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Abstract

Background: Weight reduction frequently occurs in patients receiving vagus nerve stimulation (VNS) therapy.
Therefore, we hypothesized that during dietary intervention for weight loss, auricular electric stimulation (AES), an
alternative of VNS, accelerates weight loss by increasing white adipose tissue (WAT) browning and increases energy
expenditure.

Methods: C57BL/6J male mice were fed a high-fat diet for 5 wk. to induce obesity, then switched to a low-fat diet
for 5 wk. and allocated into 3 groups to receive 2 Hz electric stimulation on ears, electrode clamps only, or nothing
(AES, Sham and Ctrl, respectively).

Results: Switching to a low-fat diet reduced body weight progressively in all 3 groups, with the greatest reduction
in the AES group. In accordance with a mild decrease in feed intake, hypothalamus mRNA levels of Npy, AgRP tended
to be reduced, while Pomc tended to be increased by AES. Mice in the AES group had the highest concentrations of
norepinephrine in serum and inguinal WAT, and expression levels of uncoupling protein-1 (UCP-1) and tyrosine
hydroxylase in inguinal WAT. Furthermore, their subcutaneous adipocytes had multilocular and UCP-1" characteristics,
along with a smaller cell size.

Conclusion: AES, by increasing WAT browning, could be used in conjunction with a low-fat diet to augment weight

loss in addition to suppressing appetite.
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Background

Obesity is a worldwide epidemic and is causally linked with
many chronic diseases [1]. To tackle this problem, it should
be noted that obesity is a complex and multi-factorial
disease which involves the integration of social, cultural, be-
havioral, physiological, neuroendocrinal, and genetic
factors. For many people, adherence to the principle of
weight reduction, namely eating less and exercising more,
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is difficult. Bariatric surgery and pharmacological treatment
are only applicable for severe or morbid obesity. Therefore,
there is a strong impetus to develop alternative approaches.

Electrical stimulation of the vagus nerve (VNS), ap-
proved by the Food and Drug Administration (FDA) for
treating refractory epilepsy and resistance depression, is
known to cause weight loss [2—6]. Ear skin (locating in
concha) has the greatest density of branches of the vagus
nerves derived from the superior jugular ganglion of the
vagus [7]. Therefore, application of auricular VNS or
acupuncture in weight reduction is common, an effect
mainly attributable to the suppressed appetite [8—11].
Recently, auricular VNS was reported to increase brown
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adipose tissue (BAT) activity [12, 13]. BAT is highly sym-
pathetic innervated, with thermogenic functions trig-
gered by norepinephrine released from sympathetic
nerve terminals and mediated by a [B3-adrenoceptor/
cAMP-activated protein kinase pathway [14].

White and brown are 2 distinct adipose tissues for stor-
age of excess energy and thermogenesis, respectively. In
addition to traditional white and brown adipocytes, a third
type of adipocyte, i.e. brown-in-white (brite) or beige cells,
that emerge within white adipose tissue (WAT) are
regarded as a plastic response to an energy surplus [14].
Brite adipocytes evolve from a different lineage than brown
adipocytes [14]; they are inducible, multilocular, and ex-
press a BAT-specific uncoupling protein-1 (UCP-1) marker
for thermogenesis [15]. UCP-1, also called thermogenin, re-
sides in the mitochondrial inner membrane and uncouples
the respiratory chain from oxidative phosphorylation by
disrupting the H" gradient across the membrane. Contribu-
tions of BAT to anti-obesity were largely ignored until
functional BAT in adult humans was identified by **fluoro-
deoxyglucose-positron  emission tomography-computed
tomography (FDG-PET-CT) in supraclavicular and neck
regions, with molecular signatures that resembled murine
brite rather than classical brown adipocytes present in
interscapular BAT [16-18]. Furthermore, human BAT ac-
tivity was inversely correlated with adiposity [16, 19].
Recruiting more brite cells or increasing WAT browning by
pharmacological or transgenic approaches turn out to be a
fascinating strategy for anti-obesity since it improved glu-
cose tolerance and anti-steatosis as well [20].

There existed an anatomical relationship between the
auricular branch of the vagus nerve and the nucleus tractus
solitarius (NTS), the primary vagal afferent center [21, 22].
Electric stimulation at exterior margin of the auricle, i.e.
auricular electric stimulation (AES), has the same auricular
VNS effects, i.e. increasing firing rate of NTS neurons and
parasympathetic tone [23-25]. The exterior margin of the
auricle is mainly innervated by the great auricular nerve
(GAN) and the central projections of the GAN to NTS has
been demonstrated by neural tracing study [26]. Accord-
ingly, AES can be used as an alternative of auricular VNS.
In this study, we hypothesized that during dietary interven-
tion for weight loss, AES accelerates weight loss by increas-
ing WAT browning. The weight reduction effect was tested
in diet-induced obese (DIO) mice switched to a standard
chow diet with or without AES. Histological and molecular
markers for WAT browning were checked in subcutaneous
inguinal WAT as it is most susceptible to browning among
all fat depots [27].

Methods

Animals and diets

Twenty four male C57BL/6JNarl mice were purchased
from the National Laboratory Animal Center of the
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National Applied Research Laboratories, Taipei, Taiwan.
At 6 wk. of age, all mice were fed a butter-based high-fat
diet (30% dietary fat comprised of 29% butter and 1% soy-
bean oil) for 5 wk. to induce obesity [indicated as wk. -
5 0 in Fig. 1b]. C57BL/6] mouse is prone to obesity and
diabetes in response to a high-fat diet [28, 29]. The diet
composition as reported in Chen et al. [30] has been veri-
fied to induce obesity and associated metabolic disorders
in mice [30, 31]. Their body weight reached 31.3+2.4 g at
wkO in contrast to 24.0 £ 1.6 g of chow-diet fed peers (>
20% higher). After DIO, mice were weighed and allocated
by body weight into 3 groups (n =8 for each group), i.e.
AES (+/+ for electricity/clamps), Sham (-/+ for electri-
city/clamps), and Ctrl (-/- for electricity/clamps). They
were fed a low-fat non-purified diet (Altromin 1320 Rat &
Mouse Maintenance diet, Fwusow Industry Co. Ltd.,
Taiwan; containing 6% water, 51% crude carbohydrate,
23.5% crude protein, 4.5% crude lipid, 6% crude fiber, and
9% ash) onward for 5 wk. and concomitantly, AES or
sham operation were applied during this period [indicated
as wk. 0 5 in Fig. 1b]. The body weight of Ctrl, Sham
and AES group at wk. 0 was not different (i.e. 30.8 + 2.6,
31.3+24 and 31.5+1.8g, respectively). All mice were
housed in polypropylene cages in groups of four mice per
cage and were kept in a room maintained at 23+2°C,
with a controlled 12-h-light:-dark cycle with ad libitum
access to feed and drinking water. Body weight and feed
intake were recorded twice per week. Cumulative body
weight loss (from baseline, i.e. switching point of diet) was
calculated each week. Animal care and research protocols
were based on principles and guidelines approved by the
Guide for the Care and Use of Laboratory Animals [32].
Protocols for animal care and handling were approved by
the Institutional Animal Care and Use Committee of
China Medical University (Protocol 103—69-N).

Auricular electrostimulation

AES was applied under anesthesia by isoflurane adminis-
tered through a vaporizing system (MATRX VIP 3000,
Midmark, USA). Mice in the AES group received electrical
stimulation (frequency, 2Hz; intensity, 2 mA; visual ear
twitch) using clip electrodes (ES apparatus Trio 300, Ito,
Japan) with the anode placed at the ear lobe and cathode at
the ear apex [23-25], as shown in Fig. 1a. Stimulation was
done 20 min/d (with each ear receiving the stimulus for
10 min) and 3 d each week (13:00-16:00 on Monday,
Wednesday, and Friday) for 5 wk. consecutively. For the
Sham group, anesthesia and clip electrodes were applied
but no electricity was given and Ctrl mice were only
anesthetized.

Tissue sampling and biochemical analysis
At the end of the study, feed was withheld overnight and
the mice were killed by carbon dioxide asphyxiation.
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weight reduction:
low-fat diet £ AES

Fig. 1 Application of clip electrodes on mouse ears (a), body weight throughout the study (b), as well as cumulative weight loss (c) and daily
feed intake (d) during low-fat diet intervention period of mice in three groups. Data are mean = SD, n = 8. " Means without a common letter
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Blood was collected from the abdominal vena cava,
allowed to clot and serum separated. WAT (mesenteric,
retroperitoneal, epididymal, and inguinal fat) were
excised and weighed. Aliquots of inguinal fat and hypo-
thalamus were quick-frozen in liquid nitrogen and
stored at — 80 °C for RNA or protein extraction. Concen-
trations of catecholamines (epinephrine and norepineph-
rine) in serum and inguinal fat (RIPA buffer extract)
were measured using commercial kits (R&D, Minneap-
olis, MN), following manufacturer’s instructions.

RNA isolation and mRNA detection

The mRNA levels of Npy, AgRP and Pomc (encoding neuro-
peptide Y, agouti-related peptide and pro-opiomelanocortin,
markers for appetite regulation) in hypothalamus, as well as
Ucpl (markers for WAT browning) in inguinal fat were
measured by qRT-PCR. Total RNA was extracted from
homogenized tissue using TRIZOL reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s in-
structions and 1 mg total RNA was reverse-transcribed into

first-strand cDNA using 200 units of MMLV-RT (Promega,
Madison, WI, USA) in a total volume of 20mL. For
real-time PCR, a TagMan system with inventory primers
and probes (Applied Biosystems, Foster City, CA, USA) or a
SYBR system with self-designed primers was used (Table 1).
Amplification using 40 cycles of 2 steps (95 °C for 15s and
60 °C for 1 min) was done with an ABI Prism 7900HT se-
quence detection system.

Table 1 Assay ID of the inventory primers and probes and the
sequence of the self-designed primers used for gRT-PCR

Gene Accession number Assay ID or primer sequence

Ucepl NM_009463.3 Mm01244861_m'

Npy NM_023456.3 F: CAGAACAAGGCTTGAAGACC C
R: GCAGACTGGTTTCAGGGGAT

AgRP NM_007427.3 F: GAGTTCCCAGGTCTAAGTCTGAATG
R: ATCTAGCACCTCCGCCAAAG

Pomc NM_008895 F: CCCGCCCAAGGACAAGCGTT

R: CTGGGCCCTTCTTGTGCGCGT

"Inventory primers and probes purchased from Applied Biosystems
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Immunoblotting

Samples of inguinal fat (0.1 g) were homogenized in RIPA
buffer which contained 1% protease inhibitor cocktail
(Sigma, St. Louis, MO, USA). Appropriate amounts of
homogenate containing 50 mg of protein were electropho-
resed on 10% SDS gels, transferred to a PVDF transfer
membrane, and immunoblotted. Primary antibodies used
were mouse antibodies against B-actin (St John’s Labora-
tory, London, UK), tyrosine hydroxylase (TH; Millipore,
California) and rabbit antibodies against human UCP-1
(Abcam, Cambridge, UK) (diluted 1:1000 in PBS). In
addition, HRP-labeled goat anti-mouse IgG antibodies
(Jackson ImmunoResearch, West Grove, PA, USA) and
goat anti-rabbit IgG antibodies (Abcam) at a dilution of
1:5000 in PBS were used as a secondary antibody. Bound
antibodies were detected using an enhanced chemilumin-
escence Western blotting kit (Amersham International,
Uppsala, Sweden) and images quantified by densitometric
analysis (Multimage Light Cabinet, Alpha Innotech Cor-
poration, San Leandro, CA, USA).

Immunohistochemical analyses

A portion of inguinal fat was fixed in 10% formalin, dehy-
drated through a graded ethanol series, embedded in par-
affin, and cut into 5 um sections. Sections were incubated
with 5% goat serum in PBS after deparaffinization and re-
hydration. The primary antibody was a rabbit antibody
against human UCP-1 (Abcam) (diluted 1:100 in PBS),
whereas the secondary antibody was biotinylated goat
anti-rabbit IgG antibodies (Dako, Carpinteria, CA, USA)
(diluted 1:250 in PBS). Sections for UCP-1 staining were
processed using a Dako kit (Dako REALTM envision TM
detection system) according to the manufacturer’s instruc-
tions and examined on a Primo Star microscope (Zeiss,
Oberkochen, Germany). Adiposoft software (ImageJ; Na-
tional Institutes of Health, Bethesda, MD, USA) was used
to calculate adipocyte cell diameter.

Statistical analyses

Data were expressed as mean + SD. Comparisons among
groups were done with 1-way ANOVA and Duncan’s
multiple range test. If variances were not homogeneous,
data were log-transformed prior to analysis. The General
Linear Model (SAS, SAS Institute, Cary, NC, USA) was

Table 2 Body fat (%) and adipocyte diameter (mm)'
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used for statistical analyses and differences were consid-
ered significant at P < 0.05.

Results

Effects of AES on weight reduction

As expected, body weight was linearly increased by a
high-fat diet, whereas switching to a low-fat diet caused a
rapid decrease in body weight at the 2nd wk., followed by
less rapid declines, irrespective of AES or not (Fig. 1b).
However, when body weight change (A) were calculated
and expressed as cumulative weight loss from baseline
(switching point of diet), there was a trend of AES >
Sham>Ctrl across the 5-wk weight reduction period,
with a difference (AES vs. Ctrl, P <0.05) at the last week
(Fig. 1c). Although daily feed intake was not significantly
different among groups, there was an opposite trend to
weight loss, i.e. AES < Sham<Ctrl (Fig. 1d).

There were no significant differences among groups for
body fat percentage in mesenteric, retroperitoneal, epi-
didymal, and inguinal fat pads (Table 2). However, adipo-
cyte diameter in inguinal fat (representative of
subcutaneous fat) in the AES group was significantly
smaller than in Ctrl, with an intermediate value for Sham
(Table 2).

Effects of AES on catecholamines and appetite

Serum concentrations of epinephrine and norepineph-
rine were elevated by auricular stimulation, regardless of
whether electricity was applied (Fig. 2a), although con-
centrations were highest in the AES group. For norepin-
ephrine, concentrations in AES were significantly greater
than Sham, and the values in both groups were signifi-
cantly greater than that of Ctrl.

Hypothalamic transcripts for neuropeptides associated
with appetite regulation did not differ among groups,
though the orexigenic Npy and AgRP tended to be low-
ered, while anorexigenic Pomc tended to be elevated in
the AES group (Fig. 2b).

Effect of AES on WAT browning

The mRNA levels of Ucpl in inguinal fat were signifi-
cantly greater in group AES than Ctrl, with an inter-
mediate value for Sham (Fig. 2c). Protein levels of
UCP-1 and TH in inguinal fat were greatest for AES,
followed by Sham, and lowest for Ctrl (AES vs. Ctrl, P <

Mesenteric Retroperitoneal Epididymal Inguinal fat Adipocyte diameter®
fat fat fat

Ctrl 0.07 £ 0.03 0.06 £ 0.01 028 £ 0.06 031+£0.1 0.19 + 0.02°

Sham 0.06 £+ 0.04 0.05 = 0.02 023 £ 0.04 0.27 £ 0.07 0.17 + 0.02°

AES 0.08 £+ 0.06 0.05 + 0.03 0.25 + 0.05 030+ 0.11 0.12 + 001°

Values are mean + SD, n=8. * Within a column, means without a common superscript differ (P<0.05)

2Measured in inguinal fat
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0.05; Fig. 3a). Norepinephrine concentrations in inguinal
fat did not differ between groups Sham and Ctrl, with
both significantly lower than in AES. In the latter group,
there was morphological and immunohistochemical evi-
dence of WAT browning, with adipocytes with multilo-
cular and UCP-1" staining characteristics (Fig. 3b), along
with a smaller cell size relative to the other 2 groups.

Discussion

In weight reduction programs, a major challenge is that
caloric restriction results in negative energy balance, trig-
gering an adaptive response of reducing metabolic rate
and energy expenditure, thereby making it difficult to lose
weight. Therefore, any strategy that can mitigate this
adaptive response, for example exercise or AES, would be
beneficial. In the present study, a low-fat diet intervention
resulted in progressive weight loss; the addition of AES
further accelerated weight loss, along with increased
subcutaneous WAT browning to augment energy

expenditure. There was a slight but non-significant effect
in sham-operated mice, attributed to physical stress. The
mRNA and protein levels of UCP-1, in addition to histo-
logic evidence (multilocular with UCP-1%), confirmed that
there were more brite cells in the AES group.

AES, via VNS, increases parasympathetic activity [25, 33].
Furthermore, postganglionic parasympathetic nerves re-
lease predominantly acetylcholine. It is well established that
BAT has abundant sympathetic noradrenergic nerves [14].
Although cholinergic nerve fibers were present in medias-
tinal BAT, its relevance to thermogenesis (a catabolic
process) remains unknown [34]. Based on responses of
antagonists of muscarinic acetylcholine receptors, it
appeared that parasympathetic nerves had an inhibitory
role in thermogenesis in obese rats [35]. Kreier et al. re-
ported the presence of a parasympathetic input in WAT,
which played a stimulating anabolic role following fat pad—
specific vagotomy [36]. This was not consistent with AES
activating BAT; however, we inferred that the increased
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britening in WAT in the AES group was through
norepinephrine-mediated sympathetic activity, rather than
parasympathetic activation (discussed below).

There are two reports regarding VNS impact on BAT
thermogenic activity. Vijgen et al. recruited 15 epilepsy
patients on stable VNS therapy and conducted BAT ac-
tivity measurement by FDG-PET-CT [12]. Despite the
lack of a significant difference in BAT activity between
active and inactive VNS therapy, energy expenditure de-
creased significantly when VNS was inactivated, with the
change in energy expenditure significantly related to
changes in BAT activity. In another study, application of
auricular VNS to high-fat fed Sprague-Dawley rats en-
hanced reductions in adiposity, and was accompanied by
higher serum norepinephrine concentrations and greater
expression of Pz-adrenoceptor and UCP-1 in the BAT
[13]. We are the first to report that AES resulted in
WAT browning. It is believed that norepinephrine re-
leased from the sympathetic nerve endings in BAT or
WAT binds to Bs3-adrenoceptors on adipocytes and initi-
ates intracellular G-coupled protein signaling (cAMP-ac-
tivated protein kinase), leading to intracellular
breakdown of triglycerides to provide free fatty acids for
thermogenesis via UCP-1. The shrinkage of adipocytes
observed in inguinal WAT of AES group supports this
note (Table 2).

It remains elusive how VNS increased sympathetic
norepinephrine innervation on BAT or WAT. From an
anatomic perspective, the vagus nerve mediates periph-
eral signals and relays these information to NTS in the
brainstem and then projects them to the central nervous

system, putatively working through interactions among
the hypothalamic arcuate nucleus, paraventricular nu-
cleus and ventromedial nucleus, which in turn connects
to sympathetic nerves that innervate tissue expressing
adrenoceptors [21]. The link between parasympathetic
vagal signaling and central sympathetic was supported
by the finding that subdiaphragmatic vagotomy impaired
the BAT-mediated diet-induced thermic response [37].
Acute VNS increased norepinephrine concentrations
and its transmission in rat brain [38, 39], which has a
role in VNS therapeutic efficacy for epilepsy and depres-
sion [38, 40]. The link between the parasympathetic and
sympathetic system was also evidenced in inflammatory
control [41].

Significantly higher serum norepinephrine concentra-
tion in the AES group was consistent with a previous
study [13]. Furthermore, AES increased norepinephrine
concentrations in subcutaneous WAT. In accordance
with this, tyrosine hydroxylase protein concentration
was also increased by AES in inguinal fat. This enzyme
is responsible for catecholamine synthesis and is com-
monly used as a marker for sympathetic innervation in
adipose tissue [42]. The current results supported the as-
sertion that AES increased sympathetic innervation in
subcutaneous WAT, although the mechanism of action
is yet to be established. It was reported that VNS or cho-
linergic agonists are able to activate the noradrenergic
splenic nerve [41]. The AES-mediated elevation in
serum norepinephrine came from adrenal or other
sources in addition to WAT awaits for further studies.
Moreover, it will be interesting to test the balance of
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autonomic nervous system (sympathetic or parasympa-
thetic predominance) in this scenario.

Interestingly, either VNS with 0.01 to 30 Hz or vagal
blockade (VBLOC) with reversible vagal inhibition
achieved by applying kilohertz frequency current directly
to the nerve to block localized electrical conduction, was
effective in treating obesity [8]. The former was attributed
to increase satiation, reduced sweet cravings, and in-
creased energy expenditure [43], whereas the latter was at-
tributed to preventing aberrant orexigenic vagal afferent
signaling in obesity [44]. There are many reports that
VNS prevented excessive weight gain and suppressed food
intake in high-fat diet-fed animals [13, 44—46]. However,
the present study was apparently the first to test auricular
VNS in combination with low-fat diet treatment on DIO
mice. In line with a slightly lowered feed intake, the hypo-
thalamic mRNA levels of orexigenic Npy and AgRP tended
to be lowered and anorexigenic POMC tended to be ele-
vated by AES. This was in line with the role of vagus nerve
in gut-brain signaling [8]. Ear acupuncture stimulation
was demonstrated to exert a sympathomimetic effect that
temporarily increased basal metabolic rate and decreased
appetite [47]. Therefore, satiation, more than WAT
browning, may also have contributed to weight reduction.

One limitation of this study is there was no fat pad weight
difference was observed, perhaps a 5 wk-intervention was
too short for this to be manifest. In that regard, a significant
increase of AES on cumulative weight loss was not detected
until the last (5th) wk. intervention, indicating more pro-
longed intervention may be needed to reveal its impact on
body fat mass. In addition, dissected fat-pad weights might
not be sensitive enough to show the mild changes. Whole
body composition (adiposity, lean body mass, and body
water) measured by nuclear magnetic resonance would be
more informative. Nevertheless, 5 wk. of AES treatment
suppressed hypertrophic adipocytes within subcutaneous
WAT and cell diameter in the AES group was reduced by
40% of that in the Ctrl group.

To eliminate the interference of gender, only male
mice were used in this study as they are prone to DIO
than females. For future perspectives, it is intriguing to
test the sex effect on weight reduction of AES. In future
clinical trials, metabolic examinations (such as serum
glucose, free fatty acids, cholesterol...etc) as well as auto-
nomic balance between sympathetic and parasympa-
thetic tone (such as heart rate and heart rate variability
of R-R intervals) should be incorporated to explain the
possible mechanisms of AES action.

Conclusions

In this study, AES accelerated weight loss induced by a
low-fat diet, suggesting that it could be used as an ancillary
method to enhance weight loss, perhaps in combination
with dietary/behavioral modifications. The underlying
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mechanisms were regarded as increased energy expend-
iture from WAT browning, in addition to a mild suppres-
sion on appetite. The advantage to using AES in weight
reduction programs is it relatively safe compared to
pharmacotherapy, which has numerous side effects. More-
over, it is less invasive compared to FDA approved VNS
or VBLOC. Though further investigation on its dose/dur-
ation and impacts on energy homeostasis are required,
AES has potential for use in weight management.
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