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Abstract

Background: Astragalus injection is used by practitioners of traditional Chinese medicine to treat diabetic
nephropathy (DN). The current study was conducted to determine the effect of astragalus on tubular epithelial
transdifferentiation during the progression of DN in KKAy mice, as well as to investigate the molecular mechanism
underlying this effect.

Methods: Diabetic, 14-week-old, male KKAy mice were randomly divided into a model group and an astragalus
treatment group, while age-matched male C57BL/6 J mice were selected as controls. The treatment group received
daily intraperitoneal injections of astragalus (0.03 mL/10 g per day), while the model group received injections of an
equal volume of saline. Mice were euthanized after 24 weeks. Serum samples were obtained from the animals in
each group for blood glucose measurement. Kidney tissue samples were used for morphometric studies. The
mRNA and protein expression levels of transforming growth factor beta 1 (TGF-β1), transforming growth factor beta
receptor 1 (TGFβ-R1), alpha smooth muscle actin (α-SMA), and E-cadherin were evaluated using real-time
polymerase chain reaction (PCR) and western blotting.

Results: Astragalus significantly reduced blood glucose levels; inhibited morphological changes in the kidneys of
KKAy mice; reduced mRNA and protein expression levels of TGF-β1, TGFβ-R1, and α-SMA; and increased E-cadherin
expression.

Conclusions: Tubular epithelial transdifferentiation plays an important role in the development of DN in diabetic
mice. Administration of astragalus likely prevents or mitigates DN by suppressing tubular epithelial
transdifferentiation, protecting KKAy mice from renal damage.

Keywords: Astragalus, KKAy mice, Diabetic nephropathy, Transdifferentiation, Transforming growth factor, Alpha
smooth muscle actin, E-cadherin

Background
Diabetic nephropathy (DN) is a major microvascular
complication of diabetes mellitus and the leading
cause of end-stage renal disease [1]. The major patho-
logical change associated with DN is renal interstitial
fibrosis (RIF), which is characterized by renal tubular
atrophy and accumulation of extracellular matrix
components (ECM) in the renal glomeruli and inter-
stitium. Transdifferentiation of tubular epithelial cells
to myofibroblast-like cells has been proposed as the
central link in the development of RIF [2, 3].

Transforming growth factor beta 1 (TGF-β1) is recognized
as the most important cytokine in the induction of epithe-
lial transdifferentiation [4, 5]. TGF-β1 binds to transform-
ing growth factor beta receptor 1 (TGFβ-R1) and inhibits
the expression of E-cadherin, an epithelial cell adhesion
molecule, resulting in shedding of epithelial cells from the
basement membrane [6, 7]. However, TGF-β1 can up-
regulate the expression of alpha smooth muscle actin
(α-SMA), which can stimulate the production of
myofibroblast-like cells [8].
Astragalus (Astragalus membranaceus) has been used

for centuries in traditional Chinese medicine as an
immune-modulating herb. Astragalus has been widely* Correspondence: m18610613405@163.com
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used by clinicians as a treatment for patients with dia-
betes and diabetic nephropathy [9]. Polysaccharoses,
astragaloside, isoflavones, and saponin glycosides are the
primary constituents of astragalus extracts [10].
Recent studies have demonstrated that administra-

tion of astragalus to patients with DN can increase
their glomerular filtration rate, decrease urinary pro-
tein levels, and improve renal function [11]. In
addition, astragalus has an antifibrotic effect in rats,
reduces the expression of TGF-β1, and inhibits ECM
component synthesis [12, 13].
Therefore, the current study explored the effect of as-

tragalus on tubular epithelial transdifferentiation
through measurement of changes in protein and mRNA
levels of TGF-β1, TGFβ-R1, E-cadherin, and α-SMA in
the kidney tissue of diabetic mice following astragalus
administration. Furthermore, the molecular mechanism
underlying the efficacy of astragalus as a clinical treat-
ment for DN should be investigated.

Methods
Chemicals and reagents
The astragalus for injection was purchased from the
Chengdu Di’ao Jiuhong Pharmaceutical Factory
(Chengdu, China).

Experimental animals and treatment
All experiments were performed in accordance with
the Guidelines on Ethical Standards for Investiga-
tions in Animals. The study was approved by the
Animal Research Committee of the Beijing Univer-
sity of Chinese Medicine. Sixteen male KKAy mice
(9–11 weeks of age) weighing 25–28 g were used in
the current experiment. Eight male C57BL/6 J mice
(9–11 weeks of age) weighing 23–25 g were used as
age-matched controls. All mice were purchased from
the Animal Center of the Chinese Academy of Med-
ical Science (Beijing, China) and raised in the Clin-
ical Institute of China-Japan Friendship Hospital
(Beijing, China). During the experiment, the KKAy
mice were allowed access to a high-fat diet (HFD)
and water ad libitum. A control group of C57BL/6 J
mice was fed a normal diet and allowed access to
water ad libitum. At 14 weeks of age, a blood sam-
ple was obtained from the tail vein of each mouse
for the purpose of blood glucose measurement. Any
mouse with a blood glucose level greater than
13.9 mM was considered diabetic. The KKAy mice
were randomly divided into the model group (MG,
n = 8) and treatment group (TG, n = 8), which had
similar distributions of average body weight and
blood glucose levels. The control group consisted of
C57BL/6 J mice (CG, n = 8). The treatment group re-
ceived daily intraperitoneal injections of astragalus

(0.03 mL/10 g per day), while the model group re-
ceived an intraperitoneal injection of an equal vol-
ume of saline (0.03 mL/10 g per day). The mice
were housed individually in plastic cages with ad
libitum access to food and water throughout the ex-
perimental period.
Blood samples for the determination of blood glucose

levels were taken from the tip of the tail every 4 weeks
using BREEZE2 Blood Glucose Test Strips (Bayer
HealthCare, USA). At 24 weeks of age, all mice were de-
prived of food pellets for 10 h and euthanized. A portion
of the kidney tissue collected from each mouse was ex-
cised and frozen immediately in liquid nitrogen to pre-
pare it for the polymerase chain reaction (PCR) and
western blotting assays. The remaining portion of tissue
from each mouse was fixed for hematoxylin and eosin
(HE) staining, immunohistochemical staining, and obser-
vation under the electron microscope.

Renal histological analysis
Parts of the kidney sections were fixed in 4 % buffered
paraformaldehyde, embedded in paraffin, and cut into 4-
μm-thick sections, which were prepared for HE staining.
The remaining kidney tissue was fixed in 2.5 % buffered
glutaraldehyde, postfixed with 1 % OsO4 in phosphate
buffer, dehydrated by a graded series of ethanol and
transferred to absolute acetone, after infiltrated in 1:1
mixture of absolute acetone and the final spurr resin
mixture, transferred to 1:3 mixture of absolute acetone
and the final resin mixture for 3 h and to final Spurr
resin mixture for overnight, at last, specimen was placed
in capsules contained embedding medium and heated at
70 °C for about 9 h. The specimen sections were stained
by uranyl acetate and alkaline lead citrate for 15 min re-
spectively and observed in transmission electron micro-
scope (TEM).

Immunohistochemical staining for TGF-β1, TGFβ-R1, α-
SMA, and E-cadherin
Kidney sections were fixed in 4 % buffered paraformal-
dehyde, embedded in paraffin, cut into 4-μm-thick sec-
tions, dewaxed, washed three times with PBS for 5 min,
incubated with 3 % hydrogen dioxide solution, antigen
repaired with citrate buffer solution in a microwave,
blocked with 3 % bovine serum albumin, and incubated
with primary antibodies against TGFβ1 (1:200 dilution,
Abcam, CA, USA), TGFβ-R1 (1:400 dilution, Abgent,
CA, USA), α-SMA (1:500 dilution, Proteintech, CA,
USA), E-cadherin (1:400 dilution, Proteintech, CA, USA)
for 1 h. Next, the sections were washed three times with
PBS for 5 min, after which they were incubated in goat
anti-rabbit IgG bound to HRP (1:200 dilution,
Zhongshan Golden Bridge, China) for 0.5 h, washed
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three times with PBS for 5 min, and stained with DAB
for 1 min.

Analysis of mRNA expression levels of TGFβ1, TGFβ-R1, α-
SMA, and E-cadherin by real-time PCR
Total RNA was extracted from the kidney samples using
Trizol (Invitrogen, CA, USA). The total RNA concentration
and RNA purity were determined by measuring the
OD260/OD280 ratio of each sample. RNA was reverse-
transcribed using the GoScript Reverse Transcription Sys-
tem (Promega, USA). Primers for PCR (Table 1) were de-
signed and synthesized by Sangon Biotech Co., Ltd.
(Shanghai, China). mRNA transcripts encoding TGFβ1,
TGFβ-R1, α-SMA, and E-cadherin were detected via real-
time PCR using a 7500 Fast Real-Time PCR System
(Thermo Fisher Scientific, Waltham, MA, USA). The PCR
products were analysed using 7500 Fast System SDS soft-
ware (Thermo Fisher Scientific).

Western blot analysis for TGF-β1, TGFβ-R1, α-SMA, and E-
cadherin
The lysates were clarified by centrifugation, after
which supernatants were collected. Protein concentra-
tions were determined using the bicinchoninic acid
assay (BCA) method with reagents from Applygen
(Beijing, China). Equivalent amounts of tissue protein
(80 μg) were resolved on SDS polyacrylamide gels
and transferred by electroblotting to polyvinylidene
difluoride (PVDF) membranes. The membranes were
blocked in 5 % (W/V) nonfat milk at room
temperature for 1 h, after which they were incubated
overnight at 4 °C with specific primary antibodies
against TGF-β1 (1:1000 dilution, Abcam, CA, USA),
TGFβ-R1 (1:1000 dilution, Abgent, CA, USA), α-SMA
(1:1000 dilution, Proteintech, CA, USA), E-cadherin
(1:1000 dilution, Proteintech, CA, USA), and β-actin
(1:1000 dilution, Santa Cruz, CA, USA). The mem-
branes were washed in Tris-buffered saline (TBS)-T

Table 1 PCR sequences and PCR products

Name Size Forward Primer (5′–3′) Reverse Primer (5′–3′)

TGF-β1 493 bp TCCCTCAACCTCAAATTATTCA GCGGTCCACCATTAGCAC

TGFβ-R1 172 bp GGCGAAGGCATTACAGTGTT TGCACATACAAATGGCCTGT

α-SMA 322 bp GGTGCTGTCTCTCTATGCCTCTGGA CCCATCAGGCAACTCGATACTCTTC

E-cadherin 192 bp AGACAGGGGTGGAGGAAGTT GGGCAGGAGTCTAGCAGAAG

β-actin 243 bp GAAATCGTGCGTGACATTAAGG CACGTCACACTTCATGATGGAG

Fig. 1 Blood glucose levels at different weeks. Data presented are means ± SD (n = 6–8). CG = the control group, MG = the model group, and TG
= the astragalus treatment group. Compared with CG, *P < 0.05, **P < 0.01. Compared with MG, ΔP < 0.05, ΔΔP < 0.01
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(Tween) buffer (0.1 % TBS-T; TBS with 0.1 % Tween)
and incubated with horseradish peroxidase (HRP)-
linked anti-mouse secondary antibodies (1:6000 dilu-
tion). The membranes were washed in 0.1 % TBS-T,
after which immunolabeled proteins were detected by
enhanced chemiluminescence reagents (Applygen,
Beijing, China). The density of the detected bands
was analysed using Quantity One software.

Statistical analysis
Numerical data were expressed as the mean ± standard
deviation (SD) of at least three independent experiments.
Differences in group means were examined using ana-
lysis of variance (ANOVA). A value of p < 0.05 was con-
sidered statistically significant.

Results
Astragalus administration controls blood glucose levels
No apparent fluctuations in behaviour or physiological
appearance were noted among mice in the control
group. However, mice in the model group exhibited de-
pression, reduced activity, increased urine output, and
lacklustre fur coats, all of which are typical manifesta-
tions of diabetes. The diabetes symptoms of the treat-
ment group were milder in severity than those of the
model group were.

The blood glucose level of the model group signifi-
cantly increased (p < 0.01) in comparison with that of
the control group (Fig. 1). At 20 and 24 weeks, the blood
glucose level of the astragalus treatment group signifi-
cantly decreased in comparison with that of the model
group (p < 0.01) (Fig. 1). However, astragalus treatment
did not reduce the blood glucose level of the treatment
group to a level within the normal range.

Astragalus prevents morphological changes in the
kidneys of diabetic mice
To identify pathological damage in the kidney and con-
firm the protective effect of astragalus in subjects with
DN, kidney sections were processed for HE staining.
Several DN-induced changes in renal morphology were
observed in the model group, but were not present in
the control group, including thickening of the basal
membrane and vacuolar degeneration in renal tubular
epithelial cells (Fig. 2a-c).

Transmission electron microscopy
TEM observation revealed that the control group
showed glomerular basement membranes with defined
structures and normal foot processes. However, 24-
week-old model mice showed irregular thickening of the
glomerular basement membrane, effacement of foot pro-
cesses, and accumulation of the mesangial and renal

a cb
Fig. 2 Renal pathology of the different groups. Pathological damage in KKAy mice at 24 weeks of age. 2A-2C: HE staining, 400×. The control
group (a), the model group (b), and the treatment group (c). HE staining revealed a vacuolar degeneration in the renal tubular epithelial cells in
model group

a cb
Fig. 3 Ultrastructural change of the different groups. Ultrastructural damage in KKAy mice at 24 weeks of age. 2A-2C: 12000×. The control group
(a), the model group (b), and the treatment group (c). Observation by TEM revealed a irregular thickening of glomerular basement membrane,
effacement of foot processes in model group
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interstitial matrix. After treatment, the severity of all of
the morphological changes listed above decreased to
varying degrees (Fig. 3a-c).

Immunohistochemical staining
Immunohistochemical staining analysis was used to
examine the expression of α-SMA, E- cadherin, TGFβ1,
and TGFβ-R1. The results shows that these proteins

mainly express in renal tubular epithelial cells. Analyzed
by the image pro plus software,we found that the model
group displayed significantly higher levels of α-SMA (P
< 0.05), TGFβ1 (P < 0.05), and TGFβ-R1 (P < 0.05), and
lower levels of E- cadherin (P < 0.05) when compared to
the control group (Fig. 4). Treatment with astragalus sig-
nificantly inhibited the expression of α-SMA (P < 0.05),
TGFβ1 (P < 0.05), and TGFβ-R1 (P < 0.05) proteins, as

Fig. 4 Relative protein levels of different group. analysed by Immunohistochemical staining. Data presented are means ± SD (n = 6–8). CG = the
control group, MG = the model group, and TG = the astragalus treatment group. Compared with CG, *P < 0.05, **P < 0.01. Compared with MG,
ΔP < 0.05, ΔΔP < 0.01
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well as the apparent increase in E- cadherin (P < 0.05)
protein in diabetic mice.

Effects of astragalus on the expression of α-SMA,
E-cadherin, TGF-β1, and TGFβ-R1 at the mRNA level
Using real-time PCR, we found that administration of
astragalus significantly modulated the mRNA expres-
sion levels of TGF-β1 and TGFβ-R1 in the kidneys of
mice with DN. Significant reductions in the relative
expression levels of TGF-β1 (p < 0.05) and TGFβ-R1
(p < 0.05) mRNA transcripts were apparent in DN mice
treated with astragalus in comparison with those of the
model group (Fig. 4). The relative expression level of
α-SMA (p < 0.01) significantly decreased in DN mice

treated with astragalus in comparison with that of the
model group (Fig. 4). The relative expression level of
E-cadherin (p < 0.01) significantly decreased in DN
mice in comparison with that of the control group. DN
mice treated with astragalus showed significantly
increased E-cadherin expression (p < 0.05) in compari-
son with that of the model group (Fig. 5).

Effects of astragalus on the expression of α-SMA,
E-cadherin, TGFβ1, and TGFβ-R1 at the protein level
Western blot analysis was used to examine the protein
expression levels of α-SMA, E-cadherin, TGF-β1, and
TGFβ-R1. The model group displayed significantly
higher levels of α-SMA (p < 0.01), TGF-β1 (p < 0.01), and

Fig. 5 Relative mRNA levels of different group analysed by real-time PCR. a, b, c, d are respectively melt curve of TGF-β1, TGFβ-R1, α-SMA, E-cadherin.
Data presented are means ± SD (n = 6 ~ 8). CG = the control group, MG= the model group, and TG = the astragalus treatment group. Compared with
CG, *P < 0.05, **P < 0.01. Compared with MG, ΔP < 0.05, ΔΔP < 0.01
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TGFβ-R1 (p < 0.01), as well as a significantly lower level
of E-cadherin (p < 0.01) in comparison with the protein
expression levels of the control group (Fig. 6). In DN
mice, treatment with astragalus significantly inhibited
the protein expression of α-SMA (p < 0.01), TGF-β1
(p < 0.01), and TGFβ-R1 (p < 0.01), while it signifi-
cantly (p < 0.01) increased E-cadherin protein expres-
sion (Fig. 6).

Discussion
RIF is a major pathological change associated with DN
and is viewed as an accurate predictor of worsening renal
function. It is characterized by accumulation of ECM, de-
generation of tubular epithelial cells, atrophy, thickening
of basal membranes, and so on [14, 15]. For the present
study, we selected the KKAy mouse, a well-established
model of type 2 diabetes that was produced by transfer-
ring the yellow obese gene (Ay allele) into the KK/Ta
mouse [16], KKAy mice developed obesity, hypergly-
caemia, and albuminuria by 12–14 weeks of age in previ-
ous study. Moreover, HE staining demonstrated vacuolar
degeneration in the renal tubular epithelial cells. Further,
ultrastructural revealed irregular thickening of glomerular
basement membrane, effacement of foot processes.
In the clinic, The Chinese herb astragalus is used as a

treatment for patients with DN [17, 18]. The major con-
stituents of astragalus are polysaccharoses, astragaloside,
and isoflavones, have been shown to differentially lower
high blood glucose and triglyceride levels, improve im-
paired glucose tolerance and increase insulin sensitivity
in skeletal muscle in models of type 2 diabetes [19–22].
The astragalus injection used in our study formulation is
a sterile aqueous solution of astragalus extract. The
blood glucose levels of DN mice significantly decreased
after astragalus treatment for 6 and 10 weeks. In

comparison with the DN model group, the treatment
group showed a milder increase in the abundance of
ECM proteins. A report indicating that astragalus injec-
tions improve renal function by inhibiting tubular epi-
thelial transdifferentiation and subsequent collagen
production provides further support for these conclu-
sions [23]. Furthermore, it was found that the treatment
group exhibited milder symptoms (significantly in-
creased urine output, slowed activity, lack of energy, and
loss of hair sheen) compared to the model group follow-
ing the injection of astragalus. Taken together, adminis-
tration of astragalus may be appropriate for controlling
blood glucose levels and reverse renal histopathology
changes, which could lead to ameliorate the deterior-
ation of renal function. Therefore, there is a necessity to
explore the molecular mechanisms of astragalus admin-
istration for the treatment of DN.
We likewise aimed to investigate the mechanism of as-

tragalus administration as a treatment for DN by focus-
ing on the epithelial-mesenchymal transition (EMT).
Transdifferentiation of tubular epithelial cells into active
myofibroblasts is a central event in the pathology of RIF
[2, 3]. Myofibroblasts can produce large amounts of
ECM proteins, including collagen and fibronectin. The
behaviour of activated myofibroblasts may determine
whether fibrosis occurs in the progression of DN, but
this effect is countered by the persistence of TGF-β1 sig-
nalling, which causes ECM component deposition. TGF-
β1 is a key factor that initiates renal tubular epithelial
cell transformation to myofibroblasts [24], it stimulates
excessive synthesis and deposition of ECM proteins and
participates in the mediation of phenotypic conversion
of tubular epithelial cells in the pathological state, even-
tually leading to further atrophy and interstitial fibrosis
of renal tubular epithelial cells [25, 26]. In our study,

Fig. 6 Relative protein levels of different group analysed by western-blot. Data presented are means ± SD (n = 6–8). CG = the control group, MG= the
model group, and TG = the astragalus treatment group. Compared with CG, *P < 0.05, nnP < 0.01. Compared with MG, ΔP < 0.05, ΔΔP < 0.01
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through using immunohistochemistry, we found that
TGFβ1 and it’s receptor TGFβ-R1 were mainly
expressed in the cytoplasm of the renal tubular epithelial
cells, and were rarely expressed in glomeruli. We also
discovered that the amount of TGFβ1 and TGFβ-R1 ex-
pression was higher in the model group than in the nor-
mal group, which was in accord with previously
reported findings [27]. Additionally, treatment with as-
tragalus significantly reduced TGFβ1 mRNA and TGFβ-
R1 mRNA expression, which suggested that astragalus
may play a role in the down-regulation of TGFβ1 and
TGFβ-R1 at the transcriptional level. Our western blot
analyses confirmed that TGFβ1 and TGFβ-R1 proteins
were up-regulated in the model group.
In addition to TGFβ1 and it’s receptor, the E-cadherin

and α-SMA also play a critical role in development of
EMT. E-cadherin is a calcium-dependent transmembrane
protein that mediates mutual adhesion between cells
through a chain of X-linked proteins (intracellular adhesion
and junction proteins) and actin filaments. It is present
mainly in epithelial cells and plays an important role in
maintaining kidney epithelial cell structure and polarity in-
tegrity [28, 29]. Mutual adhesion between cells decreases
when E-cadherin expression is reduced or absent, resulting
in dispersal of cells to the periphery. In circumstances
allowing migration and invasion, dispersed cells invade
other parts of the body [30]. In the process of renal tubular
epithelial cell transdifferentiation, inhibition of E-cadherin
expression can affect the structural integrity of tubular epi-
thelial cells, enabling epithelial cells to be separated from
adjacent cells and fall off the basement membrane. α-SMA
is the characteristic protein produced by myofibroblasts
after their transdifferentiation from kidney cells [31, 32].
Stationary fibroblasts do not express α-SMA, after transdif-
ferentiation of tubular epithelial cells, the active myofibro-
blasts express protein markers of mesenchymal cells,
including vimentin and α-SMA. Indeed, α-SMA expression
in the kidney can indirectly reflect the number of myofibro-
blasts and the degree of RIF [33]. Therefore, expression of
α-SMA provides confirmation of cellular transdifferentia-
tion. As indicated by our results, the expression levels of E-
cadherin were decreased in the kidneys of diabetic mice,
and the expression of α-SMA in the kidneys of the model
group was much higher than that in the kidneys of the con-
trol group or treatment group,. Furthermore, the fact that
the administration of astragalus promoted the expression of
E-cadherin, and suppressed the expression of α-SMA,
which resulted in suppressed transdifferentiation and im-
proved renal conditions, provides further evidence for the
effectiveness of astragalus in the treatment of DN.

Conclusions
RIF is a major pathological change in the progression of
DN, the progression of RIF is a continuous, dynamic

process that involves complex pathogenic and regulatory
mechanisms. This study showed that intraperitoneal
administration of astragalus inhibited the progression of
RIF by reducing blood glucose levels; inhibiting the
expression of α-SMA, TGF-β1, and TGFβ-R1; down-
regulating E-cadherin expression; these results demon-
strated that astragalus administration could be a potential
treatment for DN, and that astragalus could improve
the outcomes associated with DN by suppressing
transdifferentiation.
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