involved in 
skeletal muscle metabolism. Effects of TJ-41 on disuse-induced muscle atrophy are unclear.

Methods: We subjected differentiated C2C12 myotubes to serum starvation, then examined the effects of TJ-41 on 
atrogenes expression, AMPK activity and the morphology of the myotubes. Male C57BL/6J mice were subjected to 
tail-suspension to induce hindlimb atrophy. We administered TJ-41 by gavage to the control group and the tail-sus-
pended group, then examined the effects of TJ-41 on atrogene expression, AMPK activity, and the muscle weight.

Results: Serum starvation induced the expression of atrogin-1 and MuRF1 in C2C12 myotubes, and TJ-41 signifi-
cantly downregulated the expression of atrogin-1. Tail-suspension of the mice induced the expression of atrogin-1 
and MuRF1 in skeletal muscle as well as its muscle atrophy, whereas TJ-41 treatment significantly downregulated the 
expression of atrogin-1 and ameliorated the loss of the muscle weight. In addition, TJ-41 also activated AMPK and 
inactivated Akt and mTOR in skeletal muscle in vivo.

Conclusion: TJ-41 inhibited atrogenes in an Akt-independent manner as well as activating AMPK in skeletal muscles 
in vivo, further implying the therapeutic potential of TJ-41 against disuse-induced muscle atrophy and other atro-
genes-dependent atrophic conditions.
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Background
Muscle disuse is one cause of skeletal muscle mass and 
function loss. So far, no treatment methods have been 
established for disuse-induced muscle atrophy.

Atrogenes atrogin-1 and MuRF1 are ubiquitin ligases 
involved in muscle atrophy, and skeletal muscles of mice 
deficient in either of these genes are resistant to mus-
cle atrophy [1]. These atrogenes are upregulated during 
disuse-induced atrophy conditions, such as tail-suspen-
sion, denervation, and immobilization [2]. These genes 
are reported to be regulated by the phosphoinositide 
3-kinase (PI3K)/Akt/ mammalian target of rapamycin *Correspondence:  suogawa@m.u-tokyo.ac.jp
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(mTOR) pathway and forkhead box protein O (FoxO) 
transcriptional factors [3–5].

In addition, 5’ adenosine monophosphate-activated 
protein kinase (AMPK) has two kinds of effects on 
metabolism: the inhibition of anabolism to minimize 
ATP consumption and the stimulation of catabolism to 
stimulate ATP production [6], and it is involved in skel-
etal muscle metabolic control [7]. AMPK is activated by 
repeated muscle contraction and exercise.

Hochu-ekki-to (TJ-41; Bu-Zhong-Yi-Qi-Tang in Chi-
nese) is an herbal medicinal formulation that consists 
of ten types of single herbs (shown in Table 1) [8]. TJ-41 
is mainly used to treat elderly patients that experience 
frailty, fatigue, and loss of appetite clinically [9, 10].

Some studies have examined about the effects of herbal 
medicinal formulations on skeletal muscles. For example, 
Go-sha-jinki-gan ameliorates the loss of muscle mass in 
senescence-accelerated mice [11]. Other herbal medici-
nal formulations, such as Rikkunshito and Qing-Shu-
Yi-Qi-Tang ameliorated reductions in body weight and 
muscle weight in mice with cancer and cachexia [12]. A 
combination of Qing-Shu-Yi-Qi-Tang and Scutellaria 
baicalensis decreased the expressions of nuclear factor-
kappa B (NF-κB) and MuRF1 in the gastrocnemius mus-
cle of tumor-bearing mice [13].

It is known that TJ-41 has immunomodulatory and 
anti-inflammatory effects in  vitro and in  vivo studies 
[14–17]. TJ-41 ameliorated ultraviolet-B-induced oxi-
dative stress and skin dysfunction in hairless mice [18]. 
TJ-41 exerted anti-asthmatic effects by relieving air-
way hyper-responsiveness in a mouse model of aller-
gic asthma [19]. In clinical studies, the administration 
of TJ-41 significantly decreases serum TNF-α and IL-6 
levels in patients of chronic obstructive pulmonary dis-
ease [20, 21]. However, few studies have investigated 
the effects of TJ-41 on skeletal muscle. A study showed 
that TJ-41 downregulated nuclear receptor corepressor 

1 (NCoR1) expression, and induced muscle differen-
tiation and metabolism by regulating NCoR1associated 
gene expression in weightlessness-induced muscle atro-
phy [22]. TJ-41 also inhibited inflammation and oxida-
tive stress in the gastrocnemius muscles of amyotrophic 
lateral sclerosis model mice, and extended the survival 
of the mice [23]. TJ-41 ameliorated reductions in body 
weight and skeletal muscle weight in cachexic tumor-
bearing mice by inhibiting the production of IL-6 by host 
cells such as macrophages [24]. Atrogenes are implicated 
in the process of muscle atrophy in models of cachexia 
[25]. However, no study has examined the effects of TJ-41 
on atrogenes and AMPK activation.

In the study, we hypothesized that TJ-41 might possess 
therapeutic potential against disuse-induced muscle atro-
phy. We examined in vivo and in vitro effects of TJ-41 on 
atrogenes and AMPK regulation as well as related muscle 
atrophy, thereby focusing on its therapeutic basis against 
muscle atrophy. For in vivo analysis, tail-suspended mice 
were adopted as a disuse-induced muscle atrophy model.

Methods
Materials
Dulbecco’s modified essential medium (DMEM) was 
purchased from Nikken Bio Med Lab (Kyoto, Japan), fetal 
bovine serum (FBS) from Biowest (Nuaillé, France), horse 
serum and penicillin-streptomycin from Thermo Fisher 
Scientific (Waltham, MA, USA). Human insulin and 
the primary antibodies targeting β-actin and β-tubulin 
were purchased from Sigma-Aldrich Inc. (St. Louis, 
MO, USA). The primary antibodies targeting p-Akt, Akt, 
p-p70, p70, p-mTOR, mTOR, p-FoxO1, p-AMPK, and 
AMPK were purchased from Cell Signaling (Beverly, 
MA, USA). The secondary antibodies, anti-rabbit IgG, 
and anti-mouse IgG were purchased from GE Healthcare 
(Bucks, UK). The C2C12 cells were obtained from the 
American Type Culture Collection (Manassas, VA, USA).

The dried extract preparation of TJ-41 (lot no. 
2,140,041,010) was kindly provided by Tsumura & Co. 
(Tokyo, Japan). For in  vitro experiments, one gram of 
TJ-41 was sonicated in 10 mL of dimethyl sulfoxide 
(DMSO), centrifuged, and the supernatant was har-
vested and diluted with DMSO to the appropriate con-
centration. For in  vivo experiments, TJ-41 was mixed 
with water, sonicated, and diluted with water to a specific 
concentration.

In vitro experiment
The C2C12 cells, a murine myoblast cell line, were cul-
tured in DMEM supplemented with 10% FBS, 100 U/
mL penicillin, and 100 µg/mL streptomycin at 37 °C in a 
humidified atmosphere (5%  CO2 and 95% air).

Table 1 The ingredients of TJ-41

Herbs Weight

Ginseng Radix (roots of Panax ginseng) 4 g

Astragali Radix (roots of Astragalus membranaceus) 4 g

Atractylodis lanceae Rhizoma (rhizomes of Atractylodes lancea) 4 g

Bupleuri Radix (roots of Bupleurum falcatum) 2 g

Angelicae Radix (roots of Angelica acutiloba) 3 g

Cimicifugae Rhizoma (rhizomes of Cimicifuga simplex) 1 g

Aurantii Bobilis Pericarpium (pericarps of ripe fruits of Citrus 
unshiu)

2 g

Zingiberis Rhizoma (rhizomes of Zingiber officinale) 0.5 g

Zizyphi Fructus (fruits of Zizyphus jujube) 2 g

Glycyrrhizae Radix (roots of Glycyrrhiza uralensis) 1.5 g
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Myoblasts fuse into multinucleated fibers called 
myotubes, and matured myotubes form muscle fibers 
[26]. To examine the effects of TJ-41, therefore, we dif-
ferentiated C2C12 myoblast into myotubes in all the 
in  vitro experiments. When cell confluency reached 
80–90%, the medium was replaced with differentia-
tion medium consisting of DMEM supplemented with 
2% horse serum, 100 U/mL penicillin, and 100  µg/mL 
streptomycin. The differentiation medium (DM) was 
changed every 2 days. Four days later, the C2C12 cells 
differentiated into myotubes and were then used for the 
experiments.

Serum-free medium (FM) consisted of DMEM sup-
plemented with 2% 100 U/mL penicillin and 100 µg/mL 
streptomycin but without serum. Atrophy was induced 
by replacing the DM of the differentiated C2C12 myo-
tubes with the FM and culturing them for another 24 h 
(serum starvation). The control C2C12 myotubes were 
incubated for another 24  h after the replenishment 
of the DM. Then RNA was collected from the control 
group and serum-starved group using a Qiashredder 
and RNeasy Mini Kit (Qiagen, Hilden, Germany) and 
subjected to RNA analysis.

Previous studies have shown that TJ-41 concentra-
tion-dependently reduced IL-6 production from mac-
rophages and restored autophagy in HEK293 cells in 
the concentration range of 10–500  µg/mL [24, 27]. 
TJ-41 concentration in the present study was deter-
mined based on these studies. The presence of 0.1% 
DMSO (v/v) in the medium affected the viability of 
C2C12 only slightly [28], and the concentration has 
been commonly adopted in the C2C12 experiments 
[29]. Therefore, we set the final DMSO concentration to 
0.1% (v/v) in all the experiments.

To examine the effects of TJ-41 on atrogene expres-
sion, the DM of the differentiated C2C12 myotubes was 
changed to FM containing vehicle (0.1% DMSO v/v) or 
TJ-41 (final concentrations of 1, 10, or 100  µg/mL in 
medium, containing 0.1% DMSO v/v). The DM of the 
control group was replaced with DM containing DMSO 
(vehicle, 0.1% DMSO v/v). After 24 h incubation, RNA 
was collected from these groups using a Qiashredder 
and RNeasy Mini Kit (Qiagen) and subjected to RNA 
analysis.

To examine the effects of TJ-41 on the signaling path-
way related to atrogenes, the DM of the C2C12 myo-
tubes was replaced with the DM containing vehicle 
(0.1% DMSO v/v) or TJ-41 (final concentrations of 1, 10, 
or 100  µg/mL in medium, containing 0.1% DMSO v/v). 
After additional 24  h incubation, protein samples were 
collected and subjected to Western blot.

In all these experiments, three biological replicates and 
two technical replicates were performed.

Animal experiments
Male C57BL/6J mice were purchased from Nippon 
CLEA (Tokyo, Japan). They were housed individually in 
similarly-designed cages and were maintained in a con-
trolled environment (temperature, 24 ± 1  °C; humid-
ity, 55 ± 5%) with a 12 h:12 h light:dark cycle. The mice 
were provided ad  libitum access to standard chow and 
water. They were acclimated for 2 weeks in the afore-
mentioned conditions and were used for the experi-
ments at 11 weeks of age.

TJ-41 was mixed with water, sonicated, and orally 
administered by gavage. Control mice were administered 
water as a vehicle. The low-dose and high-dose groups 
received 0.3 and 1.0 g TJ-41 per kg body weight, respec-
tively. Gavage feeding was performed daily during the 
experiments.

To examine the effects of TJ-41 on skeletal muscles of 
the wildtype mice, mice were administered water (vehi-
cle), low-dose of TJ-41, or high-dose of TJ-41 by gavage 
daily for 21 days (n = 4 in each group, total number is 12). 
Then muscle samples were collected and subjected to 
Western blot.

The mice were subjected to tail-suspension, which 
induced hindlimb muscle atrophy. To achieve this, the 
entire tail of a mouse was covered with medical adhesive 
tape. The distal end of the tape was attached to a paper-
clip, which was then attached to a swivel on a cross-bar. 
The cross-bar was positioned approximately 15 cm above 
the cage floor. Using this device, the mouse was sus-
pended such that the hindlimbs did not touch the floor, 
but the forelimbs were free to move. During this time, the 
mouse had ad libitum access to food and water. To exam-
ine the effects of tail-suspension on atrogene expression 
and muscle weight,

To examine the effects of tail-suspension on the expres-
sion of atrogin-1 and MuRF1 in the muscles, mice were 
subjected to 24  h of tail-suspension, and RNA was col-
lected from the gastrocnemius muscles. To examine the 
effects of tail-suspension on muscle weight, mice were 
subjected to 14 days of tail-suspension and the gastroc-
nemius muscles were weighed. These data were com-
pared with that of the control group (n = 4 in each group, 
total number is 12).

To examine changes in atrogenes expression in 
response to TJ-41, mice were divided into six groups: 
(1) non-suspended, vehicle (water), (2) non-suspended, 
low-dose TJ-41, (3) non-suspended, high-dose TJ-41, 
(4) suspended, vehicle, (5) suspended, low-dose TJ-41, 
(6) suspended, high-dose TJ-41 (n value is 10, 10, 10, 9, 
10, 9 in each group, respectively, and total number is 58). 
The mice were subjected to 7 days of everyday treatment 
with vehicle (water) or TJ-41, followed by 24  h of non-
suspended state or tail-suspension, then sacrificed. They 
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were sacrificed 24 h after the last gavage. RNA was col-
lected from the gastrocnemius muscles.

To examine the effects of TJ-41 on tail-suspension-
induced muscle atrophy, another set of mice were divided 
into six groups: (1) non-suspended, vehicle, (2) non-sus-
pended, low-dose TJ-41, (3) non-suspended, high-dose 
TJ-41, (4) suspended, vehicle, (5) suspended, low-dose 
TJ-41, (6) suspended, high-dose TJ-41 n value is 9, 10, 10, 
9, 10, 8 in each group, respectively, and total number is 
56). Mice were subjected to pretreatment for 7 days, then 
non-suspended state or tail-suspension for 14 days. Dur-
ing the time course, the mice were administered vehicle 
or TJ-41 every day. Then they were sacrificed and the 
gastrocnemius muscles were collected and weighed. They 
were sacrificed 24 h after the last gavage.

In all the animal experiments, the mouse was eutha-
nized using carbon dioxide. Mice which had accidentally 
escaped from the suspension before the end of the exper-
iments were excluded. In animal experiments, including 
and excluding criteria were not set a priori.

RNA analysis
RNA was extracted from C2C12 myotubes, using a 
Qiashredder and RNeasy Mini Kit (Qiagen). Harvested 
gastrocnemius muscles were immersed in RNAlater 
(Qiagen) to stabilize RNA in tissues. RNA extraction 
was performed using an RNeasy Fibrous Tissue Mini Kit 
(Qiagen). DNase I treatment was performed using an 
RNase-Free DNase Set (Qiagen).

The cDNA was synthesized from the RNA samples 
using a ReverTra Ace qPCR RT Kit (Toyobo, Osaka, 
Japan) and used according to the manufacturer’s instruc-
tions. The cDNA was mixed with SYBR Green Master 
Mix (Applied Biosystems, CA, USA) and specific prim-
ers for each gene, and then subjected to quantitative real-
time PCR using a StepOnePlus Real-Time PCR System 
(Applied Biosystems). The cycle threshold for each gene 
was normalized to that of glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), which was used as the internal 
control. The primer sequences were:

GAPDH: 5’-AGG TCG GTG TGA ACG GAT TTG-3’ 
(forward) and 5’-TGT AGA CCA GTA GTT GAG GTCA-3’ 
(reverse);

MuRF1: 5’-TGC CTG GAG ATG TTT ACC AAGC-3’ 
(forward) and 5’-AAA CGA CCT CCA GAC ATG GACA-3’ 
(reverse);

atrogin-1: 5’-AAG GCT GTT GGA GCT GAT AG CA-3’ 
(forward) and 5’-CAC CCA CAT GTT AAT GTT GCCC-3’ 
(reverse).

Western blot
The C2C12 myotubes were lysed in radioimmuno-
precipitation assay buffer combined with a protease 

inhibitor cocktail (cOmplete Mini, Roche Applied Sci-
ence, Penzberg, Germany) and a phosphatase inhibitor 
cocktail (PhosSTOP, Roche Applied Science). Harvested 
muscle tissue was immersed in ice-cold T-PER Tissue 
Protein Extraction Reagent (Thermo Fisher Scientific) 
with cOmplete Mini and PhosSTOP, and pulverized 
using a CellDestroyer (Bio Medical Science Inc, Tokyo, 
Japan). The proteins in these lysates were separated 
using SDS-PAGE and were electro-transferred onto a 
polyvinylidene difluoride membrane. The membranes 
were blocked using Blocking One (Nacalai Tesque Inc, 
Kyoto, Japan) and probed using appropriate primary 
and secondary antibodies. After immunoblotting, the 
proteins were visualized using an ECL detection system 
(GE Healthcare) or LumiGLO Reserve Chemilumines-
cent Substrate (SeraCare Life Sciences, Inc. MA, USA). 
The chemiluminescence images were scanned using a 
LuminoGraph I (Atto Corp, Tokyo, Japan). Blots were 
quantified using Image J software 1.44.

Cell morphology
To examine the effects of TJ-41 on serum-starved 
C2C12 myotube width, the DM of the differentiated 
C2C12 myotubes was changed to FM containing vehi-
cle (0.1% DMSO v/v) or TJ-41 (final concentrations of 
10 or 100  µg/mL in medium, containing 0.1% DMSO 
v/v). The DM of the control was replaced with DM 
containing DMSO (vehicle, 0.1% DMSO v/v). After 
24 h incubation, the C2C12 myotubes were fixed using 
4% paraformaldehyde in PBS solution (Wako, Osaka, 
Japan). To visualize cell morphology, the myotubes were 
treated with Actin Green 488 ReadyProbes reagent 
(Thermo Fisher Scientific). The images were scanned 
using a BZ-X810 fluorescence microscope (Keyence, 
Tokyo, Japan). Myotube width was determined using 
ImageJ (National Institutes of Health, Bethesda, MD, 
USA). Three independent biological replicates were 
performed, and three different fields were randomly 
selected from each experiment. Up to 20 representative 
fibers were selected from each field, and the width of 
each fiber was measured.

Statistical analysis
The results were expressed as mean ± standard error 
of the mean values. Between-group comparisons were 
performed using Student’s t-tests. Multiple-group com-
parisons were performed using ANOVA, then post-hoc 
comparison was performed using the Tukey-Kramer 
method. Data analysis was conducted using R software. 
A value of p < 0.05 was considered significant.
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Results
TJ‑41 downregulated atrogin‑1 in C2C12 myotubes
First, we examined the effects of TJ-41 on atrogenes 
in  vitro. We adopted serum-starved C2C12 myotubes, 
an in vitro muscle atrophy model [30, 31]. C2C12 myo-
tubes that were cultured in the FM for 24  h displayed 

significantly upregulated MuRF1 and atrogin-1 (p < 0.05) 
(Fig. 1A). We also cultured C2C12 myotubes in the FM 
with the vehicle or TJ-41 extract for 24 h. TJ-41 repressed 
atrogin-1, but not MuRF1 (Fig.  1B). Post-hoc Tukey-
Kramer test showed that 10 and 100  µg/mL of TJ-41 
significantly downregulated atrogin-1 (p < 0.01). We also 

Fig. 1 Effects of TJ-41 on C2C12 myotubes. A Expression of atrogin-1 and MuRF1 after 24 h of serum deprivation (n = 3). B Effects of TJ-41 extraction 
on expression of atrogin-1 and MuRF1. Concentrations of the extract are 1, 10 or 100 µg/mL (n = 3). Significant differences were detected by the 
post-hoc Tukey-Kramer test. B Phosphorylation of Akt, p70, mTOR, FoxO1, and AMPK in TJ-41-treated myotubes (western blot). These images were 
cropped from the original gels and blots. *p < 0.05, **p < 0.01, ***p < 0.001. NS indicates “not significant”
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assessed Akt, p70, mTOR, FoxO1, and AMPK activity in 
TJ-41-treated myotubes, and did not find significantly 
elevated phosphorylation (Fig. 1C).

Subsequently, we examined the effects of TJ-41 on 
C2C12 morphology. Following the method adopted in 

previous studies [32–34], multiple myotubes from each 
experiment were counted as samples, then their width 
was measured and statistically compared. The depriva-
tion of serum for 48 h resulted in a decrease in myotube 
width, whereas TJ-41 treatment significantly inhibited 
this decrease in width (Fig. 2A, B).

Fig. 2 Effects of TJ-41 on C2C12 myotube morphology. A Representative images of C2C12 myotubes (20×). Differentiated C2C12 myotubes were 
subjected to serum starvation for 48 h with vehicle (DMSO) or TJ-41 extract (10 or 100 µg/mL). For visualization of cytoskeleton (F-actin), cells were 
stained with fluorescently-labeled phalloidin. Red bar indicates 100 μm. B Box plot of C2C12 myotube width in each group. The number of fibers 
analyzed in each group is 174, 158, 168, and 106, respectively. Significant differences were detected by the post-hoc Tukey-Kramer test. *p < 0.05, 
***p < 0.001
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Effects of TJ‑41 on muscles of tail‑suspended mice
We administered TJ-41 (0.3 g/kgBW and 1.0 g/kgBW) to 
male wild-type mice for 21 days, followed by the isolation 
and analyses of the gastrocnemius muscles. Western blot 
analysis was performed using the muscle tissue samples 
to examine Akt, mTOR, and AMPK activity, respectively. 
ANOVA and post-hoc analysis showed that both treat-
ment with 0.3  g/kgBW and 1.0  g/kgBW of TJ-41 sig-
nificantly induced phosphorylation of AMPK (Fig.  3A). 
Whereas treatment with 0.3  g/kgBW of TJ-41 did not 
affect phosphorylation of Akt and mTOR, treatment with 
1.0 g/kgBW of TJ-41 inhibited their phosphorylation.

Next, we subjected mice to tail-suspension and exam-
ined the atrogenes expression and changes in the weight 
of the gastrocnemius muscles. According to previous 
reports, MuRF1 and atrogin-1 levels peaked one day after 
the start of hindlimb suspension and gradually decreased 
thereafter, while muscle weight decreased monotonically 
until day 14 [35, 36]. Therefore, we measured MuRF1 and 
atrogin-1 expression of the gastrocnemius muscles after 
24 h of hindlimb suspension and the muscle weight after 
14 days of hindlimb suspension.

In order to examine changes in atrogenes expres-
sion in response to TJ-41 in  vivo, the mice were sub-
jected to 7 days of pretreatment with TJ-41, followed 
by 24  h of tail-suspension. We performed a two-way 
ANOVA to see whether there is an interaction effect 
between tail-suspension and administration of TJ-41. 
Tail-suspension significantly increased MuRF1 expres-
sion in gastrocnemius muscles, but TJ-41 did not affect 
its expression (p = 0.158), and there were no interaction 
effects between them (p = 0.760) (Fig.  4A). Tail-suspen-
sion significantly increased atrogin-1 expression, TJ-41 
significantly affected its expression, and there were no 

interaction effects between them (p = 0.111). Post-hoc 
analysis revealed that treatment with 0.3 g/kgBW did not 
downregulate atrogin-1, whereas treatment with 1.0  g/
kgBW of TJ-41 significantly downregulated atrogin-1 
expression.

Other groups of mice were subjected to 7 days of pre-
treatment with TJ-41, followed by 14 days of tail-sus-
pension. We analyzed the effects of tail-suspension and 
TJ-41 on their body weight changes, food intake, and 
gastrocnemius muscle weight using two-way ANOVA. 
Although tail-suspension significantly decreased body 
weight, treatment with TJ-41 did not affect the body 
weights of the mice (Fig.  4B). The average food intake 
(per day) was not affected by tail-suspension and admin-
istration of TJ-41 (Fig.  4C). Intriguingly, treatment with 
1.0  g/kgBW of TJ-41 significantly increased the weight 
of the gastrocnemius muscle in non-suspended mice and 
also significantly ameliorated weight loss in the muscles 
of tail-suspended mice (Fig. 4D). In all these experiments, 
no significant interaction between tail-suspension and 
administration of TJ-41 was detected.

Discussion
In this study, we found that TJ-41 downregulated 
atrogin-1 expression both in  vivo and in  vitro, further 
revealing that TJ-41 activated AMPK in skeletal muscles, 
increased muscle mass in non-suspended mice and also 
ameliorated disuse-induced muscle atrophy in tail-sus-
pended mice.

The high dose of TJ-41 used in the animal experiment 
in the present study, 1.0 g/kgBW, is equivalent to 4.6 g for 
a 60 kg person [37]. This amount is close to 5-7.5 g per 
day used in clinical medicine. Kampo formulas are usu-
ally given three times a day, but we administered TJ-41 

Fig. 3 Effects of TJ-41 and tail-suspension on the gastrocnemius muscles. Phosphorylation of Akt, mTOR and AMPK in gastrocnemius muscles 
collected from control and TJ-41-administered mice. Mice were administered water (vehicle), a low-dose of TJ-41 (0.3 g/kgBW), or a high-dose of 
TJ-41 (1.0 g/kgBW) by gavage daily for 21 days (n = 4 in each group, total number is 12). Two samples from each treatment group were run and 
presented. These images were cropped from the original gels and blots. *p < 0.05, **p < 0.01
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once a day expecting that its blood levels would rise 
enough to be effective. However, there are no references 
about the dynamics of TJ-41 so far. Different administra-
tion methods could result in the difference of effects and 
this could be a limitation of the present study.

A previous study showed that TJ-41 ameliorated the 
loss of weight, cross sectional area (CSA) and isometric 

twitch force of gastrocnemius muscles in tail-suspended 
mice [22], which is compatible with the results of the 
present study. In the study, TJ-41 induced muscle differ-
entiation and metabolism, upregulating myogenin and 
myosin heavy chain by downregulating NCoR1 expres-
sion in vitro and in vivo. We did not examine the effects 
of TJ-41 on NCoR1, but the novelty of our study is the 

Fig. 4 Effects of TJ-41 on tail-suspended mice. A Mice were subjected to 7 days of pretreatment and 24 h of tail-suspension. Effect of TJ-41 
treatment on the expression of atrogin-1 and MuRF1 in gastrocnemius muscles of tail-suspended mice (n value is 10, 10, 10, 9, 10, 9 in each group, 
respectively, and total number is 58). B–D Mice were subjected to pretreatment for 7 days and tail-suspension for 14 days. The ratios of body 
weight changes during experiments (B), average food intake per day (C), and effects of TJ-41 treatment on the weight of gastrocnemius muscles 
(D). The low-dose and high-dose groups received 0.3 and 1.0 g TJ-41 per kg body weight, respectively (n value is 9, 10, 10, 9, 10, 8 in each group, 
respectively, and total number is 56). *p < 0.05, **p < 0.01, ***p < 0.001. NS indicates “not significant.”
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suppressive effects of TJ-41 on atrogin-1. No associa-
tion between NCoR1 and atrogenes has been reported. 
These multifaceted effects of TJ-41 may have resulted in 
increased muscle weight and ameliorated muscle atrophy.

Inhibition of atrogin-1 by TJ-41 was observed both 
in vivo and in vitro (Figs. 1B and 4A). While AMPK was 
activated and mTOR was inactivated in  vivo, they were 
not affected in vitro (Figs. 1C and 3A). The results sug-
gested that certain TJ-41 components have anti-atrophic 
effects including atrogin-1 suppression and amelioration 
of myotube width loss, independently of the PI3K/Akt/
mTOR signaling pathway in vitro. On the other hand, it 
is known that many compounds present in the raw herbs 
are metabolized and converted by the host xenobiotic 
system and gut microbial flora [38], so it is suggested 
that they might be affected differently under in vivo and 
in  vitro conditions, respectively, and the net effects of 
TJ-41 might be multifaceted.

Another novelty of our study is that TJ-41 activated 
AMPK in vivo. AMPK-mediated autophagy is known to 
be essential for maintaining muscle integrity and mito-
chondrial function during aging [39], and AMPK acti-
vation by exercise increased the expression of PGC-1α, 
and improved mitochondrial biogenesis and dysfunc-
tion, thereby restoring muscle function and inhibiting 
the loss of muscle mass [40]. In relation to herbal medi-
cines, gosha-jinki-gan activated AMPK and induced its 
downstream PGC-1α expression, increasing the CSA 
of soleus muscle fibers in senescence-accelerated mice 
[11]. Ginseng pharmacopuncture extracts, which con-
tain one of TJ-41 components ginseng, activated AMPK 
and induced differentiation markers such as MyoD and 
myogenin in vitro [41]. Thus AMPK activation by TJ-41 
might be involved in the increase in the muscle mass.

Muscle weight increased in non-suspended mice 
administered TJ-41 for three weeks (Fig.  4D), whereas 
Akt and mTOR activity was decreased (Fig.  3A). The 
PI3K/Akt/mTOR pathway that promotes protein syn-
thesis is supposed to be crucial in muscle hypertrophy 
[42]. AMPK is known to inhibit mTOR activation [7, 43]. 
However, both Akt and mTOR were inhibited, suggest-
ing the pathway was suppressed upstream of Akt. Under 
overnutrient conditions, p70 inhibits insulin receptor 
substrate-1 (IRS-1) by phosphorylation at multiple sites, 
negatively regulating insulin signaling [44, 45]. This nega-
tive feedback might have inactivated Akt and mTOR on 
the day the mice were sacrificed.

In parallel, inflammation has also been suggested to 
be involved in atrogenes regulation, and serum TNF-α 
and IL-6 levels are increased in tail-suspended mice. 
[46, 47]. Activation of p38 and NF-κB by IL-1β induces 
expression of atrogin-1, independent of the Akt/FoxO 

pathway [48]. TJ-41 is suggested to reduce oxidative 
stress and inflammation in  vivo [18, 23, 49]. Taken 
together, it is suggested that the anti-inflammatory 
effects of TJ-41 might be involved in the repression of 
atrogin-1. It might also be possible that the combina-
tion of this effect and NCoR1 suppression outweigh the 
effect of reduced mTOR activity, causing the increase in 
muscle weight.

Atrogin-1 is known to result in cachexia-induced 
muscle atrophy, and TJ-41 treatment ameliorates mus-
cle weight loss in mouse cancer models together with 
decreased IL-6 production in macrophages [24], fur-
ther suggesting that TJ-41 treatment might repress 
atrogin-1 in the cachexia-induced muscle atrophy.

Conclusion
We found that TJ-41 treatment repressed atrogin-1 
expression, thereby ameliorating disuse-induced mus-
cle atrophy. TJ-41 might be a potential therapeutic 
agent against disuse-induced muscle atrophy.
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