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Abstract 

Background  Menopausal status has a known relationship with the levels of estrogen, progesterone, and other sex 
hormones, potentially influencing the activity of ER, PR, and many other signaling pathways involved in the initiation 
and progression of breast cancer. However, the differences between premenopausal and postmenopausal breast 
cancer patients at the molecular level are unclear.

Methods  We retrieved eight datasets from the Gene Expression Omnibus (GEO) database. Differentially expressed 
genes (DEGs) associated with menopausal status in breast cancer patients were identified using the MAMA 
and LIMMA methods. Based on these validated DEGs, we performed Gene Ontology (GO) functional enrichment 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein–protein interaction 
(PPI) networks were constructed. We used DrugBank data to investigate which of these validated DEGs are targetable. 
Survival analysis was performed to explore the influence of these genes on breast cancer patient prognosis.

Results  We identified 762 DEGs associated with menopausal status in breast cancer patients. PPI network analysis 
indicated that these genes are primarily involved in pathways such as the cell cycle, oocyte meiosis and proges-
terone-mediated oocyte maturation pathways. Notably, several genes played roles in multiple signaling pathways 
and were associated with patient survival. These genes were also observed to be targetable according to the Drug-
Bank database.

Conclusion  We identified DEGs associated with menopausal status in breast cancer patients. The association of these 
genes with several key pathways may promote understanding of the complex characterizations of breast cancer. Our 
findings offer valuable insights for developing new therapeutic strategies tailored to the menopausal status of breast 
cancer patients.
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Introduction
As the leading cancer diagnosis in women, breast cancer 
accounted for approximately 2,261,000 new cases and 
684,000 fatalities in 2020 [1]. This hormone-dependent 
malignancy primarily affects the mammary gland in 
females. Accurate identification of menopausal status is 
vital for effective prevention, detection, and treatment 
[2, 3]. A population-based study investigating the impact 
of premenopausal and postmenopausal breast cancer 
revealed that the mortality rate of patients with post-
menopausal breast cancer in 2018 was 3.7 times greater 
than that in patients with premenopausal breast cancer 
[4]. Given the unique molecular characteristics of these 
two conditions, personalized strategies are required to 
manage breast cancer based on menopausal status. For 
instance, endocrine therapy, which reduces estrogen or 
progesterone levels, is recommended for postmenopau-
sal patients with estrogen receptor (ER) or progesterone 
receptor (PR) positivity but is unsuitable for premeno-
pausal patients [5, 6]. It has been widely recognized that 
menopausal status is associated with estrogen, proges-
terone, and other sex hormone levels, potentially influ-
encing the activity of ER, PR and many other signaling 
pathways participating in the initiation and progression 
of breast cancer. However, the intricate molecular dis-
tinctions between premenopausal and postmenopausal 
breast cancer remain opaque. This gap in understand-
ing impedes the full realization of precision medicine 
tailored to menopausal status. Therefore, enhancing our 
understanding of the unique molecular mechanisms of 
breast cancer through gene expression profile analyses is 
essential to improve early detection, diagnosis, and treat-
ment strategies.

With the significant advancements in high-throughput 
technologies for genome-wide profiling of methylation 
events and gene expression levels, including methods 
such as methylation microarrays, MeDip-seq, and RNA-
seq, and the availability of public datasets, we can now 
analyze data collected worldwide. Leveraging bioinfor-
matic methods, we have the tools to identify potential 
biomarkers and pathways linked to menopausal status. 
However, numerous challenges arise in the integration 
and analysis of datasets from different sources. Fortu-
nately, improvement in the differential expression analy-
sis method enables us to perform cross-study analysis. 
In recent years, various differential expression analysis 
methods have been proposed, providing a variety of tools 
to ensure the robustness of our research findings.

To date, large-scale bioinformatic studies focusing on 
the differentially expressed genes (DEGs) associated with 
menopause in breast cancer patients have been scarce. 
The primary objective of our study is to illuminate the 
molecular distinctions between premenopausal and 

postmenopausal breast cancer patients. In our study, we 
attempted to collect more datasets to increase the sam-
ple size. In an integrated large cohort, we performed dif-
ferential expression analyses to identify DEGs using two 
different algorithms. Additionally, Gene Ontology func-
tional enrichment and Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment analyses of the DEGs were 
performed. In addition, protein–protein interaction (PPI) 
networks were constructed to further elucidate the direct 
and indirect associations between the DEGs. In doing so, 
we hope to pinpoint key menopause-related biomark-
ers that could prove instrumental in future breast cancer 
research. Furthermore, understanding these biomarkers 
will undoubtedly shed light on the disease’s pathogenesis, 
offering new avenues for clinical drug development and 
therapeutic interventions.

Methods
Microarray data for differentially expressed gene (DEG) 
analysis
We conducted an extensive search for breast cancer 
microarray datasets with a sample size of more than 20 in 
the Gene Expression Omnibus (GEO) database from the 
National Center for Biotechnology Information (NCBI) 
website (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). From 
the 1058 breast cancer datasets identified, we specifi-
cally selected datasets based on the Affymetrix Human 
Genome U133 Plus 2.0 Array (platform GPL570, n of 
probes = 54,675) that included primary breast cancer tis-
sues (excluding cell lines or animal tissues) and had infor-
mation on menopausal status. Raw intensity files in CEL 
format from these 8 selected datasets were obtained from 
the GEO database. The R package “affy” was employed 
to convert the raw intensity files to gene expression pro-
files using the robust multiarray average (RMA) method 
[7]. All data processing and statistical analyses were con-
ducted in the R environment (https://​www.​rproj​ect.​org). 
The study process is graphically represented in Fig. 1.

Differential expression analyses based on two algorithms
To identify DEGs, we utilized two different algorithms. 
First, we employed the R package “MAMA” to gener-
ate combined p values and combined effect sizes for the 
expression of each probe across all selected datasets [8]. 
The cutoff criteria for this method were set as a com-
bined p value of less than 0.01 and a combined z score 
of greater than 2 or less than − 2. Then, all the samples 
from the 8 selected datasets were integrated into a large 
cohort. The R package “limma” was then used to calculate 
the adjusted p value and fold change for the expression of 
each probe in this integrated cohort [9]. The cutoff crite-
ria for this method were an adjusted p value of less than 
0.01 and a fold change (log 2) of greater than 2 or less 

https://www.ncbi.nlm.nih.gov/geo/
https://www.rproject.org
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than − 2. Probes demonstrating differential expression 
with consistent trends in both methods were selected for 
further analyses, and the genes mapped by these probes 
were identified as DEGs.

Visualization of the expression of DEGs
To present the top 50 differentially expressed probes, 
we utilized the R package “pheatmap” to generate heat-
maps. Given that the sample sizes varied across datasets, 
we randomly selected a subset of 50 samples for plot-
ting. The heatmap employed unsupervised hierarchi-
cal clustering using the Ward method with Manhattan 
distance to visualize the clustering patterns of either the 
samples or probes. At the top of the heatmaps, the cat-
egory of each selected sample (premenopausal or post-
menopausal) was marked. We have uploaded the pipeline 

of differential expression analyses and visualization to 
GitHub. It can be accessed at https://​github.​com/​minzh​
angch​eng/​BRCA_​menop​ause.

Enrichment analysis of GO terms and KEGG pathways
We utilized the WEB-based Gene SeT AnaLysis Toolkit 
(WebGestalt) for the enrichment analysis of Gene Ontol-
ogy (GO) terms and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways [10, 11]. The overrepresen-
tation analysis (ORA) method was employed, with a sig-
nificance threshold of p values less than 0.05, to identify 
the critical biological implications of the DEGs.

To further illustrate the direct and indirect associations 
among the DEGs, protein–protein interaction (PPI) net-
works were constructed and visualized using the Search 
Tool for the Retrieval of Interacting Genes/Proteins 

Fig. 1  Process of screening genes and pathways associated with menopausal status in breast cancer patients using two algorithms

https://github.com/minzhangcheng/BRCA_menopause
https://github.com/minzhangcheng/BRCA_menopause
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(STRING) database [12]. The PPI networks were sub-
sequently clustered using Cytoscope software [13] with 
the MCODE [14] plugin. Additionally, the setsApp [15] 
plugin was employed to color-code the network, high-
lighting gene sets associated with various clusters.

Exploration of targeted compounds for and patient 
survival related to DEGs
Drugs and their targets were downloaded from the Drug-
Bank database (https://​go.​drugb​ank.​com/) to investigate 
the potential targetability of these validated DEGs [16]. 
Moreover, we utilized the TCGA breast cancer dataset 
to determine whether these genes influenced the overall 
survival (OS) of breast cancer patients.

Results
Dataset characteristics
Of the 1058 breast cancer datasets available in the GEO 
database, we selected 8 datasets that met our criteria for 
analysis. These datasets were GSE76124 [17], GSE43365 
[18], GSE43502 [19], GSE50948 [20], GSE58792 [21], 
GSE71258 [22], GSE76274 [23] and GSE140494 [24]. 
These datasets contained 300 samples from premeno-
pausal individuals and 393 samples from postmenopausal 
individuals (Table 1).

DEGs associated with menopause in breast cancer patients
We used two distinct methods to screen for DEGs. In 
the first method, we treated the 8 datasets as separate 
cohorts. Within each dataset, we calculated p values and 
effect sizes and then generated combined p values and 
effect sizes. Applying a threshold of a combined p value 
less than 0.01 and a combined z score above 2, we iden-
tified 6286 differentially expressed probes (Table S1). In 

the second method, the samples from the 8 datasets were 
merged into a single large cohort. Using a cutoff of an 
adjusted p value less than 0.01 and a fold change (log2) 
greater than 2, 6620 probes were identified as differen-
tially expressed probes (Table S1). The 1099 probes iden-
tified as differentially expressed by both methods were 
selected for further analyses and were found to map to 
762 genes (Fig.  1, top 100 probes in Table  2, full list in 
Table S1). Additionally, heatmaps displaying the expres-
sion levels of the top 50 validated probes are presented 
in Fig. 2.

KEGG pathway enrichment and GO functional enrichment 
analyses
We conducted KEGG pathway enrichment analysis and 
gene ontology (GO) analysis using WebGestalt to ascer-
tain the significant biological roles and molecular func-
tions associated with the identified DEGs. As a result, we 
observed several enriched biological processes, including 
the p53 signaling pathway, extracellular matrix (ECM) 
structural constituents, cell cycle, and antifolate resist-
ance (Fig. 3, full list in Table S2). Among the significantly 
enriched biological processes, the top overrepresented 
groups were related to the regulation of cell differentia-
tion, proliferation, migration, and the cell cycle (Fig.  3, 
full list in Table S4).

Characterization of proteins encoded by the DEGs 
according to PPI network analysis
To gain further insight into the biological characteris-
tics of the proteins encoded by the identified DEGs, we 
performed a protein–protein interaction (PPI) network 
analysis using STRING. The PPI network revealed a com-
plex network of interactions among the DEGs (Fig. 4A). 
We simplified the network and identified highly inter-
connected regions by clustering the network using the 
MCODE algorithm. We present the top 10 subnetworks 
generated from this analysis in Fig.  4B and Table  3. We 
also performed further KEGG pathway enrichment 
analyses within these subnetworks (Table  4). These 
enrichment results showed that the first cluster was sig-
nificantly associated with the cell cycle pathway. It is also 
involved in oocyte meiosis and progesterone-mediated 
oocyte maturation—all of which are menopause-related 
pathways. The second cluster was significantly associated 
with several tumor signaling pathways, such as the PI3K-
Akt signaling pathway, EGFR tyrosine kinase inhibitor 
resistance pathway, Ras signaling pathway, and MAPK 
signaling pathway.

Targeted compounds and clinical significance of DEGs
Of the 762 validated genes, 89 genes were found to have 
targeted compounds (Table 4; full list for DEGs in Table 

Table 1  Datasets involved in this study

a These datasets contain normal, unannotated, and samples that are not primary 
breast cancer. After excluding these samples, 693 samples that met our criteria 
were used for subsequent analyses

Dataset Sample counts

Total Pre-menopausal Post-
menopausal

GSE76124 198a 62 94

GSE50948 156 72 84

GSE71258 128 59 41

GSE43365 111 32 67

GSE140494 91 45 44

GSE76274 67a 11 37

GSE58792 51 9 13

GSE43502 25a 10 13

Total 827a 300 393

https://go.drugbank.com/
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Table 2  Top 100 different expression probes

Symbol MAMA limma

p zScore p FC

238578_at TMEM182 0.00 2.30 0.00 4.09

42361_g_at CCHCR1 0.00 2.12 0.00 4.11

244383_at 0.00 −2.81 0.00 −5.74

243736_at 0.00 −2.50 0.00 −6.58

224686_x_at LRRC37A2 0.00 −2.36 0.00 −4.17

227477_at ZMYND19 0.00 2.31 0.00 3.42

37425_g_at CCHCR1 0.00 2.36 0.00 3.45

243209_at KCNQ4 0.00 2.36 0.00 5.26

243149_at 0.00 −2.19 0.00 −9.22

238706_at PAPD4 0.00 −2.32 0.00 −7.83

239597_at 0.00 −2.20 0.00 −6.99

242407_at 0.00 −2.07 0.00 −4.26

238576_at MOCOS 0.00 3.69 0.00 3.66

225657_at NCBP2-AS2 0.00 2.21 0.00 3.28

242770_at LOC642236 0.00 −3.00 0.00 −4.80

240052_at ITPR1 0.00 −2.21 0.00 −6.12

31807_at DDX49 0.00 2.05 0.00 2.42

215942_s_at GTSE1 0.00 2.02 0.00 4.53

218586_at MRGBP 0.00 2.33 0.00 3.94

238587_at UBASH3B 0.00 2.43 0.00 3.95

239673_at 0.00 −2.22 0.00 −5.55

227371_at BAIAP2L1 0.00 2.09 0.00 4.30

239802_at SAP30L 0.00 −3.35 0.00 − 2.20

242143_at 0.00 −2.46 0.00 −5.86

32042_at ENOX2 0.00 2.67 0.00 3.66

238462_at UBASH3B 0.00 2.52 0.00 5.08

234788_x_at 0.00 −2.59 0.00 −4.13

243561_at 0.00 −2.13 0.00 −5.59

221906_at TXNRD3 /// TXNRD3NB 0.00 2.21 0.00 3.23

239886_at 0.00 −2.26 0.00 −3.87

242787_at 0.00 2.45 0.00 4.98

225612_s_at B3GNT5 0.00 2.15 0.00 8.41

219490_s_at DCLRE1B 0.00 2.26 0.00 2.09

229551_x_at ZNF367 0.00 2.07 0.00 4.97

218868_at ACTR3B 0.00 3.49 0.00 5.27

223492_s_at LRRFIP1 0.00 −3.44 0.00 −5.47

209825_s_at MIR3658 /// UCK2 0.00 4.18 0.00 4.44

224712_x_at SMIM7 0.00 −3.02 0.00 −2.79

220018_at CBLL1 0.00 3.01 0.00 3.61

227484_at SRGAP1 0.00 −2.68 0.00 −4.82

238712_at 0.00 −3.37 0.00 −5.56

232113_at AK021804 0.00 −2.20 0.00 −6.19

239232_at MSI2 0.00 −2.25 0.00 −5.37

243584_at 0.00 −2.37 0.00 −5.98

241472_at DMXL1 0.00 −2.33 0.00 −4.77

238595_at 0.00 −2.14 0.00 −5.47

242769_at 0.00 −2.76 0.00 −3.64

221747_at TNS1 0.00 −2.00 0.00 −4.15

Table 2  (continued)

Symbol MAMA limma

p zScore p FC

230419_at SOX9-AS1 0.00 2.93 0.00 3.22

238075_at CHEK1 0.00 2.00 0.00 4.83

241102_at 0.00 −2.13 0.00 −4.32

230356_at RP13-238F13.5 0.00 2.47 0.00 5.95

243216_x_at 0.00 −2.35 0.00 −3.68

60474_at FERMT1 0.00 3.62 0.00 4.90

244080_at 0.00 2.74 0.00 4.48

232202_at FAM83B 0.00 2.78 0.00 6.26

223381_at NUF2 0.00 2.38 0.00 7.54

242572_at 0.00 −2.05 0.00 −4.05

211452_x_at LRRFIP1 0.00 −2.06 0.00 −2.35

211501_s_at EIF3B 0.00 2.54 0.00 2.88

222962_s_at MCM10 0.00 2.72 0.00 5.52

220184_at NANOG 0.00 −2.43 0.00 −4.33

229944_at OPRK1 0.00 4.02 0.00 3.06

242403_at 0.00 −2.14 0.00 −5.03

232726_at 0.00 −2.54 0.00 −5.54

232092_at SLC25A51 0.00 2.77 0.00 2.21

224590_at XIST 0.00 −2.45 0.00 −6.62

205393_s_at CHEK1 0.00 3.96 0.00 4.72

236982_at 0.00 2.88 0.00 2.62

222608_s_at ANLN 0.00 2.51 0.00 7.18

240666_at 0.00 −2.09 0.00 −4.55

243709_at SLC38A9 0.00 −2.03 0.00 −4.27

244842_x_at 0.00 −2.41 0.00 −2.53

212452_x_at KAT6B 0.00 −2.04 0.00 − 2.95

231200_at LSM14B 0.00 2.93 0.00 4.05

233037_at 0.00 −3.29 0.00 −4.71

236494_x_at 0.00 −2.34 0.00 −4.73

232889_at 0.00 −2.64 0.00 −7.07

238724_at 0.00 2.13 0.00 2.18

244535_at 0.00 −3.02 0.00 −3.50

223700_at MND1 0.00 2.61 0.00 5.90

229865_at FNDC3B///LOC101928615 0.00 2.46 0.00 4.63

243834_at TNRC6A 0.00 −2.87 0.00 −3.29

241210_at 0.00 −2.59 0.00 −2.78

59631_at TXNRD3///TXNRD3NB 0.00 2.80 0.00 3.08

242467_at 0.00 −2.84 0.00 −5.35

243170_at AC092620.2 0.00 −2.02 0.00 −4.01

215397_x_at 0.00 −2.12 0.00 −3.55

211594_s_at MRPL9 0.00 2.20 0.00 3.03

232271_at HNF4G 0.00 2.62 0.00 2.50

225533_at PHF19 0.00 3.14 0.00 2.43

226320_at ALYREF 0.00 2.90 0.00 4.04

238969_at C3orf55 0.00 2.29 0.00 3.36

222358_x_at 0.00 −2.30 0.00 −2.69

223038_s_at FAM60A 0.00 2.38 0.00 4.93

223784_at TMEM27 0.00 3.22 0.00 3.64
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S5). Among these genes, 15 were derived from Cluster 
1, and 7 were derived from Cluster 2. Furthermore, 73 
genes with targeted compounds were related to the OS of 

breast cancer patients (Table 4; full list for DEGs in Table 
S5).

Discussion
In this study, we investigated the differential gene expres-
sion between premenopausal and postmenopausal breast 
cancer patients by analyzing eight breast cancer datasets 
comprising 693 samples. We aimed to enhance the reli-
ability of our analysis results by employing two differ-
ent algorithms. As a result, we identified 762 DEGs that 
exhibited significant differences between the two groups. 
Among these, multiple genes have been well clarified 
to be associated with tumour initiation and progres-
sion. These include Matrix Metallopeptidase 7 (MMP7), 

Table 2  (continued)

Symbol MAMA limma

p zScore p FC

239576_at MTUS1 0.00 −2.41 0.00 −3.82

207534_at MAGEB1 0.00 2.04 0.00 2.05

243039_at 0.00 −2.24 0.00 −3.65

241457_at 0.00 −2.64 0.00 −7.47

Fig. 2  The expression profiles are presented in the heatmap of the top 50 DEGs in the integrated cohort. The expression levels of the genes are 
represented by different colors. Red, upregulated; Blue, downregulated. Each row represents a probe, and each column represents a sample
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transcript factors of YAP1 (one of the most important 
effectors of the Hippo pathway) and FOXM1, fibroblast 
growth factor receptor 2 (FGFR2), Eukaryotic initia-
tion factor 3B (EIF3B), Kinesin Family Members (Kif14, 

Kif4A, Kif23 and Kif2C), Cyclin Dependent Kinase 1 
(CDK1), Cell division cycle proteins (CDCA3, CDCA5, 
CDCA7, CDCA8, CDCA20 and CDC25C) and Check 
point Kinase 1 (CHEK1). Some of these genes have also 

Fig. 3  KEGG pathways and GO terms of the DEGs. A KEGG pathways, B molecular function category, C GO biological process category. The 
color of each circle indicates the significance of the enrichment, with colors closer to red representing smaller p-values. The size of each circle 
corresponds to the number of DEGs enriched in that term, with larger circles indicating a higher number of DEGs
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Fig. 4  Analysis potential interactions of DEGs by PPI networks. A PPI networks of the 762 confirmed DEGs. B PPI networks of the DEGs related 
to top 10 clusters. DEGs with the same color represent those grouped within the same cluster
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been found to be associated with breast cancer metasta-
sis in our previous research [25].

Among the top enriched pathways, the p53 signaling 
pathway and Hippo pathway are particularly remarkable, 
because they are involved in various intracellular regula-
tions, including cellular senescence, energy metabolism 
regulating and blocking metastasis. The p53 signaling 
pathway, crucial in tumorigenesis [26], is frequently 
mutated in various human tumors, leading to a loss 
of its inhibitory effect on tumor growth. In this report, 
CDKN2A, a gene within the p53 pathway, is involved in 
p53-dependent cellular senescence, proliferation, and 
apoptosis, while it may be a pioneering prognostic pre-
dictor for breast cancer [27, 28]. Furthermore, Cyclin D1 
phosphorylates Rb by binding to cyclin-dependent kinase 
(CDK) 4/6, resulting in activation of E2F transcription 
and cell cycle transition from her G1 phase to S phase. 
The tumor tumor-suppressive role of SERPINB5 in breast 
cancer is also supported by experimental evidence [29]. 
On the other hand, the Hippo pathway, originally dis-
covered in Drosophila melanogaster as a crucial regula-
tor of tissue development, is involved in tumorigenesis by 
regulating cell proliferation and apoptosis. For example, 
aberrations in the Hippo pathway and YAP/TAZ-TEAD 
activity are closely related to various human cancers, 
while targeting the Hippo pathway for treatment remains 
a compelling challenge [30].

Of particular interest, four genes (TYMS, GART, 
ABCC3, and GGH) were notably found to be asso-
ciated with folate metabolism and involved in anti-
folate resistance. To date, antifolates targeting folate 
metabolism have played a crucial role in the treatment 
of malignant tumors. Various antifolates, such as the 
4-amino folic acid analogue aminopterin, its homologue 

4-amino-10-methylfolic acid (methotrexate), raltitrexed 
(Tomudex; ZD1694), and pemetrexed (Alimta; MTA, 
LY231514), have been discovered and introduced into 
oncology clinics for the chemotherapeutic treatment of 
childhood acute lymphoblastic leukemia, colorectal can-
cer, malignant pleural mesothelioma, and non-small cell 
lung cancer [31–35].

Raltitrexed and pemetrexed selectively inhibit glyci-
namide ribonucleotide transformylase (GART) and thy-
midylate synthase (TYMS), which are crucial for the de 
novo biosynthesis of purine and thymidine nucleotides, 
respectively. These antifolates have been introduced for 
the treatment of malignant tumors. ATP-binding cassette 
sub-family C member 3 (ABCC3, also known as MRP3), 
a member of the ATP-driven multidrug resistance (MDR) 
transporters, mediates the efflux of folates and hydro-
philic antifolates. Gamma-glutamyl hydrolase (GGH) 
catalyzes the removal of gamma-linked polyglutamates 
from (anti)folylpolygamma-glutamates. Additionally, a 
recent study has shown that the expression level of GGH 
is associated with poor prognosis and unfavorable clini-
cal outcomes in invasive breast cancer [36]. We believe 
that the association between these four genes and anti-
folates represents one of multiple pathways that could 
potentially act in both premenopausal and postmenopau-
sal breast cancer.

Further KEGG pathway enrichment analysis based on 
the PPI subnetwork provided additional information. 
The first cluster was significantly associated with sev-
eral important pathways, including the cell cycle, oocyte 
meiosis, and progesterone-mediated oocyte maturation 
pathways. The cell cycle is fundamental to the growth and 
development of all organisms and plays a significant role 
in cancer development and progression. For example, 

Table 3  Subnetworks in PPI network

Cluster Score Nodes Edges Genes

1 57.552 66 3856 FAM83D, MCM2, GINS1, CDC25C, POLQ, BUB1, TYMS, MCM4, CDK1, CDCA2, NDC80, CDCA5, KIF14, KIF23, SMC2, 
KIF4A, NCAPG, CHEK1, CDCA7, PRC1, FAM64A, CENPF, FANCI, PBK, DLGAP5, CKS2, AURKB, MND1, ATAD2, ESPL1, 
HMMR, ERCC6L, GMNN, KIF2C, CKAP2, FBXO5, MELK, MCM10, OIP5, CDCA8, RFC4, MYBL2, CCNB2, AURKA, CDC20, 
CENPN, TRIP13, UBE2C, ANLN, SKA1, TTK, NCAPH, NEK2, CDCA3, DSCC1, KIF15, NUF2, GTSE1, FEN1, BIRC5, EXO1, 
HJURP, CKS1B, DEPDC1, MCM7, FOXM1

2 5.571 13 78 LAMB3, SFN, MMP7, LAMA4, FGFR2, KRT14, UTRN, ACTA1, PECAM1, LAMC2, KDR, LAMA1, MET

3 5 7 40 WDR12, DDX17, BYSL, DDX21, NIP7, DDX49, EIF3B

4 4.947 18 94 H2BFS, HIST1H2BK, DSG3, PKP1, KRT6B, FOXA1, TRIM29, EED, WHSC1, KRT5, DSC3, CBFB, KLK7, WDR5, ELF5, YAP1, 
NANOG, IGF2BP3

5 4.8 14 72 RRP36, ISG20, CIRH1A, TRMT6, CTPS2, ABT1, EXOSC4, CTPS1, EXOSC3, RBM8A, EXOSC5, MAGOHB, UTP14A, ALYREF

6 4.571 13 64 CD36, FBN1, LEP, VCAN, FBLN1, ITGB5, FABP4, COL1A2, SLC27A6, PDK4, SPARC, TIMP3, PPARA​

7 4.286 6 30 NUP155, RANBP2, NUP160, NUPL1, SEH1L, NUP205

8 4 6 28 MRPS35, MRPL9, SMKR1, MRPS2, MRPS12, MRPL15

9 2.4 4 12 CXCL16, CCL20, CXCL5, CXCL13

10 2.333 11 28 TIMM8A, TFR2, SLC39A8, TEFM, MTPAP, TAMM41, TOMM5, SLC40A1, LRPPRC, TIMM50, SLC25A37
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dysregulation of the cell cycle is a hallmark of cancer, 
and many chemotherapeutic drugs exert their effects 
by targeting the cell cycle machinery [37]. We identified 
several DEGs involved in the cell cycle, including CDK1, 
CHEK1, CDC25C, BUB1, CDC20, and TTK, which not 
only are related to breast cancer patient survival but also 
have existing targeted drugs. However, none have been 
reported in association with menopause. How these 
genes affect premenopausal and postmenopausal breast 
cancer has not yet been fully demonstrated. Further 
study of these genes related to the cell cycle pathway will 
help us understand the mechanism of breast cancer for 
different menopausal statuses and strengthen the poten-
tial utility of these genes as therapeutic targets. In addi-
tion, CDK1 and CHEK1 are involved in the p53 signaling 
pathway, indicating the potential effect of menopausal 
status on the activity of p53 signaling.

Consistent with the key role of menopause in our study, 
we observed that DEGs involved in oocyte meiosis and 
progesterone-mediated oocyte maturation, two pathways 
closely associated with reproductive aging and cessation, 
also emerged as significant in our analysis. It is widely 
accepted that women’s hormonal milieu undergoes sig-
nificant changes during menopause, with potential impli-
cations for breast cancer biology [38]. Previous studies 
have reported the association of these pathways with 
breast cancer [39–41]. In addition to CDC25C, BUB1, 
and CDK1 mentioned above, AURKA, which plays a role 
in both pathways, is linked to survival and has targeted 
drugs. Importantly, AURKA has been found to be asso-
ciated with an increased risk of invasive breast cancer 
among postmenopausal women [42].

The second cluster of DEGs, including FGFR2, KDR2 
and MET, indicates the importance of key cancer-related 
pathways, including the PI3K-Akt signaling pathway, 
EGFR tyrosine kinase inhibitor resistance pathway, Rap1 
signaling pathway, Ras signaling pathway, and MAPK 
signaling pathway. A few studies have reported associa-
tions of these pathways with breast cancer. In addition, 
drugs targeting these signaling pathways are available. 
For the first time, our study reveals a connection between 
these signaling pathways and menopausal status, lay-
ing the groundwork for future clinical development of 
breast cancer treatment strategies that cater to women 
with different menopausal statuses. Among these DEGs, 
KDR and MET are linked to survival and have available 
targeted drugs. Therapies targeting these key genes may 
be effective in improving patient outcomes. Additionally, 
one GWAS presented solid evidence of a strong associa-
tion between the FGFR2 locus and ER status in breast 
cancer patients [43]. Another study found that meno-
pause has a greater impact on ER- than ER+ breast can-
cer incidence [44]. These findings, along with ours, hint 

Table 4  KEGG enrichment of subnetworks

Cluster 3 and 8 are not involved in any KEGG pathways. Red genes are associated 
with OS; Blue genes have target compounds; Purple genes are associated with 
OS and have target compounds
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at the relationship between breast cancer, menopausal 
status, and ER status.

Interestingly, the Cluster 6 genes involved in PPAR 
signaling and adipose metabolism showed different 
expression between premenopausal and postmenopausal 
breast cancer patients. It has been well established that 
after menopause, lower levels of estrogen can lead to the 
accumulation of fat around the waist instead of the hips 
and thighs. For postmenopausal women, abdominal fat 
makes up 15 to 20% of their total body weight, compared 
to 5 to 8% in premenopausal women [45]. This also vali-
dates the reliability of our differential expression analysis 
results. Notably, adiposity is a risk factor for develop-
ing breast cancer in postmenopausal women, as breast 
fat has a major role in the genesis and progression of 
breast cancer. Rose et  al. argued that obese postmeno-
pausal women have an increased breast cancer risk, the 
principal mechanism for which is elevated estrogen pro-
duction by adipose tissue [46]. Our analysis showed that 
DEGs (CD36, FABP4, SLC27A6, PPARA) enriched in 
the PPAR signaling pathway were all strongly associated 
with patient survival. However, whether menopause-
associated obesity affects the initiation and progression 
of breast cancer remains an open question.

Additionally, many chemokines or cytokines, such 
as CCL20, CXCL5, and CXCL13 (Cluster 9), had sig-
nificantly different expression levels between the two 
populations, which indicates differences in the tumor 
microenvironment. This difference could lead to a change 
in the infiltration of immune cells in tumor tissues and 
affect the efficacy of immune treatment. Locally pro-
duced and systemic cytokines are likely to affect breast 
cancer growth and behavior [47].

Compared with previous studies, our research ben-
efits from a larger sample size and the use of two dif-
ferent algorithms to enhance the robustness of the 
results. In addition, the MAMA algorithm allows us 
to analyze data from different geographic regions. The 
studies included in our analysis encompass samples 
not just from the United States but also from Ger-
many, France, and Belgium. This geographical diversity 
ensures a more global representation. However, this 
study has several limitations. First, some subsets lacked 
crucial clinical information, preventing us from ana-
lyzing the effect of clinical factors on gene expression 
across the entire cohort, even though we understand 
that some clinical factors, such as age and race, might 
affect menopausal status or gene expression. Second, 
despite using two algorithms to bolster the robustness 
of our results, it was challenging to determine whether 
we overlooked an essential gene due to algorithm dif-
ferences. Third, it would be preferable to have an inde-
pendent validation set. Therefore, we are attempting to 

collect our own clinical samples and pay more attention 
to these points mentioned above in our future stud-
ies. Other databases, such as TCGA, are also valuable 
resources for cancer research [48–50], but we did not 
use them in this study because they did not meet the 
requirements of the MAMA algorithm.

In conclusion, we utilized two differential expression 
analysis methods to identify several DEGs associated 
with menopausal status in a large integrated cohort. The 
interactions of the DEGs were depicted through PPI 
networks. Furthermore, we identified several key path-
ways. Most of our results related to menopausal sta-
tus are reported for the first time; thus, these findings 
could provide a valuable reference for treating patients 
with premenopausal and postmenopausal breast cancer. 
Understanding the DEGs between premenopausal and 
postmenopausal breast cancer and elucidating their roles 
in the development and progression of the disease can 
offer valuable insights into its underlying mechanisms. 
Further studies are needed to comprehensively inves-
tigate this relationship and uncover the specific mecha-
nisms involved. Continued research in this area will help 
improve our understanding of breast cancer and poten-
tially lead to the development of more effective treat-
ments tailored to the specific needs of premenopausal 
and postmenopausal patients.
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