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Abstract

Background: Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes.
Diosgenin is a natural steroidal saponin with a variety of beneficial effects, including antidiabetic effects, and is a
raw material for the synthesis of carrier hormones. In our study, we aimed to assess the antioxidant effects of
diosgenin in diabetic mice.

Methods: Male C57 mice were fed a high-fat diet for 8 weeks and intraperitoneally injected with streptozotocin
(STZ) at a dose of 100 mg/kg for 2 consecutive days. Eligible mice were divided into the normal control group
(CON), diabetic group (DM), low-dose diosgenin (50 mg/kg) group (DIO50) and high-dose diosgenin (100 mg/kg)
group (DIO100). Treatment was started 6 weeks after the induction of diabetes by STZ and continued for 8 weeks.
Blood sugar and body weight were monitored dynamically. The behavioural effects of diosgenin were detected by
a hot tail immersion test and paw tactile responses. HE staining was used to evaluate edema and degeneration of
the sciatic nerve. The levels of SOD, MDA and GPx were tested according to the instructions of the respective kits.
The levels of Nrf2, HO-1 and NQO1 were detected by immunofluorescence and Western blotting. Statistical analysis
was performed using SPSS, and P < 0.05 was considered statistically significant.

Results: Diosgenin decreased the blood glucose levels and increased the body weight of diabetic mice. There was
a significant increase in the tail withdrawal latency of diabetic animals, and mechanical hyperalgesia was
significantly alleviated after diosgenin treatment. Histopathological micrographs of HE-stained sciatic nerves showed
improvement after diosgenin treatment. Diosgenin attenuated the level of MDA but increased the activities of SOD
and GPx. Diosgenin increased the expression of Nrf2, HO-1 and NQO1.

Conclusions: Our results demonstrate that diosgenin can ameliorate behavioural and morphological changes in
DPN by reducing oxidative stress. The Nrf2/HO-1 signalling pathway was involved in its neuroprotective effects.
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Background
Diabetes is a common and complex endocrine disease
that can cause serious complications in multiple tissues,
and it has become a serious public health problem
worldwide [1, 2]. Diabetic neuropathy is an important
factor leading to disability in diabetic patients [3]. It is
estimated that in 2015, there were 415 million adults
worldwide suffering from diabetes; additionally there are
many undiagnosed adults who suffer from impaired glu-
cose tolerance, which is a major risk factor for diabetes
[4]. There is a common complication in people with dia-
betes that is characterized by greater sensitivity to nox-
ious stimuli than that of normal people (hyperalgesia)
[5]. Clinically, the symptoms of diabetic peripheral neur-
opathy seriously affect the quality of life and mental
health of patients, so treating these symptoms of
DPN in the clinic is a new challenge [6]. Currently,
there are very few available therapies for diabetic
neuropathy because therapeutic opportunities are lim-
ited by many factors, such as serious adverse reac-
tions and ineffectiveness. Therefore, we still need to
find a suitable treatment for these complications of
neuropathy [7].
Chronic hyperglycaemia develops, oxidative stress is

activated, and a series of complex reactions lead to nerve
tissue damage, which in turn causes neuropathic pain
[8]. There are many opinions on the pathogenesis of dia-
betic neuropathy. Early reports highlighted the import-
ance of four hyperglycaemic-mediated cellular pathways,
including the protein kinase C (PKC), advanced glyca-
tion end product (AGE), polyol and hexosamine path-
ways [9]. Later, it was discovered that these pathways are
linked by oxidative-nitrosative stress and that oxidative-
nitrosative stress is related in some way to all known
aetiologies of diabetic neuropathy [10]. Oxidative stress
is one of the main potential mechanisms of painful dia-
betic peripheral neuropathies. Oxidative stress can lead
to neurological damage in a variety of neuropathies,
including diabetic neuropathy, Charcot-Marie neur-
opathy, and acrylamide-induced neuropathy [11–14].
Therefore, we assessed changes in oxidative stress our
study of DPN.
Neurons have their own defence system to resist oxi-

dative stress, which includes various enzymatic antioxi-
dant and nonenzymatic antioxidants (superoxide
dismutase (SOD), catalase, glutathione S-transferase
(GST), glutathione peroxidase (Gpx), glutathione (GSH),
various vitamins, etc.) that detoxify reactive oxygen spe-
cies (ROS) and reduce nerve damage, but this defence
system is very weak. In the case of chronic hypergly-
caemia, the redox balance in the body is disrupted,
resulting in damage to proteins, DNA and cell mem-
branes, which ultimately leads to the impairment of
neuronal function [11, 15].

Nrf2 is an important transcription factor that regulates
cellular oxidative stress. It is beneficial for ameliorating
oxidative stress, promoting cell survival and maintaining
redox homeostasis in cells. The Nrf2-ARE signalling
pathway initiates the regulation of its detoxification
enzymes, such as nucleotide adenosine diphosphate hy-
drogenase (NADPH), haem oxygenase-1 (HO-1) and
quinone oxidoreductase-1 (NQO1), which resist oxida-
tive stress and protect cells [16].
At present, it is necessary to design an effective new

compound for relieving pain in diabetic peripheral neur-
opathy. Chinese herbal plants and their active ingredi-
ents are used to manage diabetes mellitus and its
complications [17, 18]. Diosgenin is the main compo-
nent of the Chinese herbal medicine Dioscorea nippo-
nica Makino, which is a steroidal saponin in the form of
glycoside [19, 20]. It has been found to have many bene-
ficial effects, including hypoglycaemic, [21, 22], cardio-
vascular protective [21, 23] and hypolipidaemic effects
[24]. Diosgenin can also attenuate oxidative damage in-
duced by D-galactose in ageing mice [25]. It also en-
hances the antioxidant defence system, relieves oxidative
stress, and reduces inflammation or apoptosis [23].
Therefore, we hypothesize that diosgenin may prevent
or ameliorate diabetic peripheral neuropathy.
Streptozotocin (STZ)-induced diabetic rats develop

symptoms of hyperalgesia after being exposed to harmful
external stimuli, so they are often used as a model of
diabetic peripheral neuropathy and can also be used to
test the effect of analgesic drugs [26–28]. In this study,
we used male C57 mice with STZ-induced diabetes to
evaluate the protective effects of diosgenin on neur-
opathy in diabetic mice. Behavioural testing and mea-
surements of biochemical markers associated with
oxidative stress in sciatic nerves were performed.

Methods
Animals and treatment
Eight-week-old male C57 mice were purchased from the
Laboratory Animal Center of Jinzhou Medical Univer-
sity. The mice were housed under a 12-h light-dark
cycle, food and water were freely available. All proce-
dures were conducted in accordance with the ethical
guidelines set up by the International Association for the
Study of Pain (IASP) on the use of laboratory animals in
experimental research. The animal study was approved
by the Animal Care and Use Committee of Jinzhou
Medical University.
After being fed a high-fat diet (Casein, Lactic, 30

Mesh:200 g; Cystine, L: 3 g; Sucrose, Fine Granulated:
354 g; Starch, Corn: 315 g; Lodex 10: 35 g; Solka Floc,
FCC200: 50 g; Soybean Oil, USP: 25 g; Lard: 20 g;
S10026B: 50 g; Choline Bitartrate: 2 g; V10001C: 1 g;
Dye, Yellow FD&C #5, Alum. Lake 35–42%: 0.05 g;
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Total: 1055.05 g) for 8 weeks, the mice were randomly
assigned to groups and fasted for 12 h. Then, diabetes
was induced by intraperitoneal (i.p.) injection of 100mg/
kg STZ (Sigma, USA) for 2 consecutive days. Immedi-
ately prior to injection, STZ was dissolved in sodium cit-
rate buffer (pH 4.5). The control mice were
intraperitoneally injected with the same dose of sodium
citrate buffer. Blood glucose levels in samples from the
tail vein were monitored weekly. Weight was evaluated
every week. Animals that exhibited blood glucose levels
> 16.7 mmol/L within 1 week after the completion of
STZ injection were considered diabetic and were
included in the study; these animals showed progression
to neuropathy-like symptoms and were tested behav-
iourally after 6 weeks [29, 30].
Eligible mice were divided into the normal control

group (CON), diabetic group (DM), low-dose diosgenin
(50 mg/kg) group (DIO50) and high-dose diosgenin
(100 mg/kg) group (DIO100) [31]. There were six mice
per group, and additional mice were added in the case of
death. Diosgenin (Molecular formula: C27H42O3,
Molecular weight:414.627. Solarbio Science & Technol-
ogy Co., Ltd.,) was dissolved in 0.5% CMC-Na solution.
The drug was administered intragastrically. The control
group was given the same dose of vehicle. Treatment
was started 6 weeks after the induction of diabetes by
STZ diabetes and continued for 8 weeks. The body
weight and blood glucose levels of the mice were moni-
tored continuously. Behaviour and related parameters
were tested 24 h after the last intragastric
administration.

Behavioural tests
Before starting the behavioural tests, the mice were
habituated to the experimental site for 1 h to prevent
the environment from affecting behavioural responses.
Behavioural testing was performed 24 h after the last
intragastric administration of the drug. To test the
behavioural effects of diosgenin in diabetic mice, we
used the hot tail immersion test and the Von Frey
test.

Hot tail immersion test
To detect thermal hyperalgesia in mice, warm water with
a temperature of 50 ± 0.5 °C was prepared. The mice
were gently restrained with a towel, and the tail was
exposed. One third of the tail was quickly immersed in
the water, and a stopwatch was used to record the dur-
ation of tail immersion and the time at which the tail
flick reflex began. The cut-off time was set at 30 s to
prevent tissue damage. The experiment was repeated 4
times per mouse, and there was an experimental interval
of 5 min. The final results were averaged [32].

Paw tactile response test
To detect tactile allodynia in the mice, the Von Frey test
was performed. The mice were placed in a cage with a
stainless-steel mesh bottom for at least 15 min. A series
of Von Frey filaments (range: 0.008-300 g) were then
gradually applied vertically to the left hind paw of each
mouse so that the filament flexed. Lifting, shaking, or
licking of the paws were considered positive reactions.
Each mouse was tested 3 times with an interval of at
least 10 min. The final results were averaged [32].

Tissue sample collection
At the end of the experiments, the mice were sacrificed
by cervical dislocation under anaesthesia with 3%
sodium pentobarbital by intraperitoneal injection. Three
mice from each group were fixed with 4% paraformalde-
hyde via arterial perfusion. The sciatic nerves were iso-
lated quickly and stored in 4% paraformaldehyde
solution for tissue slicing. The sciatic nerves of the other
three mice in each group were isolated quickly and
stored at − 80 °C.

Haematoxylin-eosin staining
The sciatic nerves stored in 4% paraformaldehyde were
dehydrated and embedded in paraffin and then cut at a
thickness of 5 μm to prepare slices. The sections were
stained with haematoxylin and eosin (H&E), sealed with
gum, air-dried and observed under a light microscope
(magnification: 40×) to evaluate edema and degeneration
of the sciatic nerve.

Evaluation of SOD, MDA and GPx
The levels of SOD, MDA and GPx in the sciatic nerves
of the mice were tested according to the instructions of
the respective kits (Jiancheng Bioengineering Institute,
China).

Western blot
The sciatic nerves stored at − 80 °C were placed in pre-
pared RIPA lysis buffer, shredded, sonicated, fully lysed,
and centrifuged, and the supernatant was collected for
quantitative protein analysis. Then, the samples were
diluted to the same protein concentration. Equal
amounts of proteins were separated by SDS-PAGE and
transferred to a PVDF membrane. After blocking with
3% BSA, the membrane was incubated with primary
antibodies against Nrf2, HO-1 and NQO1 (Thermo Sci-
entific, USA) overnight at 4 °C. Then, the cells were
washed three times with TBST for 5 min each time. The
membrane was incubated for 2 h with the corresponding
secondary antibody (Thermo Scientific). The bound anti-
bodies were visualized using a Fusion Chemilumines-
cence Imager. The relative band densities were
quantified by densitometry using ImageJ software.
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Immunofluorescence analysis
The sciatic nerve sections were washed three times with
PBS for 5 min at room temperature. They were then
permeabilized with 3% Triton-X 100 for 5 min and
washed three times with PBS. They were then blocked
with goat serum for 2 h and incubated overnight at 4 °C
with an Nrf2 primary antibody. The staining methods
for HO-1 and NQO1 were the same. The next day, the
sections were washed three times with PBS for 5 min
each and incubated with a secondary antibody directed
against the primary antibody for 2 h, after which they
were protected from light. The sections were washed
three times with PBS, incubated with DAPI, and covered
with coverslips. The slides were observed using a fluor-
escence microscope.

Statistical analysis
All the obtained data are expressed as the mean ± SEM,
and statistical analysis was performed using SPSS version
22.0. The parameters were analysed by using one-way
ANOVA followed by least significant difference (LSD)
post hoc test. P < 0.05 was considered statistically
significant.

Results
Diosgenin decreased the blood glucose levels and
increased the body weight of diabetic mice
During the study period, vehicle-treated diabetic mice
showed a significant decrease in body weight at week 8,
and compared with the vehicle-treated diabetic mice, the
treated mice showed improvements in body weight after
the intragastric administration of the two doses of dios-
genin for 8 weeks (Fig. 1a). In addition, the diabetic
group exhibited a significant increase in blood glucose
levels at week 8 compared with week 0, and compared
with vehicle-treated diabetic mice, diabetic mice treated

with diosgenin presented significantly reduced blood
glucose levels at week 8 (Fig. 1b).

Diosgenin reduced hyperalgesia and allodynia in diabetic
mice
In the hot immersion test, the tail-flick latency of the
diabetic animals was significantly lower than that of the
normal control animals (P < 0.01). There was a signifi-
cant increase in the tail withdrawal latency of diabetic
animals treated with the two doses of diosgenin (P <
0.01) (Fig. 2a). Mechanical hyperalgesia was more pro-
nounced in diabetic animals than in normal control ani-
mals. The Von Frey test showed that mechanical
hyperalgesia was apparent in diabetic animals (P < 0.01),
and this hyperalgesia was significantly alleviated after
diosgenin treatment (P < 0.01) (Fig. 2b).

Diosgenin administration improved histopathological
changes in the sciatic nerves of diabetic mice
Histopathological micrographs showed significant axonal
degeneration, myelinolysis, and endometrial edema in
the sciatic nerves of DM animals compared to those of
the normal control group. There were improvements in
axonal degeneration, myelinolysis and endometrial
edema in the mice treated with diosgenin (Fig. 3).

Diosgenin administration reduced oxidative stress in the
sciatic nerve of diabetic mice
The level of MDA (a marker of oxidative stress) in the
sciatic nerves of diabetic mice was elevated compared
with that in the sciatic nerves of normal mice (P < 0.01).
Diosgenin attenuated the level of MDA, and this effect
was dose-dependent (Fig. 4a). The antioxidant enzymes
SOD and GPx were inhibited in the sciatic nerves of dia-
betic mice. The two different doses of diosgenin both
increased the activity of antioxidant enzymes (Fig. 4b-c).
The results indicated that the administration of

Fig. 1 Diosgenin decrease blood glucose and increase body weight in diabetic mice. a Body weight of mice in each group. b Blood glucose of
mice in each group. All data are presented as mean ± S.E.M, n = 12. *p < 0.05, **p < 0.01, DM compared with control, #p < 0.05, ##p < 0.01, DIO50
compared with DM, $p < 0.05, $$p < 0.01, DIO100 compared with DM
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diosgenin can restore the beneficial effects of the anti-
oxidant defence system in diabetic mice.

Diosgenin protected the sciatic nerves of diabetic mice
through the Nrf2/HO-1 pathway
To explore the mechanism by which diosgenin resists
oxidative stress, the levels of proteins associated with the
Nrf2/HO-1 pathway were detected. The results of
immunofluorescence staining showed that the expres-
sion of Nrf2, HO-1 and NQO1 was decreased signifi-
cantly in the sciatic nerves of diabetic mice compared to
those of normal control mice. However, the fluorescence
intensities of Nrf2, HO-1 and NQO1 were increased
after the administration of diosgenin (Fig. 5). The
Western blot results were consistent with the immuno-
fluorescence staining results. There was a significant
decrease in Nrf2 expression in diabetic sciatic nerve
compared to normal sciatic nerves (P < 0.05). Moreover,
decreases in the levels of the downstream cell protective
enzymes HO-1 and NQO1 were detected (P < 0.05). The
administration of 50 mg/kg and 100 mg/kg diosgenin

increased the level of Nrf2 in diabetic mice and
increased the levels of HO-1 and NQO1 (P < 0.01)
(Fig. 6).

Discussion
DPN is one of the most common complications in dia-
betic patients and is characterized by disruption of nerve
conduction in the peripheral nervous system [33]. The
common pathogeneses of DPN are inflammatory dam-
age to myelinated neurons and oxidative stress in endo-
thelial cells [8]. It has been observed in clinical and
experimental DPN that the innervation of peripheral
nerve tissue is decreased. Because of hypoxia in the
endometrium, neuroischaemia, the loss of neurotrophic
support, and neurological dysfunction are observed [34].
Studies have shown that a variety of mechanisms, such
as adrenergic mechanisms, Na1 currents, opioid neuro-
transmission and oxidative stress, are involved in the
neuropathic pain response in DPN [35–37]. In recent
years, many researchers have focused on oxidative stress
in peripheral neuropathy. It is an important factor in

Fig. 2 The effect of diosgenin treatment on behavioral performance in diabetic mice. a Thermal nociceptive threshold of hot tail immersion test.
b Mechanical nociceptive threshold of Von Frey test. All data are presented as mean ± S.E.M, n = 12.**p < 0.01, DM compared with control, ##p <
0.01, DIO50 compared with DM, $$p < 0.01, DIO100 compared with DM

Fig. 3 Images of H&E staining of sciatic nerves of mice in each group. In the mice treated with diosgenin 50 mg/kg or 100 mg/kg for 4 W or 8 W,
there was improvement with sciatic nerve histopathological changes
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peripheral neuropathy caused by chemotherapy and dia-
betic neuropathy [11, 38]. We conclude from this study
that the neuroprotective effects of diosgenin are mainly
exerted through a reduction in the oxidative stress
response and the enhancement of the oxidative defence
system. The results confirmed previous findings regard-
ing the therapeutic effects of diosgenin [39, 40].
Histological analysis showed that the biochemical

changes in STZ-induced diabetic mice included degener-
ation of sciatic nerve fibres and endometrial edema. The
sciatic nerves of mice treated with diosgenin showed
almost normal axons and intact myelin. The beneficial

effects of diosgenin observed by histology may be related
to its antioxidant capacity. In summary, diosgenin treat-
ment improves tissue changes in the sciatic nerve, pos-
sibly due to its antioxidant capacity.
It has been determined that oxidative stress is a major

factor in diabetic neuropathy and leads to an abnormal
pain response in DPN [8]. The increase of MDA,
TBARS, and isoprostanes have been observed in diabetes
experimental model [41, 42]. Damage to the antioxidant
defence system and hyperoxia cause peripheral nerves to
be susceptible to oxidative damage, and neuropathy in
diabetic animals can be alleviated by minimizing

Fig. 4 Diosgenin administration reduced oxidative stress in sciatic nerve of diabetic mice. a The level of MDA in sciatic nerve. b The level of SOD
in sciatic nerve. c The level of GPx in sciatic nerve. All data are presented as mean ± S. E.M. (n = 3), *p < 0.05, **p < 0.01

Fig. 5 Expression levels of Nrf2, HO-1 and NQO1 in sciatic nerves. Immunofluorescence results of Nrf2 (a), HO-1 (b) and NQO1 (c) in sciatic nerves
from different groups. d The fluorescence intensity of Nrf2. e The fluorescence intensity of HO-1. f The fluorescence intensity of NQO1. All data
are presented as mean ± S.E.M. (n = 3), *p < 0.05, **p < 0.01
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oxidative damage in the peripheral nerves [43]. ROS can
cause damage to peripheral nerves by increasing oxida-
tive stress or attenuating the antioxidant defence systems
[11]. They can cause DNA damage and cellular oxida-
tion reactions such as protein oxidation and cell mem-
brane lipid peroxidation [44, 45]. However, the cells
themselves have enzymatic and nonenzymatic antioxi-
dant defence systems that detoxify ROS, such as SOD
and GPx. However, chronic stress in DPN destroys the
antioxidant capacity of cells, leading to the development
of abnormal oxidative stress and molecular changes
associated with DPN [46]. Previous studies have identi-
fied glucose-induced superoxide production as an
important part of the pathophysiology of diabetic micro-
vascular complications [10]. High doses of glucose cause
NADH flux to increase the intensity of free radical pro-
duction, which further leads to a series of reactions, such
as protein nitration at tyrosine residues and DNA dam-
age [47]. In the present study, the production of MDA
by the sciatic nerves was increased in diabetic mice com-
pared with normal control, indicating an increase in oxi-
dative stress. But, diosgenin could ameliorated MDA.
Our results also showed that diosgenin significantly in-
creased the levels of SOD and GPx in sciatic nerves. In
our study, several changes in the levels of oxidative
stress confirmed that diosgenin inhibited oxidative stress
in diabetic mice. The reduction in oxidative stress in the
sciatic nerve may be attributed to the antinociceptive
effect of diosgenin.
Nrf2 is a critical transcription factor of the antioxi-

dant defence system that induces the expression of
phase II detoxification enzymes (HO-1, NQO1 and
epoxide hydrolase, etc.) [48]. HO-1 has also been
found to have potential neurovascular protective
properties in diabetic neuropathy [49]. In our study,
in the presence of high glucose, DPN mice showed a
decrease in the level of Nrf2, which in turn led to
decreases in the levels of HO-1 and NQO1. After
the administration of diosgenin, the expression of
Nrf2 increased in mice, and the trend of HO-1 and
NQO1 expression was the same. This shows the

beneficial effect of diosgenin on the antioxidant de-
fence system.

Conclusion
This study focused on improvements in neuropathy elic-
ited by diosgenin in STZ-induced diabetic mice. Our
results demonstrate that diosgenin can ameliorate the
behavioural and morphological changes observed in
DPN by reducing oxidative stress. The Nrf2/HO-1 sig-
nalling pathway is involved in the neuroprotective effects
of diosgenin.
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