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Abstract

Background: Guanxin V (GXV), a traditional Chinese medicine (TCM), has been widely used to treat coronary artery
disease (CAD) in clinical practice in China. However, research on the active components and underlying
mechanisms of GXV in CAD is still scarce.

Methods: A virtual screening and network pharmacological approach was utilized for predicting the
pharmacological mechanisms of GXV in CAD. The active compounds of GXV based on various TCM-related
databases were selected and then the potential targets of these compounds were identified. Then, after the CAD
targets were built through nine databases, a PPI network was constructed based on the matching GXV and CAD
potential targets, and the hub targets were screened by MCODE. Moreover, Metascape was applied to GO and
KEGG functional enrichment. Finally, HPLC fingerprints of GXV were established.

Results: A total of 119 active components and 121 potential targets shared between CAD and GXV were obtained.
The results of functional enrichment indicated that several GO biological processes and KEGG pathways of GXV
mostly participated in the therapeutic mechanisms. Furthermore, 7 hub MCODEs of GXV were collected as potential
targets, implying the complex effects of GXV-mediated protection against CAD. Six specific chemicals were
identified.

Conclusion: GXV could be employed for CAD through molecular mechanisms, involving complex interactions
between multiple compounds and targets, as predicted by virtual screening and network pharmacology. Our study
provides a new TCM for the treatment of CAD and deepens the understanding of the molecular mechanisms of
GXV against CAD.
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Background
Even though interrelated changes in demography, environ-
ment, lifestyle, and health care, including the rising burden
from coronary artery disease (CAD), indicate a transition in
cardiovascular diseases epidemiology, cardiovascular dis-
eases are still the leading cause of death worldwide [1, 2],
posing a huge threat to global public health [3, 4]. Among
cardiovascular death, CAD accounts for a large part [4, 5].
The treatment of CAD is mainly based on lifestyle
management, drug treatment, and revascularization
[6]. Guanxin V (GXV), an in-hospital preparation
traditional Chinese medicine (TCM), has a significant
effect on CAD [7–13], and our previous studies
showed that GXV reduced serum inflammatory factor
release [10, 14–17] through the TLR4/MyD88/NF-κB
signaling pathway [16, 18, 19]. Network pharmacol-
ogy, as a multidisciplinary science, reveals the patho-
physiology and therapy strategies of numerous
disorders by integrating related sciences [20–22], such
as systems biology and pharmacology. Network
pharmacology is of great significance for the discovery
of effective components and potential targets in TCM
and the investigation of its underlying mechanisms,
which may help explore the pharmacological proper-
ties of herbal medicines [23, 24]. In view of the com-
plex composition of TCM, it has the characteristics of
multitarget, multichannel and coordination and syner-
gism [25–28]. With the continuous improvement in
the natural science system, the study of in-depth drug
disease mechanisms is increasing [29]. However, due
to the relatively backward research on the
modernization of TCM theory, the integrity of TCM,
the complexity of TCM components and the multi-
channel and multitarget mechanisms of the property,
the material basis of the efficacy of TCM is not clear,
and the mechanisms are not clear. At present, the
mechanisms of GXV in CAD have not been fully elu-
cidated, except for the previously mentioned mecha-
nisms. In the present study, virtual screening and
network pharmacology-based synergistic mechanism
investigations of multiple components contained in
GXV against CAD were systematically conducted.
Materials and methods
Compounds in GXV
The chemical compounds contained in the six herbs
(Codonopsis Radix, Ophiopogon japonicus, Schizandra
Chinensis Fructus, Rehmannia Radix Praeparata, Radix
Salviae, and Radix Paeoniae Rubra) that constitute
GXV were retrieved from TCMSP [30], TCMID [31],
and BATMAN-TCM [32]. In addition, we combined
the published literature to supplement the chemical
compounds of the drugs contained in GXV.
Active compounds of GXV
The ADME characteristics of each obtained chemical
compound were explored to obtain the bioactive com-
pounds in six herbs of GXV. In our study, oral bioavail-
ability (OB) [30, 33] and drug likeness (DL) [30, 34], two
commonly used ADME-related parameters, were
assessed for each bioactive chemical compound. Gener-
ally, compounds with OB ≥ 30% and DL ≥ 0.18 are con-
sidered to have pharmacological activities [35, 36].

Targets of active compounds in GXV
After obtaining the active compounds in GXV, the po-
tential targets were also investigated from TCMSP [30],
TCMID [31], and BATMAN-TCM [32]. Similarly, we
combined the published literature to supplement the tar-
gets of active compounds in GXV.

Targets in CAD
The CAD-associated human targets were surveyed using
diverse databases, including GeneCards [37], TTD [38],
DrugBank [39], DisGeNET [40, 41], OMIM, TCMSP
[30], MalaCards [42], NCBI, and CTD [43] with the
search species limited to ‘Homo sapiens’. Among them,
candidate targets with correlation scores ≥ the mean in
GeneCards [37] and gene disease correlation scores ≥
the mean in DisGeNET [40, 41] were included in the
follow-up analysis. Furthermore, the potential targets
were supplemented with relevant literature, and all the
results were summarized and deduplicated.

H-C, H-C-T, and H-C-T-D networks
The herb-compound (H-C), herb-compound-target (H-C-
T), and herb-compound-target-disease (H-C-T-D) net-
works were established by connecting the corresponding
elements [44]. The potential targets of the active com-
pounds contained in GXV and the potential targets of
CAD were annotated in Universal Protein (UniProt,
https://www.uniprot.org/) [45]. The potential targets
shared by the active compounds contained in GXV and
CAD were applied for subsequent analysis. All networks
were visualized in Cytoscape (version 3.7.1) [46].

Functional enrichment
Metascape [47] was applied to conduct enrichment ana-
lysis (including Gene Ontology (GO) terms [48] and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [49]) of targets significantly associated with
GXV and CAD, which was different from the previous
study [50]. The list of annotations retrieved from the lat-
est version of the Metascape database (last updated on
2019-08-14) was summarized in Table S1. When a term
had ≥3 counts, > 1.5 enrichment factors, and P < 0.01, it
was seen as significant [47, 51]. Moreover, for each given
target, protein-protein interaction (PPI) enrichment

https://www.uniprot.org/
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analysis was carried out with three databases: BioGRID
[52], InWeb_InBioMap [53], and OmniPath [54].
MCODE [55] was used to discover closely connected
network components in the network containing 3 to 500
components.

High-performance liquid chromatography (HPLC)
fingerprints of GXV
HPLC fingerprints of GXV were performed as described
previously [25, 56, 57] with some modifications.

Chromatographic conditions
The separations were developed on a Diamonsil-C18
column (4.6 mm × 250mm, 5 μm) with a constant
temperature at 30 °C. The mobile phases consisted of
methanol (A) and 0.1% formic acid (B) using a gradient
elution as follows: 0 min 5% A, 25 min 20% A, 30 min
40% A, 50min 60% A, 55 min 95% A, 65min 95% A, 68
min 5% A, 70min 5% A, with a 1.0 mL/min flow rate.
The injection volume was set as 10 μL, and the detection
wavelength was set at 270 nm. All analyses were per-
formed on an Agilent 1290 Infinity HPLC system
(Agilent, Santa Clara, USA).

Preparation of sample solutions
Salvianolic Acid B (111562–201,212, National Institutes
for Food and Drug Control), Salvianolic Acid A (120,
412, Shanghai Ronghe Pharmaceutical Technology Co.,
Ltd.), Salvianic Acid A Sodium (111366–201,305,
National Institutes for Food and Drug Control), Paeoni-
florin (110736–201,136, National Institutes for Food and
Drug Control), Paeonol (110708–201,407, National Insti-
tutes for Food and Drug Control), and Rosmarinic Acid
(20283–92-5, Nanjing Chunqiu Biological Engineering
Co., Ltd.) were accurately weighed and added to metha-
nol at concentrations of 0.1, 0.05, 0.1, 0.1, 0.1, and 0.01
mg/mL as the mixed reference solution.
One-fifth of the prescriptions of GXV (Codonopsis

Radix (Origin Gansu, Anhui Songshantang Chinese
Medicine Co., Ltd.) 40 g, Ophiopogon japonicus (Origin
Sichuan, Bozhou Yonggang Pieces Factory Co., Ltd.) 20
g, Schizandra Chinensis Fructus (Origin Jilin, Bozhou
Yonggang Pieces Factory Co., Ltd.) 10 g, Rehmannia
Radix Praeparata (Origin He’nan, Bozhou Jingwan
Traditional Chinese Medicine Pieces Factory) 40 g,
Radix Salviae (Origin Jiangsu, Anhui Huchuntang Chin-
ese Herbal Pieces Co., Ltd.) 40 g, and Radix Paeoniae
Rubra (Origin Neimenggu, Bozhou Jingwan Traditional
Chinese Medicine Pieces Factory) 40 g,which were
authenticated by the chief Chinese pharmacist and met
the requirements of the 2015 Chinese Pharmacopoeia)
was soaked in a tenfold volume of distilled water at
room temperature for half an hour, decocted for 1.5 h,
filtered, and then an eightfold volume of distilled water
was added into the filter residue for further decocting
for an hour. All filtrates were vacuum concentrated as a
GXV mixture. The amount of the 1 mL GXV mixture
was accurately measured and extracted it with 9 ml of
methanol for half an hour. Before HPLC analysis, the
volume loss during ultrasound was compensated, and
then the extract was filtered by a 0.22 μm membrane
filter.
One-fifth of the prescriptions of Codonopsis Radix

(Origin Gansu, Anhui Songshantang Chinese Medicine
Co., Ltd.), Ophiopogon japonicus (Origin Sichuan, Boz-
hou Yonggang Pieces Factory Co., Ltd.), Schizandra
Chinensis Fructus (Origin Jilin, Bozhou Yonggang Pieces
Factory Co., Ltd.), Rehmannia Radix Praeparata (Origin
He’nan, Bozhou Jingwan Traditional Chinese Medicine
Pieces Factory), Radix Salviae (Origin Jiangsu, Anhui
Huchuntang Chinese Herbal Pieces Co., Ltd.), and
Radix Paeoniae Rubra (Origin Neimenggu, Bozhou
Jingwan Traditional Chinese Medicine Pieces Factory),
which were authenticated by the chief Chinese pharma-
cist and met the requirements of the 2015 Chinese
Pharmacopoeia, were accurately weighed, and the prep-
arations were tested according to the preparation
method of GXV to obtain the crude drug solution.

Method validation
The precision, stability, and repeatability were assessed
as described previously [56, 57] and expressed by the
relative standard deviation of the average retention time
and peak areas. Each sample solution was detected twice
in parallel.

Results
Investigation of the active phytochemical compounds of
GXV
The active phytochemical compounds contained in the
six herbs (Codonopsis Radix, Ophiopogon japonicus,
Schizandra Chinensis Fructus, Rehmannia Radix Prae-
parata, Radix Salviae, and Radix Paeoniae Rubra) that
comprise GXV were identified from TCMSP, TCMID,
and BATMAN-TCM. Consequently, by defining OB and
DL, we obtained 21, 1, 8, 2, 65, and 29 compounds for
Codonopsis Radix, Ophiopogon japonicus, Schizandra
Chinensis Fructus, Rehmannia Radix Praeparata, Radix
Salviae, and Radix Paeoniae Rubra, respectively. Some
active compounds exist in many kinds of herbs (Fig. 1,
Table S2), and 119 active compounds were identified
after duplicate removal. To understand the multicompo-
nent pharmacological mechanisms of GXV, we built an
H-C network (Fig. 2). The H-C network for GXV was
composed of 126 nodes (including GXV, the six herbs,
and 119 active compounds) and 132 edges (Fig. 2), indi-
cating that there was much crossover between herbs and
compounds.



Fig. 1 The structure of shared active compounds
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Identification of the targets of active phytochemical
compounds in GXV
We obtained 1367 targets for the 119 active phytochem-
ical compounds in GXV (214, 1, 30, 34, 930, and 158 com-
pounds for Codonopsis Radix, Ophiopogon japonicus,
Fig. 2 The H-C network of GXV. Red rectangles and green octagons indica
ovals indicate the 119 active compounds in GXV
Schizandra Chinensis Fructus, Rehmannia Radix Praepar-
ata, Radix Salviae, and Radix Paeoniae Rubra, respect-
ively) by searching the corresponding database. Note that
there were 181 targets after duplication removal, suggest-
ing that different active compounds had the same targets.
te GXV and the six herbal medicines comprising GXV, respectively. Blue
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To further understand the multicomponent and multitar-
get mechanisms of GXV, an H-C-T network was con-
structed. This network for GXV was composed of 307
nodes (including GXV, the six herbs, 119 active com-
pounds, and 181 targets) and 1499 edges (Fig. 3), investi-
gating the system-level therapeutic properties of GXV.
Identification of the targets of CAD
To identify CAD-associated human targets, we surveyed
diverse databases (GeneCards [37], TTD [38], DrugBank
[39], DisGeNET [40, 41], OMIM, TCMSP [30], Mala-
Cards [42], NCBI-Gene, and CTD [43]). Hence, a total
of 2336 targets were obtained, with 2028 remaining after
deduplication.
Identification of shared targets of GXV and CAD
After we uploaded 2028 CAD targets and 181 GXV
targets, 2026 CAD targets and 181 GXV targets were
identified as unique elements, and 2086 unique elements
existed in total, which meant that 121 targets were
shared by CAD and GXV.
Fig. 3 The H-C-T network of GXV. Red rectangles and green octagons indic
Blue ovals and purple diamonds indicate the 119 active compounds and 1
H-C-T-D network-based analysis of the pharmacological
mechanisms of GXV
The potential targets shared by the active compounds
contained in GXV and CAD were applied for subsequent
analysis. Because there were too many defined CAD tar-
gets, we only used the shared targets with GXV to build
the H-C-T-D network diagram (Fig. 4). The H-C-T-D
network was composed of 248 nodes (including CAD,
GXV, the six herbal medicines, 119 active compounds,
and 121 shared targets) and 1059 edges.

Functional enrichment analysis
The targets significantly associated with GXV and CAD
that we uploaded were converted into their correspond-
ing gene IDs with the latest version of the database (last
updated on 2019-08-14). The overlaps between these
targets are shown in a Circos plot [58] (Fig. 5a). Another
useful representation is to overlap genes based on their
functions or shared pathways. The overlaps between
gene lists can be significantly improved by considering
overlaps between genes sharing the same enriched ontol-
ogy terms (Fig. 5b). Only ontology terms that contain
ate GXV and the six herbal medicines comprising GXV, respectively.
81 targets in GXV, respectively



Fig. 4 The H-C-T-D network
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less than 100 genes were used to calculate functional
overlaps to avoid linking genes using very general anno-
tation. From the heatmap of the top 20 enriched terms
across targets significantly associated with GXV and
CAD (Fig. 6), we found that the functions for these tar-
gets were mainly circulatory system and response, in-
cluding blood vessel development, blood circulation,
cytokine production, heart development, regulation of
MAPK cascade, response to growth factor, positive regu-
lation of cell death, signaling by interleukins, cellular re-
sponse to nitrogen compound, wound healing, response
to inorganic substance, cellular response to lipid, re-
sponse to toxic substance, response to extracellular
stimulus, extracellular structure organization, response
to molecule of bacterial origin, response to oxygen
levels, muscle cell proliferation, and vascular process in
circulatory system.
The functions of shared targets were enriched by GO

and KEGG from Metascape. The top 20 GO enrichment
items were classified into three functional groups: bio-
logical process group (19 items), molecular function
group (0 items), and cellular component group (1 item)
(Fig. 7a). The network of GO enriched terms showed
167 nodes and 1439 edges (Fig. 7b). The shared 121 tar-
gets were mainly enriched in response, blood circulation,
and apoptosis biological processes such as response to
toxic substance, cytokine-mediated signaling pathway,
blood circulation, response to inorganic substance, cellu-
lar response to nitrogen compound, cellular response to
organic cyclic compound, response to wounding, regula-
tion of secretion by cell, positive regulation of MAPK
cascade, positive regulation of cellular component move-
ment, apoptotic signaling pathway, response to oxygen
levels, reactive oxygen species metabolic process, re-
sponse to extracellular stimulus, response to lipopolysac-
charide, cellular response to drug, regulation of DNA-
binding transcription factor activity, second-messenger-
mediated signaling, and response to radiation signaling
pathway. The cellular components that these genes were
involved in were membrane rafts. The top 20 KEGG
pathways for the shared targets are shown in Fig. 7c.
The network of KEGG enriched terms showed 112
nodes and 1098 edges (Fig. 7d). Among these pathways,
the PI3K-Akt signaling pathway, HIF-1 signaling path-
way, fluid shear stress and atherosclerosis, calcium sig-
naling pathway, cAMP signaling pathway, serotonergic



Fig. 5 Overlap between GXV and CAD targets. a Only at the gene
level. On the outside, each arc represents the identity of each gene
list. On the inside, each arc represents a gene list, where each gene
has a spot on the arc. Dark orange represents the genes that appear
in multiple lists and light orange represents genes that are unique
to that gene list. Purple lines link the same genes that are shared by
multiple gene lists. The greater the number of purple links and the
longer the dark orange arcs, the greater overlap among the input
gene lists. b Including the shared term level. Blue lines link the
different genes where they fall into the same ontology term (the
term has to be statistically significantly enriched and with a size no
larger than 100). Blue links indicate the amount of functional overlap
among the input gene lists
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synapse, thyroid hormone signaling pathway, regulation
of lipolysis in adipocytes, and drug metabolism-
cytochrome P450 were found to be related to the devel-
opment of multiple cardiovascular diseases and were in-
volved in CAD development and pathogenesis. These
findings support the pharmacological mechanisms of
GXV in CAD.
In addition, to better understand the relationship

between GXV targets and CAD, we performed a PPI en-
richment analysis (Fig. 7e), which indicated 115 nodes
and 635 edges. The MCODE networks identified for in-
dividual target lists have been gathered and are shown in
Fig. 7f. The MCODE results showed that biological func-
tion was mainly related to the p53 signaling pathway,
neuroactive ligand-receptor interaction, cGMP-PKG sig-
naling pathway, cAMP signaling pathway, apoptosis, cal-
cium signaling pathway, cAMP signaling pathway,
neuroactive ligand-receptor interaction, and metabolism
of xenobiotics by cytochrome P450.

Specific chemical identification
The Similarity Evaluation System for Chromatographic
Fingerprints of TCMs Software (version 2004A) recom-
mended by the China Food and Drug Administration
was used for analysis. Fig. S1A shows the HPLC finger-
prints of ten batches of GXV samples (S1–10). Sixteen
characteristic common peaks (1–16) were automatically
selected in the fingerprints. The relative standard devi-
ation values of the average retention time and peak areas
did not exceed 2 and 3%, respectively, indicating that the
method is good. The mixed reference solution was used
to identify the characteristic common peaks. Six com-
pounds were identified as Salvianolic Acid B (14), Sal-
vianolic Acid A (15), Salvianic Acid A Sodium (5),
Paeoniflorin (10), Paeonol (16), and Rosmarinic Acid
(12) (Fig. S1B). Through comparison with the crude
drug solution, it can be determined that peaks 1, 2, 3, 9,
10, and 16 were derived from Radix Paeoniae Rubra;
peaks 5, 13, and 14 were derived from Codonopsis Radix;
peaks 4 and 6 were derived from Schizandra Chinensis
Fructus (Fig. S1C). The other five peaks (peaks 7, 8, 11,
12, and 15) were unknown, which may be caused by co-
fried 6 herbs in the production process.

Discussion
TCM has a long history in clinical practice [59] and is
gradually recognized at home and abroad [60]. CAD is
the leading cause of mortality worldwide [61]. Great pro-
gress has been made in the treatment of CAD by TCM
in recent years [62, 63]. Previous studies have shown
that GXV combined with conventional medicine has a
better curative effect than conventional medicine alone
in CAD [8, 9]. GXV can significantly improve the clin-
ical symptoms [11, 12], reduce the incidence of angina



Fig. 6 Heatmap of the top 20 enriched terms across targets significantly associated with GXV and CAD, colored by P
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and the amount of nitroglycerin [11], improve the 24-h
Holter myocardial ischemia load and heart rate variabil-
ity [12], ejection fraction [10], stroke volume and cardiac
output based on echocardiography [13]. Additionally, GXV
reduces total cholesterol, triglycerides, and low density lipo-
protein cholesterol [11], and increases high-density lipopro-
tein cholesterol [11] and six-minute walking distance [13].
The underlying mechanisms are also being explored. GXV
lowers the serum levels of NT-pro BNP, hs-CRP, MMP-9,
Ang II and ET-1 in patients with CAD [10].
In vivo experiments showed that GXV increases the

ejection fraction and fractional shortening and reduces
the left ventricular mass index [14, 15, 18] and reduces
the levels of IL-6, TNF-α and other inflammatory factors
[14, 15] in rats with acute myocardial infarction by inhi-
biting the NF-κB pathway [18, 19].
Virtual screening and network pharmacology are

effective ways to find the relationship between multiple
components and targets of TCM [64, 65]. In the present
study, we identified the systemic mechanisms of GXV in
the treatment of CAD by these approaches, which pro-
vides a new strategy to study the potential active compo-
nents and targets of TCM [66, 67]. Our main findings
can be summarized as follows: (I) 119 potentially active
compounds from GXV had an interaction with 121
CAD-related targets, showing therapeutic activity; (II)
functional enrichment analysis revealed that the targets
from GXV were involved in various CAD-associated bio-
logical processes, such as cytokine-mediated signaling
pathway, blood circulation, cellular response to nitrogen
compound, response to wounding, regulation of secre-
tion by cell, positive regulation of MAPK cascade, posi-
tive regulation of cellular component movement,
apoptotic signaling pathway, response to oxygen levels,
reactive oxygen species metabolic process, response to
extracellular stimulus, response to lipopolysaccharide,
cellular response to drug, and regulation of DNA-
binding transcription factor activity; (III) the CAD-
associated targets of GXV were significantly enriched in
diverse pathways, including the PI3K-Akt signaling path-
way, HIF-1 signaling pathway, fluid shear stress and ath-
erosclerosis, calcium signaling pathway, cAMP signaling
pathway, serotonergic synapse, thyroid hormone signal-
ing pathway, regulation of lipolysis in adipocytes, and
drug metabolism-cytochrome P450, which are associated
with CAD.



Fig. 7 The enrichment analysis of shared targets. a Heatmap of GO enriched terms colored by P. b Network of GO enriched terms colored by
cluster, where terms containing different colors tend to have different clusters. c Heatmap of KEGG enriched terms colored by P. d Network of
KEGG enriched terms colored by cluster, where terms containing different colors tend to have different clusters. e PPI network, where terms
containing different colors tend to have different MCODE components. f The seven most significant MCODE components form the PPI network
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GXV is composed of six herbal medicines containing 119
active compounds that interact with 121 CAD-related tar-
gets. These herbs and chemical constituents of GXV have
been reported to be beneficial to CAD. Codonopsis Radix
shares immunomodulation effects [68, 69]. Radix Codonop-
sis polysaccharide, an active compound in Codonopsis
Radix, could maintain the T-cell balance against hydrocor-
tisone disturbance [70]. Choushenpilosulynes A-C, isolated
from Codonopsis Radix, can inhibit the expression of SQLE
involved in lipid metabolism [71]. ShenMai injection, pre-
pared from Panax ginseng and Ophiopogon japonicus, is
used as an add-on therapy for CAD [72, 73]. The main
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components of Ophiopogon japonicus exhibit various
pharmacological activities, such as cardiovascular protec-
tion [74–77], anti-inflammation [74, 76, 78–80], anti-
oxidation [74–76, 81], mitochondrial function preservation
[81], apoptosis inhibition [75, 81], and immunomodulation
[74, 77]. The extract of Ophiopogon japonicus decreased
ICAM-1 and VCAM-1 to play an endothelial protective
role from oxidative damage and dysfunction [82]. In
addition, it also inhibited proliferation [82]. Ophiopogon
japonicus has a regulatory impact on the cAMP signaling
pathway, WNT signaling pathway, and PI3K-AKT signaling
pathway by targeting HSPA8, TP53, and VEGFA [83]. The
key cardioprotective mechanisms of Schizandra Chinensis
Fructus and its active ingredients have been demonstrated
to include anti-oxidation [84–87], suppression of apoptosis
[84, 88], and anti-inflammation [84, 86, 87]. Schizandra
Chinensis Fructus increases antioxidant capacity and im-
proves endothelial dysfunction to ameliorate the extent of
atherosclerosis [85]. Schizandra Chinensis Fructus extracts
induce apoptosis via the ROS-mediated/mitochondria-
dependent pathway and JNK/p38 MAPK activation [89]. In
addition, Schizandra Chinensis Fructus was found to facili-
tate PI3K-AKT activation and inhibit the expression of
NOX2 in AMI mice and oxygen-glucose deprivation-
treated H9c2 cells [90]. Rehmannia Radix Praeparata had
efficient detectable antioxidant activity [91], and the PI3K-
Akt and MAPK signaling pathways were found in the
pathway analysis for CAD on Rehmannia Radix Praepar-
ata [92]. In addition, extraction from Rehmannia Radix
Praeparata regulated the IGF-1/PI3K/mTOR signaling
pathways [93]. The compounds from Radix Salviae
showed various pharmacological activities, such as anti-
inflammation [94–96], antioxidation [94, 96, 97], direct
thrombin inhibitory effects with a dose-effect relationship
[98], antiproliferation [99], improvement in microcircula-
tory disturbances [96], blocking of calcium inflow and pre-
vention of calcium overload [96], and anti-atherogenesis
[94], and its mechanisms may be related to activating the
Nrf2 pathway [97] and NF-κB modulation [95]. Radix
Paeoniae Rubra has antiinflammatory [100], antiprolifera-
tion [101], antiapoptosis [102], immunoregulatory [100],
scavenging free radicals [103], regulation of lipid metabol-
ism [104], antifibrosis [103], and myocardial protection
[102] properties via the NF-κB [100], MAPK [100], PI3K/
Akt/mTOR [102], and TGF-β/Smad [103] signaling path-
ways. Moreover, Radix Paeoniae Rubra extract had an in-
hibitory effect on thrombus formation, and the
antithrombotic effects were associated with the regulation
of vascular endothelium active substances, activating
blood flow and anticoagulation effects [105].
Fingerprints can comprehensively reflect the types

and quantities of chemicals contained in medicines,
thereby effectively evaluating and controlling the qual-
ity of TCM [106]. In this study, HPLC was used to
establish the fingerprints of GXV, which can reflect
the quality of the overall characteristics and provide a
basis for overall quality control, thereby improving the
stability and ensuring the safety and effectiveness of
clinical medication. It also laid the foundation for
basic research on the medicinal substances of GXV.
In conclusion, these previous findings support the po-

tential role of herbal and chemical constituents of GXV
in the treatment of CAD. Furthermore, we have vali-
dated the new potential therapeutic targets and under-
lying molecular mechanisms of GXV against CAD,
which might provide a reference for its future applica-
tion in cardiovascular diseases [29, 107, 108]. More stud-
ies are needed to further validate the therapeutic
properties of GXV.
The results presented in this study improved our un-

derstanding of GXV, which is prescribed for CAD. The
system mechanisms of GXV for CAD were identified
through 119 major active ingredients and 121 candidate
targets. In particular, those candidate targets were highly
correlated with CAD in our functional enrichment re-
sults. These studies indicate the feasibility of the pre-
dicted biological processes and pathways. However, the
regulation of GXV on key biological processes and key
pathways in CAD needs further basic and clinical re-
search confirmation. The findings of potential key tar-
gets may provide new clues for CAD treatments with
GXV.
Conclusions
Via the method of integrative virtual screening and net-
work pharmacology, our study predicts the targets of the
ingredients of GXV and explores the underlying mecha-
nisms of the potential anti-CAD effects, providing a
complementary and alternative therapy for CAD. We
have reasons to believe that the potential mechanisms
are direct or indirect synergy of multitarget and multi-
pathway efforts. However, more experimental validation
is essential to reveal the effect of GXV against CAD.
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