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[6]-Gingerol, from Zingiber officinale, @
potentiates GLP-1 mediated glucose-

stimulated insulin secretion pathway in
pancreatic B-cells and increases RAB8/
RAB10-regulated membrane presentation

of GLUT4 transporters in skeletal muscle to
improve hyperglycemia in Leprd/db type 2
diabetic mice
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Abstract

Background: [6]-Gingerol, a major component of Zingiber officinale, was previously reported to ameliorate
hyperglycemia in type 2 diabetic mice. Endocrine signaling is involved in insulin secretion and is perturbed in db/db
Type-2 diabetic mice. [6]-Gingerol was reported to restore the disrupted endocrine signaling in rodents. In this current
study on Lepr®™® diabetic mice, we investigated the involvement of endocrine pathway in the insulin secretagogue
activity of [6]-Gingerol and the mechanism(s) through which [6]-Gingerol ameliorates hyperglycemia.

Methods: Lepr®“® type 2 diabetic mice were orally administered a daily dose of [6]-Gingerol (200 mg/kg) for 28 days.
We measured the plasma levels of different endocrine hormones in fasting and fed conditions. GLP-1 levels were
modulated using pharmacological approaches, and cAMP/PKA pathway for insulin secretion was assessed by gRT-PCR
and ELISA in isolated pancreatic islets. Total skeletal muscle and its membrane fractions were used to measure
glycogen synthase 1 level and Glut4 expression and protein levels.
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Results: 4-weeks treatment of [6]-Gingerol dramatically increased glucose-stimulated insulin secretion and improved
glucose tolerance. Plasma GLP-1 was found to be significantly elevated in the treated mice. Pharmacological
intervention of GLP-1 levels regulated the effect of [6]-Gingerol on insulin secretion. Mechanistically, [6]-Gingerol
treatment upregulated and activated cAMP, PKA, and CREB in the pancreatic islets, which are critical components
of GLP-1-mediated insulin secretion pathway. [6]-Gingerol upregulated both Rab27a GTPase and its effector protein
Slp4-a expression in isolated islets, which regulates the exocytosis of insulin-containing dense-core granules. [6]-Gingerol
treatment improved skeletal glycogen storage by increased glycogen synthase 1 activity. Additionally, GLUT4
transporters were highly abundant in the membrane of the skeletal myocytes, which could be explained by the
increased expression of Rab8 and Rab10 GTPases that are responsible for GLUT4 vesicle fusion to the membrane.

Conclusions: Collectively, our study reports that GLP-1 mediates the insulinotropic activity of [6]-Gingerol, and
[6]-Gingerol treatment facilitates glucose disposal in skeletal muscles through increased activity of glycogen
synthase 1 and enhanced cell surface presentation of GLUT4 transporters.

Keywords: [6]-Gingerol, Le|ordb/dlo mice, Type 2 diabetes, GLP-1, Rab27a, GLUT4, Glycogen synthase 1, Rab8, Rab10

Background

Zingiber officinale Roscoe (Zingiberaceae), known as
ginger, is one of the most widely consumed spices world-
wide [1, 2]. Ginger has long been used in complemen-
tary and alternative medicine preparations for the
treatment of different diseases, such as vomiting, pain,
indigestion, and cold-related symptoms [3]. [6]-Gingerol
((S)-5-hydroxy-1-(4-hydroxy-3methoxyphenol)-3-decan-
one) is an aromatic polyphenol that is a major constitu-
ent of ginger. Previous studies on rodents reported
antioxidant [3], analgesic [4, 5], anti-inflammatory [6], and
anti-tumor and pro-apoptotic [7-9] properties of [6]-Gin-
gerol. Interestingly, a recent study reported that [6]-Gin-
gerol also has potent insulin secreting, anti-
hyperglycemic, lipid lowering, and anti-oxidant properties
in a Lepr®™“ type 2 diabetic mouse model [10], all of
which are essential hallmarks of an effective anti-diabetic
agent. From a mechanistic point of view, it has been dem-
onstrated in an obese Lepr®™® type 2 diabetic mouse
model that [6]-Gingerol regulates hepatic gene expression
of enzymes related to glucose metabolism [11]. [6]-Gin-
gerol was also found to improve the serum lipid profile
and hepatic expression of related metabolic genes in a
high-fat fed rat model, which eventually alleviated
diabetes-related complications [12]. However, the under-
lying mechanism of action of [6]-Gingerol-induced in-
sulin secretion for ameliorating hyperglycemia are yet
to be fully understood. In this study, we aimed to
characterize the mechanism(s) through which [6]-Gin-
gerol induces insulin secretion and exerts its antihyper-
glycemic potential. Understanding the mechanism would
enable us to design [6]-Gingerol-based novel anti-
hyperglycemic agents.

Insulin resistance and lack of insulin secretion due to
pancreatic B-cell failure are among the leading causes of
type 2 diabetes [13]. Endocrine hormones are involved
in nutrient-stimulated insulin secretion, also known as

the incretin effect [14]. [6]-Gingerol was found to restore
the disrupted endocrine signaling in the testes and the
epididymis of rats [15]. [6]-Gingerol was also reported to
play a major role in glucose metabolism via regulating
the intracellular trafficking of glucose transporter in
skeletal muscle cells [16]. Intracellular vesicular trans-
port is crucial for the second-phase of the biphasic insu-
lin release in response to glucose, which is essential for
maintaining glucose homeostasis [17]. Our current study
was designed to test the hypothesis that [6]-Gingerol
regulates endocrine signaling and intracellular trafficking
to increase glucose-stimulated insulin secretion and
peripheral glucose utilization, which, in turn, improve
the hyperglycemic condition in type 2 diabetes. Here, we
report that [6]-Gingerol stimulates GLP-1 mediated
insulin secretion pathway and upregulates Rab27a/Slp4-
a that control insulin granule exocytosis in pancreatic
B-cells, and facilitates glucose disposal in skeletal muscle
by up-regulating glycogen synthase 1 and by increasing
GLUT4 membrane presentation.

Methods

Chemicals

All the chemicals and reagents including [6]-Gingerol
were purchased from Sigma-Aldrich, USA, unless stated
otherwise. Saxagliptin was purchased from a commercial
pharmacy retailer in Dhaka, Bangladesh (brand name:
Onglyza; ASTRA ZENECA).

Animal handling

Type 2 diabetic mice (Lepr™ ) were procured from
Harlan Laboratories (USA) and were raised in the
animal house of the Department of Pharmaceutical
Sciences, North South University. The mice weighed
about 25 + 2 g. All test animals were kept in the North
South University Animal Facility at an ambient
temperature of 22 + 5 °C and a humidity of 50-70%.

db/db
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12 h day-night cycle was maintained for natural circa-
dian rhythm. Standard pellets and filtered drinking water
were made available to the test animals, ad libitum,
throughout the experiment, apart from the period of
fasting, when only water was provided. Animals under-
going fasting were placed in grilled bottomed cages, with
no bedding, to prevent coprophagy. The mice were
tagged with an 1.D. number, which was fed into a com-
puter program. The program allocated ten mice to each
group, at random. A trained technician was responsible
for administering the test compounds to the animals. To
avoid any bias, the groups were randomly assigned num-
bers and the investigators were unaware of the medica-
tion status of the animals till data analysis was completed.
A total of 110 mice were used in the study (details are
given in appropriate individual methods and figure leg-
ends sections).

Glucose homeostasis and insulin secretion measurement
Oral glucose tolerance test (OGTT) was performed
following 4-weeks of daily oral [6]-Gingerol administra-
tion (200 mg/kg in corn oil) or Glibenclamide or vehicle
only (n = 10 mice/group, total 30 mice) [18, 10, 19],
following methods described previously [20]. Briefly,
after overnight fasting, animals were anesthetized with
an intraperitoneal injection (100 mg/kg) of pentobarbit-
one sodium (Therapon, Burwood, Victoria, Australia),
and a Silastic catheter filled with heparinized saline
(20 U/ml) was inserted into the left carotid artery. The
mouse underwent a tracheotomy to facilitate breathing.
A bolus of glucose (2 g/kg) was delivered into the stom-
ach by a gavage needle (20-gauge, 38 mm long curved,
with a 21/4 mm ball end; Able Scientific, Canning Vale,
Western Australia, Australia), and 200 pl of blood was
sampled at 0, 30, 60, 90, and 120mins for plasma glucose
and insulin analyses. The blood was immediately centri-
fuged and the plasma was separated and stored at —20 °C
until assayed. The red blood cells were re-suspended in an
equal volume of heparinized saline and re-infused into the
animal via the carotid artery, prior to the collection of the
next blood sample to prevent anemic shock.

Fasting blood glucose and homeostatic blood glucose
levels were also measured following [6]-Gingerol treat-
ment every week throughout the treatment period of
28 days. For fasting blood glucose level, blood samples
were collected from the overnight fasted subjects of
different treatment groups. For homeostatic blood glu-
cose measurement, blood samples were collected weekly
in the afternoon from the treated subjects, maintained
on a standard diet, throughout the treatment period.

Blood glucose levels were analyzed by GOD-PAP
method (glucose kit, Randox, UK) and plasma insulin
levels were determined using Mice Insulin ELISA Kit
(Crystal Chem, USA)
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Blood collection and processing

After 4-weeks of daily oral [6]-Gingerol (200 mg/kg)
treatment, overnight-fasted mice were fed a bolus of
glucose (2 g/kg). 1 h after the glucose administration,
blood samples were collected from various groups of
mice though carotid artery, plasma was separated from
blood, and stored at —20 °C. Afterwards, the mice were
sacrificed by cervical dislocation; their pancreas and
skeletal muscles were isolated and processed for isolat-
ing islets and skeletal myocytes, respectively, as
described below.

Biochemical analysis of various plasma components
Levels of various endogenous insulin secreting or inhi-
biting hormones were measured from the isolated
plasma. Hormones that exhibited a rise in plasma levels,
in correspondence with insulin increase, were further
analyzed using a plethora of positive and negative controls,
pharmacological enhancers, and inhibitors or antagonists
of the hormones. This approach helped us fully confirm
the role of these hormones in the anti-hyperglycemic
activity of [6]-Gingerol. Conversely, hormones that did
not show any change in levels were not studied further.
Quantification of all biochemical parameters in this
section were done using Colorimetric, ELISA or EIA
methods following the manufacturer’s instruction
accompanying the kit. Plasma Insulin levels were mea-
sured using Ultra-sensitive mice Insulin ELISA Kit
(Crystal Chem, USA). Plasma Acetylcholine levels were
determined by a colorimetric Choline/Acetylcholine
Quantification Kit (Abcam, USA). Plasma epinephrine
was measured using Epinephrine ELISA Kit (Abnova,
Taiwan). Plasma norepinephrine was assayed using the
norepinephrine ELISA assay kit (Eagle Biosciences Inc.
USA). Plasma GIP was assayed using the Rat/mouse
GIP ELISA assay kit (Total) (EMD Millipore, USA).
Plasma GLP-1 was determined by using GLP-1 EIA Kit
(Sigma-Aldrich, USA). Plasma VIP was assayed using
the VIP ELISA assay kit (USCN Life Sciences Inc.,
China). Plasma PACAP was assayed using the mouse
PACAP ELISA assay kit (MyBioSourcelnc, USA).
Plasma IFG-1 was assayed using the mouse IGF-1
ELISA assay kit (Sigma-Aldrich, USA). Plasma Pancre-
atic Polypeptide was assayed using the mouse Pancre-
atic Polypeptide ELISA assay kit (MyBioSourcelnc,
USA). Plasma Somatostatin was assayed using the Som-
atostatin EIA assay kit (Phoenix Pharmaceutical Inc.
USA). Plasma DPP-1V level was measured using Mouse
DPPIV ELISA kit (Sigma-Aldrich, USA). Plasma DPP4
activity was determined by the cleavage rate of 7-
amino-4-methylcoumarin (AMC) from the synthetic
substrate H-glycyl-prolyl-AMC (Gly-Pro AMC; Sigma),
as described previously [21].
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Pharmacological modulation of GLP-1

To further confirm the role of GLP-1 in [6]-Gingerol
augmented  glucose-induced insulin release, we
employed Exendin 9-39 (Ext9) (Sigma-Aldrich, USA), a
potent GLP-1 receptor antagonist, at a dose 300 pmol/
kg/min. Ext9 was administered through a femoral vein
catheter continuously for 1 h, while the animal subjects
were kept under sodium pentobarbital anesthesia. Saxa-
gliptin (SxLn), an inhibitor of dipeptidyl peptidase-4
(DPP-4), was administered 4 h before the glucose load,
orally at a dose of 10 pmol/.

Mouse pancreatic islet isolation and preparation

Mouse pancreatic islets were isolated by collagenase
digestion as previously described [22]. Briefly, the [6]-
Gingerol treated and control mice were fully anesthe-
tized and sacrificed by cervical dislocation. The pancreas
was distended by injecting 3 mL of the digesting solution
via the common bile duct. It was then removed and
placed in a 50 ml vial containing 2 mL of the digesting
solution. The digestion reaction was terminated by putting
the vial on the ice and by adding 25 mL CaCl2 (1 mM)
supplemented HBS Buffer (CAHBS). This digested pan-
creatic homogenate was then processed through different
steps and finally suspended in the nutrient medium
(glutamine-L 20 mM, penicillin 100 U/mL, streptomycin
100uL/mL, 10%FSB buffer in RPMI 1640 medium) to
capture the islets. Islets were hand-picked using a wide-
tipped pipette, counted and placed in 5% CO2 incubator
at 37 °C.

Analysis of GLP-1 mediated insulin secretion pathway
GLP-1 mediated insulin secretion employs a number of
key signaling molecules, the most significant of which
are Protein Kinase A (PKA), cyclic Adenosine Mono-
phosphate (cAMP), and cAMP response element bind-
ing protein (CREB) [23]. In the current study, we
isolated pancreatic islets from different treatment groups
(500 islets per group). The islets were homogenized over
ice using a glass hand-held homogenizer. The homoge-
nates were immediately assayed for PKA activity, CAMP
level, pCREB level, and Insulin levels using commercially
available kits. PKA activity was determined using PKA
Activity Assay kit (Arbor Assays, USA). cAMP levels
were determined using cAMP Direct Immunoassay Kit
(Abcam, USA). pCREB levels were measured using
Phospho-CREB (S133) DuoSet IC ELISA (R&D Systems,
Inc., USA). The concurrent insulin secretion in the
medium was measured using Ultra-Sensitive Mouse
Insulin ELISA Kit (CrystalChem, USA). Alternatively,
the freshly isolated islets were processed for mRNA
preparation and qRT-PCR analysis.
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RNA isolation and qRT-PCR analysis

Total RNA was collected from isolated islets using the
TRIzol reagent (Invitrogen) following manufacturer’s
protocol. In the case of skeletal muscle, tissues were
harvested from hindlimb of the mice and preserved in
RNAlater (Invitrogen) at —20 °C; the samples were later
used to prepare total mRNA. Pka, Creb, Rab27a, and
Slp4-a cDNAs were synthesized from total RNA prepared
from islets and Glut4, Rab8, Rabl0, and Rabl4 cDNA
were synthesized from total RNA prepared from using
Super-Script first strand synthesis system (Invitrogen,
CA). Different transcripts were amplified using the power
SYBR GREEN PCR Master Mix (Applied Biosystems,
CA), following the manufacturer’s instructions. Primers
for different genes were purchased from Integrated DNA
Technologies (Iowa City, IA) (Additional file 1: Table S1).
Each sample was run quadruplicated along with a corre-
sponding B-actin control for each sample. PCR process
and data collection were done using the BioRad Mini-
Opticon Real Time PCR machine and Opticon Monitor 3
Software from BioRad (Hercules, CA), respectively. Rela-
tive cDNA copy number of the target gene and B-actin
for each sample were calculated using the delta-delta-C(t)
method. Relative expression values for target genes in each
treatment were normalized to the lowest relative expres-
sion level for each experiment (1 = 5).

In-vivo confirmation of CAMP/PKA pathway involvement
To establish the in-vivo relevance of GLP-1 triggered
cAMP/PKA pathway for the insulin secretagogue activity
of [6]-Gingerol, we inhibited the pathway and assessed the
effect on insulin secretion. Specifically, we utilized a
potent and selective inhibitor of cyclic AMP- dependent
protein kinase (PKA) inhibitor H-89 (daily intraperitoneal
0.2 mg/100 g body weight for 7 days) in [6]-Gingerol
treated mice (n = 8 mice in each group, total 32 mice) and
measured plasma insulin level following an oral glucose
load. Blood samples were collected 1 h after the glucose
load and measured for plasma insulin level.

Preparation of total cell membrane fraction from mice
skeletal myocytes

The [6]-Gingerol treated and control animals were sacri-
ficed 1 h after bolus glucose administration (as described
above in blood collection section) by cervical dislocation;
skeletal muscle from the hind limb was removed and rap-
idly dissected free of connective tissues. Muscle from the
individual mice was placed in Tris buffer (pH 7.4, 20 mM
Tris-base, 0.05 M sucrose, 0.1 mM EDTA, 5 pg/mL leu-
peptin, 5 pg/mL aprotinin, 1 p/mL pepstatin, and 400 uM
phenylmethanesulfonyl fluoride). 1 g of the tissue was
placed in 5 mL of the Tris buffer. The total membrane
fraction was prepared following methods described previ-
ously [24] with minor modifications [25]. In short, the
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dissected muscle tissue was finely homogenized using a
glass homogenizer (five 5 s bursts at a setting of 5 and
then with 10 up-and-down strokes of a Teflon pestle).
Aliquots of the homogenate were immediately assayed for
glycogen synthase 1 activity, muscle glycogen content, and
total skeletal GLUT4 levels; the remainder was further
processed to obtain the membrane fraction. The hom-
ogenate was centrifuged at 1000 g for 10mins and the
supernatant was collected. The resultant pellet was re-
suspended in Tris-buffer and re-homogenized using the
same instrument and method, as previously described,
and re-centrifuged at 1000 g for further 10mins. The
resultant pellet was discarded and the second supernatant
was added to the first supernatant, thoroughly hand
shaken for 1 mins and centrifuged at 9000 g for 10mins.
The resultant supernatant derived from this process was
centrifuged at 190000 g for 1 h. This was discarded and
the pellet was re-suspended which made up the total
membrane fraction. The membrane was kept at -80 °C
until further analysis.

GLUT4 transporter content in total and membrane
fractions of skeletal muscles

Previously prepared total cellular and membrane fractions
of mouse skeletal myocytes were assayed to determine the
amount of total and membrane docked GLUT4 receptors,
respectively. GLUT4 transporters were quantified using
ELISA kit procured from UScn Life Science Inc. (USA)
following the manufacturer’s instructions.

Glycogen synthase 1 enzyme activity

The muscle homogenate was diluted 300 times and the
glycogen synthase 1 activity was assayed following a
method as described previously [26]. Briefly, the reaction
mixture was comprised of Tris Buffer 50 mM, MgCl,
12.5 mm, EDTA 1 mM, mercaptoethanol 2.5 mM, UDP-
D-glucose 0.75, and 1% glycogen. The assay was carried
out in the presence of 0.1 mM and 10 mM glucose-6-
phosphate. The reaction was quenched by heating in a
thermostatically controlled boiling water bath for 70s.
This helped to denature the proteins which were subse-
quently removed by centrifugation at 400 g. The super-
natant was collected and assayed for UDP. This was done
by reacting UDP with phosphoenolpyruvate in the pres-
ence of the enzyme pyruvate kinase. The resultant pyru-
vate was made to react with DPNH in presence of the
enzyme lactate dehydrogenase. DPNH gradually disap-
peared which was spectrophotometrically followed. Results
were expressed as nmol/min/mg of extract protein.

Muscle glycogen content

Around 15 mg muscle tissue was collected from the left
hind leg of the mice. 10 mg of the muscle tissue was
homogenized along with 200 ul of HyO, on the ice. The
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homogenate was boiled for 5mins to inactivate all
enzymes. The boiled samples were centrifuged at
13000 rpm for 5mins to remove insoluble materials; the
supernatant was then assayed for glycogen using a
colorimetric Glycogen assay kit (Abcam, USA) as per
the instruction booklet. The background glucose was
measured in separate wells, before addition of the hydro-
lytic buffer and subtracted from the final value.

Statistical analysis

Statistical tests were conducted using GraphPad Prism
ver.7. Results were presented as mean with standard
deviation for all measurements. Data from experimental
groups were compared using unpaired Student’s t-test
and the Mann—Whitney U test, as required. Experi-
ments, where data were collected at several time inter-
vals, were analyzed using repeated measures ANOVA
followed by Bonferroni adjustment ensuring an error
margin within <5%. One-way ANOVA was carried out
and pair-wise comparisons were made with the control
group using Dunnett’s test to maintain an acceptable
error margin of 5%. A two-tailed p-value <0.05 was con-
sidered statistically significant.

Results

[6]-Gingerol treatment improves glucose homeostasis and
amplifies glucose-induced insulin secretion

We first evaluated the previously published glucose low-
ering effect of 6-Gingerol [10]. After 4-weeks of treat-
ment, the Lepr®™® mice were tested for fasting blood
glucose and glucose tolerance profile. [6]-Gingerol
significantly improves the glucose tolerance of the
treated subjects (Fig. 1la). However, the treatment had
no effect on fasting or homeostatic blood glucose level
(Fig. 1c, e). As insulin controls the glucose homeostasis,
we measured the dynamics of insulin secretion following
6-Gingerol treatment. In accordance with the glucose
homeostasis profile, we observed a significant rise in
plasma insulin in treated subjects only after glucose
administration (Fig. 1b). [6]-Gingerol alone did not alter
insulin secretion in homeostatic and/or fasting conditions
(Fig. 1d, f), which justifies that 6-Gingerol has no effect on
fasting or homeostatic blood glucose.

Increased plasma GLP-1 level and activated cAMP/PKA/
CREB pathway is crucial for insulin secretagogue activity
of [6]-Gingerol

We sought to determine the biochemical mechanism(s)
behind the observed enhancement of glucose-induced
insulin secretion in [6]-Gingerol treated mice. Various
extracellular stimuli other than glucose could enhance
or amplify insulin secretion that is triggered by glucose.
Among these stimuli, different endocrine hormones,
such as Acetylcholine, GIP, GLP-1 to name a few, are
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highly capable of exerting additive or synergistic effect
on insulin secretion [27]. To determine whether [6]-
Gingerol imparts its effect on insulin secretion through
the hormones, we assessed the plasma levels of different
endocrine hormones in treated mice after glucose feed-
ing. Plasma GLP-1, GIP, Acetylcholine, and Pancreatic
polypeptide levels were increased in the treated subjects
compared to their untreated counterparts. Among
these, only GLP-1 level was increased dramatically and
significantly (Fig. 2a-j). Interestingly, DPP4 (dipeptidyl
peptidase IV) level and activity were significantly
diminished following [6]-Gingerol treatment (Fig. 2k, 1),
which might explain the high level of GLP-1 in the
treated mice.

Next, to validate whether increased GLP-1 is responsible
for the [6]-Gingerol effect on insulin secretion, we
employed a pharmacological approach to modulate GLP-1
level in the [6]-Gingerol treated mice and recorded the

corresponding insulin levels. Saxagliptin, an inhibitor of
DPP4, synergistically increased the levels of both GLP-
1 and insulin in [6]-Gingerol treated mice. Likewise,
Extendin (9-39), a GLP-1 receptor antagonist, treat-
ment abolished the enhancement of insulin secretion
by [6]-Gingerol (Fig. 3a and b).

GLP-1 induces insulin secretion through cAMP and
PKA [23]. To understand the molecular mechanism of
the insulin secretagogue action of [6]-Gingerol, we
assessed the status of GLP-1/cAMP/PKA pathway in
pancreatic islets. Pancreatic islets were isolated from [6]-
Gingerol treated mice, with or without different pharma-
cological agonist/antagonist co-treatments, after oral
glucose administration and processed for gene expres-
sion and protein analysis. Islets from the [6]-Gingerol
treated mice had very high levels of cAMP (Fig. 4a). The
expression of Pka and Creb, and protein levels of PKA
and activated phospho-CREB were also significantly
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increased (Fig. 4b-e). In the Extendin (GLP-1 receptor
antagonist) co-treated mice, all the cAMP, PKA, and
CREB levels in islets were reduced. Whereas, in the
islets isolated from Saxagliptin (inhibitor of DPP4)
co-treated mice, all these key components downstream
of GLP-1 for insulin secretion were significantly

increased (Fig. 4b-e). Importantly, H-89 (PKA inhibitor)
co-treatment reduced plasma insulin level significantly
(Fig. 4f). These results confirm that [6]-Gingerol
enhances glucose-triggered insulin secretion through
GLP-1, and GLP1/cAMP/PKA/CREB pathway activation
is required for the said activity.
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Fig. 3 GLP-1 mediates the glucose-induced insulin secretion activity of [6]-Gingerol. Lepr mice treated for 4 weeks with daily 200 mg/kg
[6]-Gingerol were fasted overnight and plasma a GLP-1 and b Insulin levels were measured after 1 h of an acute oral glucose challenge (2 g/kg).
Different groups of the vehicle and 6]-Gingerol treated mice were additionally treated with pharmacological modulators of GLP-1: Extendin (9-39)
and Saxagliptin. Exendin (9-39), a GLP-1 receptor antagonist; dose 300 pmol/kg/min; administered through a femoral vein catheter continuously
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**¥%p < 00001, ns. not significant (One-way ANOVA, pair-wise comparison, Bonferroni correction)
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[6]-Gingerol regulates expression of insulin granule
exocytosis regulatory components Rab27a and Sip4-a/
Granuphilin in pancreatic islets

Insulin vesicle exocytosis is a major event in the glucose-
stimulated insulin secretion phenomenon. The Rab27, a
member of Rab family of small GTPases, and it’s complex
partner protein Slp4-a/ Granuphilin is known to regulate
the docking of insulin-containing dense-core vesicles to
the plasma membrane for efficient exocytosis and insulin
release following glucose stimulation [28, 29]. To deter-
mine whether [6]-Gingerol have any effect on insulin
granule exocytosis, we assessed the expression of Rab27a
and Slp4-a/ Granuphilin in the pancreatic islets. qRT-
PCR analysis and ELISA confirmed that both Rab27a and
Slp4-a genes expressions and protein levels were upregu-
lated (Fig. 5a-d). Taken together, the gene expression
pattern suggests that [6]-Gingerol might also regulate
exocytosis of insulin-containing vesicles.

Increased expression and membrane presentation of
Glut4 glucose transporters facilitate enhanced glycogen
deposition in skeletal muscle following [6]-Gingerol
treatment
Insulin released following food intake signals to the liver
for reduced gluconeogenesis, while simultaneously in-
creases glucose clearance from the blood by means of
glycogenesis in the skeletal muscle and adipose tissue [30].
To further characterize the anti-diabetic potential of [6]-
Gingerol, we evaluated the glycogenesis dynamics in
treated mice following glucose intake. [6]-Gingerol treat-
ment substantially increased the amount of deposited
glycogen in the skeletal muscle (Fig. 6a). Glycogen synthase
1, which converts the excess glucose to glycogen in skeletal
muscle [31], expression and activity were significantly
upregulated in the muscle of the treated mice (Fig. 6b, c).
Glucose transporters are membrane proteins that
regulate the glucose transport through any membrane.
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glucose load. Values are presented as Mean+SD (n = 8 mice for each
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significant (Student’s t-test)

GLUT4, a member of GLUT family of glucose trans-
porters, facilitates the transport of glucose in the skeletal
muscle and adipose tissue [32]. We hypothesized that the
observed increased amount of glycogen in the skeletal
muscle is, at least partially, due to increased glucose
uptake by the GLUT4 transporters. Unexpectedly, we did
not see any change in the gene expression of Glut4 or total
cellular GLUT4 content in the skeletal muscle of the
treated mice compared to the untreated mice (Fig. 7a, b).
However, we found that the membrane fraction the skel-
etal muscle was highly enriched for GLUT4 (Fig. 7c). This
led us to change our initial assumption that [6]-Gingerol
increases Glut4 expression. In lieu to the increased expres-
sion, this data suggested that [6]-Gingerol increases
GLUT4 membrane presence. Three members of Rab
family of GTPases, RAB8, RAB10, and RAB14, were previ-
ously reported to regulate the membrane fusion of GLUT4
containing endosomal vesicles [33, 34]. Next, we investi-
gated whether the GLUT4 enrichment of the membrane
fraction was because of these Rab GTPases. Importantly,
Rab8 and Rabl0 expression and protein content were
significantly increased in the [6]-Gingerol treated mice
(Fig. 7d-g). Collectively, these results suggest that [6]-
Gingerol increases glucose uptake in skeletal muscle
through increased membrane docking of GLU4 by upregu-
lating Rab8 and Rab10, and promotes glycogenesis through
increased Glycogen synthase 1 expression and activity.

a 45 .
EE Vehicle
S - E 6-Gingerol
o0 L
Q 7 10+
22 i
g3 o
T = 51 o=
R~ 9 =
(@]
0 a L
— _ 20+ .
20 *ox EE Vehicle
s O T
c < e
£ % 154 . EE 6-Gingerol
=
n O
c = E
o D
D2 104
8= =
>9 g
oo
TS 57 ﬁ
5 O
30 3
2
n < o-
Cc
=< 307
z2 E® Vehicle -
o 9 .
S a5 EE 6-Gingerol
3] - ey
£ 3
S o
(j>)s E e
c = 104
S E
B E
o O aann
= £
S £ oA 3 |
0.1mM G-6-P 10mM G-6-P
Fig. 6 [6]-Gingerol increases skeletal glycogen deposition. a Total
skeletal muscle glycogen, b skeletal Glycogen synthase 1 protein
level, and ¢ Glycogen synthase 1 activity were measured from the
skeletal smooth muscle collected from the [6]-Gingerol treated
(4 weeks, 200 mg/kg/day orally) Lepr®™®® mice following an oral
glucose load (2 g/kg). Values are presented as Mean+SD (n = 10
for each group). *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001,
n.s. not significant (Student’s t-test)

Discussion

In this current study, we aimed to characterize the
mechanism of action of anti-hyperglycemic activity of
[6]-Gingerol. Here, we have found that [6]-Gingerol
potentiates glucose-stimulated insulin secretion through
GLP-1 mediated pathway. Additionally, our data also
suggest that 6-Gingerol increases insulin exocytosis and
enhances glucose utilization in skeletal muscle.
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[6]-Gingerol, a major constituent of ginger, was previ-
ously reported to have anti-hyperglycemic activity [10].
To understand the underlying mechanism, we utilized
Lepr®“® mice as type 2 diabetic model animal and sub-
jected them to 4-weeks of daily oral administration of [6]-
Gingerol. We found that unlike many antidiabetic agents,
[6]-Gingerol does not induce fasting hypoglycemia, rather
it increases blood insulin and reduces blood glucose level
only after food intake. This could be therapeutically very

potential because drug-induced hypoglycemia is a big con-
cern in the treatment of the diabetic patients [35, 36].
Upon digestion of the food, glucose enters the blood
stream and increases the blood glucose level. In response
to this increase, insulin is secreted from the pancreatic
beta cells. Secreted insulin increases peripheral glucose
utilization and decreases hepatic gluconeogenesis. These
set of events restore the blood glucose level to the
physiologic range within 2-3 h after the meal. This
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process fails to maintain glucose homeostasis in type 2
diabetic condition, where both the insulin secretion and
glucose utilization mechanisms are dysfunctional [32, 13].

Glucose-induced insulin secretion could be amplified
by various extracellular stimuli such as gastrointestinal
hormones [27]. Accordingly, we measured the plasma
levels of different circulating gastrointestinal hormones
and found that GLP-1 is increased after [6]-Gingerol
treatment. By modulating the GLP-1 level pharmaco-
logically, we confirmed that GLP-1 is responsible for the
insulin secretagogue activity of [6]-Gingerol. This obser-
vation is very significant because GLP-1 has long been
known to enhance the glucose-stimulated insulin secre-
tion through so-called “incretin effect” [37]. An intraven-
ous infusion of GLP-1 could decrease blood glucose
level in type 2 diabetic patients [38]. GLP-1 mimetic
drugs or DPP4 inhibitors that increase plasma GLP-1
level have already shown huge potential to treat type 2
diabetes [39]. Mechanistically, GLP-1 binds to the GLP-
1 receptor on the pancreatic beta cells and increases
cyclic adenosine monophosphate (cAMP), which conse-
quently activates Protein Kinase A (PKA) and leads to
insulin vesicle exocytosis [23]. Here, we have found that
[6]-Gingerol activates GLP-1/cAMP/PKA pathway and
this pathway is essential for the observed enhanced insu-
lin secretion activity of [6]-Gingerol.

Insulin is stored in large dense core vesicles in the
pancreatic B-cells and secreted by exocytosis in response
to nutrient stimuli and different hormonal modulators
[40]. In this tightly regulated exocytosis process, which
is a determining step in achieving high blood insulin
level following food intake to maintain glucose homeo-
stasis, secretory vesicles fuse with the cell membrane to
release insulin to the extracellular space [41]. Rab
GTPases, a large family of small GTPases, regulate
membrane identity and vesicle budding, motility, and
fusion [42]. Among others, Rab27a regulates the exocyt-
osis of insulin-containing dense-core granules through the
effector protein Slp4-a [28]. Interestingly, we have found
that [6]-Gingerol increases both the Rab27a and its
effector protein Slp4-a in the pancreatic islets, which
suggest that [6]-Gingerol could enhance insulin secretion
by facilitating the insulin containing vesicle exocytosis.

Insulin promotes the storage and synthesis of macro-
molecules and inhibits their catabolism and release into
the blood [43]. Approximately 80% of total glucose clear-
ance in homeostatic condition is handled by skeletal
muscle, with the rest by adipose and other insulin-
sensitive tissues [44]. Regulated transportation of glucose
into the cells, primarily skeletal myocytes and adipocytes,
mediated by the facilitative glucose transporter GLUT4, is
one of the key processes of the peripheral glucose clear-
ance mechanism [45]. Intriguingly, [6]-Gingerol was previ-
ously reported to regulate glucose metabolism through
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AMPK mediated pathway [16]. To further determine the
anti-hyperglycemic potential of 6-Gingerol, we assessed
the effect of [6]-Gingerol on peripheral glucose deposition.
We found that [6]-Gingerol increased the muscular glyco-
gen deposition, possibly through upregulated Glycogen
synthase 1 expression and activity. Unexpectedly, we did
not see any increase in total GLUT4 protein level or gene
expression in skeletal muscle. Importantly, we found that
membrane fraction of skeletal myocytes was highly
enriched with GLUT4. It is known that secreted insulin
binds to the insulin receptor on skeletal myocytes and
triggers intracellular signaling, which in turn stimulates
translocation of the GLUT4 vesicle to the plasma mem-
brane [46]. Our data suggest that [6]-Gingerol possibly
increases GLUT4 containing vesicle membrane dock-
ing. Not to surprise, Rab8 and Rab10, which are among
the major regulators of GLUT4 vesicle exocytosis [34],
were increased in the skeletal muscles after [6]-Gin-
gerol treatment. Taken together, 6-Gingerol enhances
glucose utilization in skeletal muscle through increased
membrane presentation of GLUT4.

Conclusion

Collectively, the present study has demonstrated that
[6]-Gingerol enhances glucose-stimulated insulin secre-
tion by activating GLP-1 mediated insulin secretion
pathway and regulating insulin granule exocytosis, and
increases glucose uptake in skeletal muscle by increas-
ing GLUT4 membrane expression. How 6-Gingerol in-
creases plasma GLP-1 level to exerts its observed
insulin secretagogue activity is yet to be answered. One
possible mechanism could be increasing GLP-1 plasma
half-life by counter-acting dipeptidyl peptidase-4
(DPP4), which is known to cleave and in turn inactivate
GLP-1 [47]. Intriguingly, we found decreased level of
plasma DPP4 in [6]-Gingerol treated subjects. In our
future studies, we hope to thoroughly investigate the
mechanisms by which [6]-Gingerol regulates GLP-1 to
ameliorate hyperglycemia.

Additional file

[ Additional file 1: Table S1. Primers used in the study. (DOCX 10 kb) J

Acknowledgments
Not applicable.

Funding
The study was supported by a “Graduate research fund” of North South
University.

Availability of data and materials
All data generated or analyzed during this study are included in this
published article and its supplementary information files.


dx.doi.org/10.1186/s12906-017-1903-0

Samad et al. BMIC Complementary and Alternative Medicine (2017) 17:395

Authors’ contributions

MBS and AUK carried out the primary literature search. MBS and JMAH
conducted the majority of the experiments. MNABM, BAR, MTH, SM, NU, and
IAK carried out the rest of the experiments and helped to run the overall
study. AUK and FA performed data analysis. MBS drafted the preliminary
manuscript. MNABM, BAR, MTH, SM, NU, and IAK revised the preliminary
manuscript. JMAH provided overall supervision and coordinated experimental
activities. All authors read and approved the final manuscript.

Ethics approval

The designed experimental protocol was approved by the Ethics Committee
on Animal Research, North South University. It was designed following the
"Revised Guide for the care and use of laboratory animals by American
Physiological Society” [48]. All animals were treated humanely throughout
the course of the experiments and maximum care was taken to minimize
the pain of the experimental animals. All surgical procedures were carried
under sodium pentobarbitone anesthesia. Maintenance of the anesthesia
was continuously monitored at 15mins interval by “toe pinch”. At the end
of the experiment, the animals were euthanized by cervical dislocation.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

1Departr‘nent of Pharmaceutical Sciences, University of Nebraska Medical
Center, Omaha, NE, USA. “Department of Pharmaceutical Sciences, North
South University, Dhaka, Bangladesh. *Department of Pharmacy, BRAC
University, Dhaka, Bangladesh. “Seoul National University, Seoul, South Korea.
5Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
®Department of Pharmacy, East West University, Dhaka, Bangladesh.

Received: 9 April 2017 Accepted: 2 August 2017
Published online: 09 August 2017

References

1. Suekawa M, Ishige A, Yuasa K, Sudo K, Aburada M, Hosoya E.
Pharmacological studies on ginger. I. Pharmacological actions of pungent
constitutents, (6)-gingerol and (6)-shogaol. Aust J Pharm. 1984;7(11):836-48.

2. White B. Ginger: an overview. Am Fam Physician. 2007;75(11):1689-91.

3. Abolaji AO, Ojo M, Afolabi TT, Arowoogun MD, Nwawolor D, Farombi EO.
Protective properties of 6-gingerol-rich fraction from Zingiber officinale
(Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the
brain, ovary and uterus of rats. Chem Biol Interact. 201731

4. Gauthier M-L, Beaudry F, Vachon P. Intrathecal [6]-gingerol administration
alleviates peripherally induced neuropathic pain in male Sprague-Dawley
rats. Phytother Res PTR. 2013;27(8):1251-4.

5. Hitomi S, Ono K, Terawaki K, Matsumoto C, Mizuno K, Yamaguchi K, et al.
[6]-gingerol and [6]-shogaol, active ingredients of the traditional Japanese
medicine hangeshashinto, relief oral ulcerative mucositis-induced pain via
action on Na(+) channels. Pharmacol Res. 2017;117:288-302.

6. Pournaderi PS, Yaghmaei P, Khodaei H, Noormohammadi Z, Hejazi SH. The effects
of 6-Gingerol on reproductive improvement, liver functioning and
Cyclooxygenase-2 gene expression in estradiol valerate - Induced polycystic ovary
syndrome in Wistar rats. Biochem Biophys Res Commun. 2017 4;484(2):461-6.

7. Kapoor V, Aggarwal S, Das SN. 6-Gingerol mediates its anti tumor activities
in human oral and cervical cancer cell lines through apoptosis and cell
cycle arrest. Phytother Res PTR. 2016;30(4):588-95.

8. Rastogi N, Duggal S, Singh SK, Porwal K, Srivastava VK, Maurya R, et al.
Proteasome inhibition mediates p53 reactivation and anti-cancer activity of
6-gingerol in cervical cancer cells. Oncotarget. 2015;6(41):43310-25.

9. Akimoto M, lizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer effect of
ginger extract against pancreatic cancer cells mainly through reactive oxygen
species-mediated autotic cell death. PLoS One. 2015;10(5):e0126605.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Page 12 of 13

Singh AB, Akanksha Singh N, Maurya R, Srivastava AK. Anti-hyperglycaemic,
lipid lowering and anti-oxidant properties of [6]-gingerol in db/db mice. Int
J Med Med Sci. 2009;1(12):536-44.

Son MJ, Miura Y, Yagasaki K. Mechanisms for antidiabetic effect of gingerol
in cultured cells and obese diabetic model mice. Cytotechnology. 2015;
67(4):641-52.

de Las HN, Valero-Mufioz M, Martin-Ferndndez B, Ballesteros S, Lopez-Farré
A, Ruiz-Roso B, et al. Molecular factors involved in the hypolipidemic- and
insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in
rats fed a high-fat diet. Appl Physiol Nutr Metab Physiol Appl Nutr Metab.
2017;42(2):209-15.

Pajvani UB, Accili D. The new biology of diabetes. Diabetologia. 2015;58(11):
2459-68.

D'Alessio D. Is GLP-1 a hormone: Whether and When? J Diabetes Investig.
2016;7:50-5.

Salihu M, Ajayi BO, Adedara IA, de Souza D, Rocha JBT, Farombi EO. 6-
Gingerol-rich fraction from Zingiber officinale ameliorates carbendazim-
induced endocrine disruption and toxicity in testes and epididymis of rats.
Andrologia. 2017;49(5). http://onlinelibrary.wiley.com/doi/10.1111/and.
12658/abstract.

Lee JO, Kim N, Lee HJ, Moon JW, Lee SK, Kim SJ, et al. [6]-Gingerol affects
glucose metabolism by dual regulation via the AMPKa2-mediated AS160-
Rab5 pathway and AMPK-mediated insulin sensitizing effects. J Cell
Biochem. 2015;116(7):1401-10.

Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis
- roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci.
2009;122(7):893-903.

Lv L, Chen H, Soroka D, Chen X, Leung T, Sang S. 6-Gingerdiols as the major
metabolites of 6-gingerol in cancer cells and in mice and their cytotoxic
effects on human cancer cells. J Agric Food Chem. 2012;60(45):11372-7.
Kim BS. Administration of 6-gingerol greatly enhances the number of
tumor-infiltrating lymphocytes in tumors, 2012 7th International Forum on
Strategic Technology (IFOST); 2012. p. 1-6.

Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J. Evaluating the
glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 2008;295(6):
£1323-32.

Kirino Y, Kamimoto T, Sato Y, Kawazoe K, Minakuchi K, Nakahori Y. Increased
plasma dipeptidyl peptidase IV (DPP V) activity and decreased DPP IV
activity of visceral but not subcutaneous adipose tissue in impaired glucose
tolerance rats induced by high-fat or high-sucrose diet. Biol Pharm Bull.
2009;32(3):463-7.

Li D-S, Yuan Y-H, Tu H-J, Liang Q-L, Dai L-J. A protocol for islet isolation
from mouse pancreas. Nat Protoc. 2009;4(11):1649-52.

Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP.
Gastroenterology. 2007;132(6):2131-57.

Klip A, Ramlal T, Young DA, Holloszy JO. Insulin-induced translocation of
glucose transporters in rat hindlimb muscles. FEBS Lett. 1987;224(1):224-30.
Baron AD, Zhu JS, Zhu JH, Weldon H, Maianu L, Garvey WT. Glucosamine
induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal
muscle. Implications for glucose toxicity. J Clin Invest. 1995;,96(6):2792-801.
Danforth WH. Glycogen synthetase activity in skeletal muscle.
interconversion of two forms and control of glycogen synthesis. J Biol
Chem. 1965;240:588-93.

Rasmussen H, Zawalich KC, Ganesan S, Calle R, Zawalich WS. Physiology and
pathophysiology of insulin secretion. Diabetes Care. 1990;13(6):655-66.

Yi Z, Yokota H, Torii S, Aoki T, Hosaka M, Zhao S, et al. The Rab27a/
Granuphilin complex regulates the exocytosis of insulin-containing dense-
core granules. Mol Cell Biol. 2002;22(6):1858-67.

Fukuda M, Imai A, Nashida T, Shimomura H. Slp4-a/granuphilin-a interacts
with syntaxin-2/3 in a Munc18-2-dependent manner. J Biol Chem. 2005;
280(47):39175-84.

Jewell JL, Oh E, Thurmond DC. Exocytosis mechanisms underlying insulin
release and glucose uptake: conserved roles for Munc18c and syntaxin 4.
Am J Physiol - Regul Integr Comp Physiol. 2010,298(3):R517-31.

Halse R, Fryer LGD, McCormack JG, Carling D, Yeaman SJ. Regulation of
glycogen synthase by glucose and glycogen. Diabetes. 2003;52(1):9-15.
Sonksen P, Sonksen J. Insulin: understanding its action in health and
disease. BJA Br J Anaesth. 2000;85(1):69-79.

Roach WG, Chavez JA, Miinea CP, Lienhard GE. Substrate specificity and
effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1.
Biochem J. 2007;403(Pt 2):353-8.


http://onlinelibrary.wiley.com/doi/10.1111/and.12658/abstract
http://onlinelibrary.wiley.com/doi/10.1111/and.12658/abstract

Samad et al. BMIC Complementary and Alternative Medicine (2017) 17:395

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Sano H, Roach WG, Peck GR, Fukuda M, Lienhard GE. Rab10 in insulin-
stimulated GLUT4 translocation. Biochem J. 2008:411(1):89-95.

Burge MR, Schmitz-Fiorentino K, Fischette C, Qualls CR, Schade DS. A
prospective trial of risk factors for sulfonylurea-induced hypoglycemia in
type 2 diabetes mellitus. JAMA. 1998,279(2):137-43.

van Staa T, Abenhaim L, Monette J. Rates of hypoglycemia in users of
sulfonylureas. J Clin Epidemiol. 1997;50(6):735-41.

Holst JJ, Vilsbell T, Deacon CF. The incretin system and its role in type 2
diabetes mellitus. Mol Cell Endocrinol. 2009;297(1-2):127-36.

Butler PC, Dry S, Elashoff R. GLP-1-Based therapy for diabetes: what you do
not know can hurt you. Diabetes Care. 2010;33(2):453-5.

Drucker DJ, Sherman SI, Gorelick FS, Bergenstal RM, Sherwin RS, Buse JB.
Incretin-based therapies for the treatment of type 2 diabetes: evaluation of
the risks and benefits. Diabetes Care. 2010;33(2):428-33.

Fridlyand LE, Philipson LH. Coupling of metabolic, second messenger
pathways and insulin granule dynamics in pancreatic beta-cells: a
computational analysis. Prog Biophys Mol Biol. 2011;107(2):293-303.
Eliasson L, Abdulkader F, Braun M, Galvanovskis J, Hoppa MB, Rorsman P.
Novel aspects of the molecular mechanisms controlling insulin secretion. J
Physiol. 2008;586(14):3313-24.

Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell
Biol. 2009;10(8):513-25.

Aronoff SL, Berkowitz K, Shreiner B, Want L. Glucose metabolism and
regulation: beyond insulin and glucagon. Diabetes Spectr. 2004;17(3):183-90.
Bryant NJ, Govers R, James DE. Regulated transport of the glucose
transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267-77.

Chang L, Chiang S-H, Saltiel AR. Insulin signaling and the regulation of
glucose transport. Mol Med. 2004;10(7-12):65-71.

Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab. 2007;
5(4):237-52.

Sebokova E, Christ AD, Boehringer M, Mizrahi J. Dipeptidyl peptidase IV
inhibitors: the next generation of new promising therapies for the
management of type 2 diabetes. Curr Top Med Chem. 2007;7(6):547-55.
Bayne K. Revised guide for the care and use of laboratory animals available.
American Physiological Society. Physiologist. 1996;39(4):199. 208-11

Page 13 of 13

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Chemicals
	Animal handling
	Glucose homeostasis and insulin secretion measurement
	Blood collection and processing
	Biochemical analysis of various plasma components
	Pharmacological modulation of GLP-1
	Mouse pancreatic islet isolation and preparation
	Analysis of GLP-1 mediated insulin secretion pathway
	RNA isolation and qRT-PCR analysis
	In-vivo confirmation of cAMP/PKA pathway involvement
	Preparation of total cell membrane fraction from mice skeletal myocytes
	GLUT4 transporter content in total and membrane fractions of skeletal muscles
	Glycogen synthase 1 enzyme activity
	Muscle glycogen content
	Statistical analysis

	Results
	[6]-Gingerol treatment improves glucose homeostasis and amplifies glucose-induced insulin secretion
	Increased plasma GLP-1 level and activated cAMP/PKA/CREB pathway is crucial for insulin secretagogue activity of [6]-Gingerol
	[6]-Gingerol regulates expression of insulin granule exocytosis regulatory components Rab27a and Slp4-a/Granuphilin in pancreatic islets
	Increased expression and membrane presentation of Glut4 glucose transporters facilitate enhanced glycogen deposition in skeletal muscle following [6]-Gingerol treatment

	Discussion
	Conclusion
	Additional file
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

