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Abstract 

Despite the fact that the long-term survival rate of breast cancer patients had been significantly improved owing to 
the systemic breast cancer therapies, there are still some side effects such as amenorrhea and fertility retention to 
be resolved, leaving it an important thing to understand the possible side effects on fertility and fertility preserva-
tion strategies while undergoing breast cancer treatment, due to the fact that most young patients hope to become 
pregnant and have children after breast cancer treatment. With anti-müllerian hormone (AMH) being the most sensi-
tive marker for predicting ovarian function in young premenopausal women with breast cancer, this review is aimed 
to provide the additional guidance for clinical application of AMH by exploring the impacts of AMH on the fertility of 
young breast cancer patients, the relationship between AMH and metabolism, and the relationship between BRAC 
gene mutation and fertility protection strategies.
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Background
In recent years, breast cancer is one of the most common 
malignancies among women, with the increasing occur-
rence [1]. For premenopausal breast cancer patients, 
included are such treatment strategies as surgery, cyto-
toxic chemotherapy, endocrine therapy, radiation ther-
apy, and targeted therapy2, which, despite the improved 
survival rates, may have side effects such as early meno-
pause and fertility disorders [2]. Based on a meta-analysis, 
the pregnancy probability of women receiving systemic 
treatment after surgery is about 14%, and the pregnancy 
rate of the survivors after receiving breast cancer treat-
ment is on average 40% lower compared with general 
female [3], leaving many female patients concerned about 
infertility in the future and early menopausal symptoms 

[4]. The fertility preservation can be assessed with ovar-
ian reserve biomarkers such as anti-müllerian hormone 
(AMH), inhibin B levels, antral follicle count (AFC), 
early follicular phase follicle stimulating hormone (FSH), 
and estradiol [5]. The recruitment of primitive follicles 
and the effect of FSH on follicles during growth can be 
inhibited by AMH, a glycoprotein hormone in the trans-
forming growth factor-beta (TGF-β) family [6], which 
is supported by Ruddy et al. that with aging, the risks of 
amenorrhea at 12  months and 18  months after chemo-
therapy increase by 20% and 18% respectively, while with 
each 1 ng/mL increase in AMH, the chance of amenor-
rhea at the 18th month of chemotherapy decreases by 
59%[7]. Nowadays, AMH has been shown, in young pre-
menopausal women with breast cancer, to be the most 
sensitive marker for predicting ovarian function recovery 
and premature ovarian insufficiency [8]. The purpose of 
this review is to discuss whether there is a correlation 
between AMH and fertility in young patients with breast 
cancer, thus guiding the selection of fertility protection 
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strategies, with the association between metabolism and 
AMH examined to assess the impact of metabolism on 
fertility.

Protective mechanism of AMH
Produced by growing follicular granulosa cells is AMH, 
known as Müllerian inhibiting substance (MIS), which 
can negatively regulate primordial follicles’ activation to 
prevent over-recruitment. It was revealed  that, by the 
presence of more primordial follicles in MIS-treated 
mice with chemotherapy drugs than that in control mice, 
the activation of primordial follicles could be blocked by 
MIS, which was shown to be possibly effective in protect-
ing primary ovarian function throughout chemotherapy 
[9], while primordial follicles (PMFs), which relate to the 
reverse of follicular ovarian, could be activated by phos-
phoinositide 3-kinase (PI3K) signaling pathway and be 
inhibited by AMH. PMFs are activated by Cyclophospha-
mide (Cy), an alkylating agent commonly used to treat 
breast cancer, via up-regulating the PI3K-PTEN-AKT 
pathway in the ovary, resulting in premature ovarian 
failure, the gonadal toxicity contradicting the traditional 
theory that traditional chemotherapy’s direct effect on 
oocyte DNA in PMF makes these resting follicles apop-
totic [10]. As shown in the model of AMH administration 
to a Cy-treated pubertal mice, PMF reduction could be 
restrained by inhibiting FOXO3A phosphorylation, and 
AMH administration can induce ovarian autophagy that 
is inhibited by Cy-activated PI3K pathway, of which the 
signaling pathway was not activated by AMH, implying 
that the mechanism of AMH-induced ovarian autophagy 
has a correlation with FOXO3A, pointing to a hypoth-
esis that AMH is closely related to autophagy which can 
protect PMF reserves and limit the Cy-induced follicular 
consumption, leading to a consequence that AMH with 
chemotherapy combination might be a promising strat-
egy of protecting the fertility of young breast cancer 
patients [11].

FOXO3A, transcription factor that can regulate 
autophagy, is essential for maintaining gene expression 
programs, with PI3K-PTEN-AKT-FOXO3A pathway 
shown to play a key role in primordial follicle activation 
and the phosphorylation of FOXO3A in the ovaries of 
AMH-treated mice significantly reduced, according to 
the studies on the PI3K signaling pathway. Expressed in 
the primordial follicles nucleus, FOXO3A is essential for 
maintaining PMF dormancy [12], for example, the acti-
vation of full follicles in one FOXO3A-deficient mouse 
resulted in oocyte death and insufficient early ovarian 
reserve [13]. In addition, the activation of primordial 
follicles was generated by phosphorylated FOXO3A via 
promoting protein transport out of the nucleus [14], 
leading to the result that AMH could keep FOXO3A 

located in the PMF nucleus, thus preventing PMF activa-
tion in chemotherapy by avoiding cytoplasmic transfer of 
FOXO3A [11].

Regulating the development of early follicular and 
ovarian follicles appears to be crucial [15], in that AMH 
not only inhibits the growth of primitive follicular by 
suppressing the functions of such stimulating factors as 
fibroblast growth factor (bFGF), Stem cell factor (SCF), a 
granular growth factor transducing through the phosph-
oinositide 3-kinase (PI3K) pathway by binding to oocyte 
c-Kit receptors, or keratinocyte growth factor (KGF) 
[16], but also, with AMH acting as a follicular autocrine/
paracrine factor to control SCF expression through the 
cAMP/PKA pathway, which decreased the expression of 
SCF mRNA and protein in human granulosa cells [17], 
but also inhibits SCF expression in human granules by 
phosphorylating cAMP-response element-binding pro-
tein (CREB) through the cAMP/PKA signaling pathway, 
thus providing a better understanding of how the AMH 
molecular pathway suppresses follicular development, 
which will aid in the development of new therapies [18].

AMH and chemotherapy
Among breast cancer survivors, chemotherapy, while 
its correlation with ovarian reserve markers is still very 
controversial [19], is identified to be related to the risk of 
amenorrhea, known as chemotherapy-induced amenor-
rhea (CIA), which can lead to premature ovarian failure 
by damaging ovarian reserve [20]. Based on a prospec-
tive cohort study of 239 women with breast cancer of 
childbearing age (follow up for 6  months), high AMH, 
compared to normal and low-basic AMH, led to a lower 
prevalence of chemotherapy-related amenorrhea (CRA), 
indicating that a high level of AMH residue after chemo-
therapy has certain protective effect on ovarian function, 
but it still needs further discussion [21].

Evaluation of ovarian function after chemotherapy
Chemotherapy can lead to primary ovarian insufficiency 
due to follicle toxicity and indirect loss of primordial fol-
licles through over-recruitment [22]. D’ Avila et al. found 
that serum AMH was significantly lower in patients 
after chemotherapy than before treatment, implying that 
serum AMH might be a helpful biochemical marker for 
predicting the degree of ovarian reserve impairment 
and the occurrence of amenorrhea [23]. The ASTRRA 
trial indicated that the accuracy of assessing menstrual 
recovery with age, estradiol, and AMH was 38.3%, 23.3%, 
and 86.7%, respectively, indicating that the AMH lev-
els after chemotherapy were a comparatively accurate 
marker of ovarian function recovery [24]. Reduced AMH 
levels after chemotherapy were shown in a trial on 170 
premenopausal breast cancer patients aged ≤ 40  years 
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who received taxane-anthracycline-based chemother-
apy, indicating an increasing rate of ovarian damage in 
patients [25], with AMH level diminishing to < 0.1 ng/ml 
(range < 0.1–0.21 ng/ml) in most patients (98.6%) at four 
weeks after chemotherapy [25]. An AMH testing showed 
that 73.3% (n = 101) of women did not recover ovarian 
function 2  years after chemotherapy (AMH < 0.1  ng/ml, 
range < 0.1–3.9 ng/ml) [25].

Prediction of ovarian function before chemotherapy
Long-term ovarian function after chemotherapy can be 
predicted by the AMH level measured before chemo-
therapy, which could, in clinical practices, be conducive 
to predicting future fertility risks associated with chem-
otherapy [26]. According to a report by D’Avila et  al., 
baseline AMH below 1.87  ng/ml could be used as an 
indicator of the risk of amenorrhea in women with breast 
cancer after the treatment with chemotherapy, and since 
amenorrhea indicates permanent impairment of ovaries, 
women of childbearing age with a baseline AMH below 
3.32 ng/ml must be provided with various fertility pres-
ervation strategies against the possible impaired fertil-
ity after chemotherapy [27]. Additionally, serum AMH 
levels above 2  ng/mL before chemotherapy was shown 
by Dillon et al. to be capable of predicting better ovarian 
function recovery after chemotherapy [28]. And with the 
AMH level before chemotherapy found by a recent study 
to be related to 2-year amenorrhea in premenopausal 
early breast cancer patients with positive hormone recep-
tor, 2-year amenorrhea could be precisely predicted with 
the combination of AMH levels and FSH levels before 
therapy, as well as age [29].

AMH and endocrine therapy
Approximately 60% of premenopausal breast cancer 
patients will receive endocrine therapy alone or in com-
bination with chemotherapy, using ovarian suppression 
or Tamoxifen clarified to be capable of enlarging chem-
otherapy toxicity as two possible options for endocrine 
therapy, depending on the patient and tumor [30], which 
was discovered by Jung et al. that breast cancer patients 
risk of chemotherapy-induced amenorrhea increased 
from 48 to 63.6% (P = 0.015) [31] with the use of Tamox-
ifen in chemotherapy and shown by a Cohort Study of 
young breast cancer women (≤ 40  years old) that that 
the incidence of chemical-induced amenorrhea was 15% 
for all patients, 13% for patients undergoing chemo-
therapy alone and 17% for patients receiving Tamoxifen 
after chemotherapy [32]. Nevertheless, another study 
showed that even though the fertility of Tamoxifen-
treated patients with breast cancer was lower than that of 
those who did not receive treatment, there was a higher 
AMH level in Tamoxifen-treated women, suggesting 

no reduction in ovarian reserve (OR) [33]. Meanwhile, 
another study showed higher AMH in patients receiv-
ing the combination treatment of chemotherapy with 
Tamoxifen, with AMH levels of patients undergoing sys-
temic cytotoxic treatment followed by endocrine therapy 
recovering quickly from 3 to 6 months [34]. Furthermore, 
despite limited evidence, the risk of fetal abnormalities 
(3.9% vs. 12.6%) in the general population was suggested 
to have increased, on the basis of a recent study, as the 
result of taking Tamoxifen during pregnancy [35].

AMH and Trastuzumab therapy
Trastuzumab (T) is a human epidermal growth fac-
tor receptor-2 (HER2) monoclonal antibody that, when 
paired with adjuvant chemotherapy, can reduce the 
recurrence rate of HER2-positive early breast cancer by 
50% [36], of which the administration in combination 
with 1-year adjuvant Trastuzumab to the HER2-positive 
breast cancer women was shown, by a protocol-specified 
analysis on 3222 HER2-positive breast cancer patients, 
to have dramatically increased disease-free survival [37]. 
NeoSphere trial indicates that neoadjuvant Pertuzumab 
in combination with Trastuzumab and Docetaxel can 
improve 5-year progression-free and disease-free sur-
vival in women with breast cancer [38].

The first study investigating amenorrhea rates with 
the combination treatment of Paclitaxel and Trastu-
zumab (APT Trial) illustrated that the rate of amenor-
rhea in premenopausal women treated with Paclitaxel 
and Trastuzumab, about 28%, was lower than that of the 
patients treated with standard adjuvant therapy [39]. The 
gonadal toxicity was suggested to be reduced by a sys-
temic therapy in combination with Trastuzumab, based 
on a small prospective observational study involving 38 
premenopausal breast cancer women who were proposed 
for adjuvant chemotherapy [8]. Patients receiving chem-
otherapy followed by Trastuzumab had a lower ovarian 
blood flow reduction than those receiving chemotherapy 
alone, according to Ben-Aharon et al. Besides, the use of 
Trastuzumab was shown, by a cross-sectional study, to be 
associated with elevated AMH in breast cancer survivors 
with normal menstruation [40], which was confirmed by 
a recent prospective observational study on premeno-
pausal women with breast cancer who had undergone 
chemotherapy that patients receiving Trastuzumab had 
higher levels of AMH than those who did not [8].

AMH and BRCA gene
BRCA genes are essential DNA double-strand break 
(DSB) repair, while the mutations in the genes can lead 
to a predisposition to cancers, including breast cancer 
and ovarian cancer [41], with the risk of breast cancer 
and contralateral breast cancer both increased by BRCA1 
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and BRCA2 mutations. According to a study, carriers of 
BRCA1 and BRCA2 combination, BRCA1, and BRCA2 
mutations have a lifetime breast cancer risk of 70%, 24%, 
and 13%, respectively [42]. Observational studies have 
shown that BRCA1 mutation carriers giving birth at aged 
30 years or older might have a lower risk of breast cancer, 
with a higher risk of breast cancer of a BRCA2 mutation 
carrier’s first pregnancy happening before the age of 30 
serving as a contrast [43].

A prospective study showed that women with BRCA 
mutations had significantly lower ovarian reserve than 
those without or at low risk [44]. Oktay, K. discovered 
that, of 126 breast cancer women, the BRCA mutation 
carriers had fewer ovarian oocytes than the non-carriers 
after stimulating their ovaries with Letrozole and gon-
adotropinss, an women with a positive BRCA1 muta-
tion produced fewer ovarian oocytes and were 38.3 times 
more likely to have a low response than women with a 
positive BRCA2 mutation [45]. Contrary to these reports, 
no significant reduction in ovarian reserve or response to 
ovarian stimulation was found in a five-year retrospective 
cohort study on the in  vitro fertilization (IVF) between 
BRCA mutations carriers and non-carriers, indicating no 
significant differences in the IVF cycles or in the number 
of oocytes [46, 47], which requires further studies due to 
the small sample size.

Laboratory studies show that BRCA Mutations 
decrease the number of primordial follicles and acceler-
ate the accumulation of DNA double-strand breaks in 
oocytes, that women with BRCA1 mutations typically 
have a less ovarian reserve and earlier menopause, that 
the ATM-mediated DNA repair pathway associated with 
BRCA was shown by the available data to be a regula-
tor of oocyte aging that might be detrimental to oocyte 
health, which could open up the possibility of developing 
targeted therapies to reverse or protect oocyte function, 
and that women with BRCAs may need special guidance 
in order to maintain their fertility [48].

The relationship between BRCA mutation carriers 
and AMH remains controversial, with a cross-sectional 
study showing that a lower AMH level of patients with 
a BRCA1 mutation than that of non-carriers [49], leav-
ing whether AMH concentrations are associated with the 
BRCA2 mutation status remaining to be confirmed [49]. 
Similarly, Titus et  al. demonstrated that young women 
with the BRCA1 mutation had impaired ovarian reserve 
by measuring serum AMH Hormone concentrations, 
suggesting that the DNA double-strand repair pathway 
was strongly associated with female oocyte aging [50]. 
Furthermore, a larger number of studies have shown that 
BRCA1 mutants have lower circulating AMH concen-
trations thanpatients with BRCA2 mutations of a simi-
lar age [51], and BRCA1 carriers were proved by clinical 

evidence to produce much less mature oocytes during 
ovarian stimulation than BRCA2 carriers of similar age 
groups [52], whereas some other studies have found no 
difference in serum AMH levels between BRCA carriers 
and non-carriers [53], of which an example is Michael-
son-Cohen et al. found healthy BRCA 1/2 mutation carri-
ers to have similar AMH level to that of women of similar 
age without mutations [54].

AMH and body metabolism
According to a recent meta-analysis, women with higher 
vitamin D levels had a higher risk of getting pregnant 
after assisted reproductive technology (ART) and were 
more likely to have a live birth than women with lower 
vitamin D levels [55]. However, the relationship between 
the ovarian reserve and vitamin D levels is still a contro-
versial issue on the basis of Merhi et  al.’s findings that 
vitamin D down-regulates the expression of AMH recep-
tor (AMHR) gene in human iuteinized granule cells by 
disrupting the nuclear localization of Smad 1/5/8 phos-
phate, indicating that in comparison with women with 
adequate 25OH-D (≥ 30  ng/mL), AMHR-II mRNA 
expression levels have doubled in women with less 
25OH-D content (< 30  ng/mL) in follicular fluid, thus 
pointing to a negative relationship between 25OH-D lev-
els and AMH receptor II (AMHR-II) mRNA gene expres-
sion. In addition, a study involving 388 premenopausal 
women conducted by Merhi et al. found that low vitamin 
D levels were linked to lower ovarian reserve in women 
of late reproductive age (≥ 40  years) [56], while on the 
basis of a prospective study involving 49 women of child-
bearing age with normal menstrual cycles, AMH levels 
during the first week of the menstrual cycle were raised 
by 12.9 ± 3.9% via providing 5000  IU of vitamin D for a 
week compared to the control group [57]. A study involv-
ing 283 infertile patients conducted by Drakopoulos et al. 
found that vitamin D levels were not associated to AMH 
[58], with the confirmation from Pearce et al.’s study on 
women with polycystic ovary syndrome (PCOS) show-
ing no association between vitamin D levels and serum 
AMH [59], which was reinforced by a recent report indi-
cating that vitamin D are not connected with AMH levels 
in infertile women with reduced ovarian reserve, which 
requires further studies to determine whether vitamin D 
levels affect oocyte or embryo quality, or whether hor-
mones impact the implantation process in some ways, 
though [60].

Obesity
Obesity arising among women of reproductive age can 
lead to serious reproductive problems like irregular men-
struation, infertility, miscarriage, and poor pregnancy 
outcomes [61]. A cross-sectional study involving 290 
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infertile women conducted by Buyuk et al. suggested that 
high BMI was related to decreased random serum AMH 
levels of infertile women with reduced ovarian reserve, 
but not to normal ovarian function of healthy women. 
A comparison made between women high BMI women 
and those with normal BMI revealed that average ran-
dom serum AMH levels were reduced by 33% in women 
with reduced ovarian reserve, while there is no such rela-
tion in women with normal ovarian reserve [62]. Park 
et  al. showed that there was no remarkable association 
of serum AMH concentration between the normal BMI 
people and the obese BMI group (≥ 25 kg/m2) and more 
researches are required to determine how obesity affects 
AMH metabolism and clearance in various ways [63].

It is speculated that high dietary fat intake will dam-
age women’s reproductive function, thus directly affect-
ing the morphology and function of the ovaries [64]. 
The mouse-based researches showed no significant dif-
ferences in serum AMH concentrations between people 
on a low-fat and those on high-fat diet, suggesting that a 
high-fat diet has no effect on granulocyte function [65], 
while a cross-sectional study of premenopausal women 
found a negative relationship between dietary fat and 
serum AMH concentrations, thus requiring further stud-
ies to assess dietary factors as possible regulators of ovar-
ian reserve [66].

The recovery of ovarian function in women of child-
bearing age with breast cancer is related to AMH and 
FSH levels before chemotherapy, ovarian recovery time 
can be estimated by the new prognostic score combined 
with AMH, age, and BMI, and the relevant data need to 
be validated in order to determine whether pre-chemo-
therapy ovarian reserve indicators, especially AMH, can 
be used to predict potential ovarian function in young 
patients [67].

Guidance of AMH in choosing fertility preservation 
technique
AMH levels are conducive to patients and doctors choos-
ing the right fertility maintenance methods to predict 
ovarian reserve after chemotherapy [68]. According to 
researches, about 25% of young women diagnosed with 
breast cancer had been engaged in inadequate fertil-
ity planning, and only a few patients had participated in 
fertility protection project [69]. Many young breast can-
cer patients are concerned that pregnancy may increase 
the risk of recurrence and significantly affect their sur-
vival, and that chemotherapy and radiation therapy may 
cause congenital disabilities, leading to the options sug-
gested by specialists (GnRHa), such as embryo oocyte 
cryopreservation, immature and mature oocyte cryo-
preservation, ovarian tissue cryopreservation, and gon-
adotropin-releasing hormone agonists [69–71].

In vitro maturation (IVM) of immature oocytes
Applied without ovarian stimulation are in vitro matura-
tion (IVM) of immature oocytes and ovarian tissue cryo-
preservation (OTC), the two experimental technologies 
with unclear effects. The number of mature oocytes after 
IVM was shown in some studies to be strongly associ-
ated with serum AMH levels, with recent data showing 
that 8 to 20 cryopreserved oocytes after ovarian stimu-
lation augment the possibility of live birth [72]. How-
ever, a report by controlled ovarian stimulation (COS) of 
infertile polycystic ovary syndrome (PCOS)women indi-
cated that IVM-matured oocytes have a lower capacity 
to mature than the stimulated oocytes [73]. The optimal 
number of matured IVM oocytes used for fertility pres-
ervation is unlikely to be projected due to unclear capa-
bility of cancer patients’ cryopreserved IVM oocytes. As 
shown by the data from Sonigo et  al., cryopreserving a 
large number of oocytes in IVM requires higher AMH 
and antral follicle count (AFC) levels, with at least 10 
IVM oocytes requiring an AFC level greater than 20 and 
an AMH level greater than 3.7 ng/Ml [74].

The ovarian stimulation is required in cryopreserving 
embryo oocytes, both mature and immature, while serum 
AMH levels are inductive to assessing patient charac-
teristics and predicting ovarian stimulation response, 
and can be used as an indicator of high or low response 
[75]. In 2013, ESHRE and NICE recommended measur-
ing AMH before IVF to develop a personalized ovarian 
stimulation strategy. The NICE consensus determined 
that the thresholds for low and high stimulus responses 
are 0.75 ng/mL (5.4 pmol/L) and 3.5 ng/mL (25 pmol/L), 
respectively, while recently, the POSEIDON has set the 
AMH threshold for low stimulus response to 1.2 ng/mL 
(8.6  pmol/L) [76]. As shown in recent researches, per-
sonalized ovarian stimulation strategies can improve out-
comes in terms of specific indicators [77], leading to the 
result that measuring AMH could be an essential factor 
in deciding the initial stimulus dose to be given [78].

For breast cancer patients without enough time to 
undergo ovarian stimulation, ovarian tissue harvesting 
and cryopreservation for eventual transplantation can 
be used as a fertility preservation strategy, which was 
supported by Oktay, K.Et al.’s report that the live birth 
rate of cryopreserved tissue for ovarian transplanta-
tion exceeded 30% [79], as well as a study reporting no 
evidence of malignant cells in cryopreserved ovarian 
tissue in breast cancer patients, despite the limited can-
cer screening methods [80]. Meanwhile, there are the 
researches suggesting that women over 35 should avoid 
ovarian tissue cryopreservation (OTC) as the method of 
fertility preservation due to reduced ovarian reserve and 
decreased oocyte quality [81]. Serum AMH levels were 
shown in a recent study to be the greatest indicator of 
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primitive follicle density in a young female population 
with healthy ovaries, thus being considered an advisable 
indicator of non-growing follicular pool [82].

Gonadotropin‑releasing hormone agonist (GnRHa)
GnRH agonist inhibits ovarian function by acting on 
the hypothalamic-pituitary axis [83]. As for GnRHa and 
AMH, some studies indicated that they had no direct 
effect on ovarian reserve (OR), because FSH, LH, or 
GnRH receptors didn’t present in the original follicles 
[84], while some clinical trials and meta-analyses showed 
that premenopausal women who received GnRHa during 
chemotherapy had better outcomes, including lower risk 
of ovarian failure, higher menstrual recovery rates, and 
a higher probability of successful pregnancy than those 
who did not. However, thus leaving it a controversial 
issue to use GnRHa for fertility protection [85].

ASCO suggested that GnRHa should only be applied 
to young breast cancer patients when other options are 
unavailable, rather than a replacement for proven fertil-
ity preservation methods [86], which is contradicting to 
St. Gallen International Consensus that Ovarian func-
tion suppression (OFS) should be used during chemo-
therapy to treat hormone receptor negative diseases for 
the purpose of ovarian function and fertility preservation 
[87]. Luteinizing-hormone releasing-hormone analogue 
(LHRHa) was shown in recent randomized controlled tri-
als to have an ovarian protective effect on HR-negative 
and HR-positive tumors and possibly a negative impact 
on the recurrence of breast cancer [88–90]. Still con-
troversial are the possible ovarian protection mecha-
nisms of the GnRHa, such as reducing the perfusion and 
chemotherapy drug delivery of the ovaries, increasing 
the concentration of FSH to prevent primordial follicle 
hyperplasia, stimulating the anti-apoptotic pathway in 
the ovaries, and protecting reproductive stem cells [91].

A recent research analysis on 98 premenopausal breast 
cancer patients receiving chemotherapy with or with-
out GnRHa showed that the ovarian failure rate in the 
GnRHa group was significantly lower than in chemother-
apy alone (44.7% vs. 80.6%; p = 0.002), and the median 
AMH of the GnRHa group after the first half chemother-
apy cycle was significantly higher than that of the con-
trol group (1.57 ng/ml vs. 0.10 ng/ml), with the ovarian 
failure rates at AMH baseline level < 1.1  ng/ml of 91.3% 
and the baseline level > 1.1  ng/ml of 63.5% (p = 0.013), 
leading to the conclusion that the ovarian function can 
be assessed during chemotherapy and the ovarian fail-
ure rate can be predicted after chemotherapy due to the 
ability of GnRHa to protect ovarian function in young 
breast cancer patients who have undergone chemother-
apy, whether their hormonal receptor status and AMH 
levels are significantly correlated with age or not, and 

that AMH levels can help doctors in developing fertil-
ity protection strategies during chemotherapy, as well as 
determining the clinical significance of GnRHa in chem-
otherapy [92].

In light of the fact that American Society of Clini-
cal Oncology guidelines suggest that fertility protec-
tion should be discussed if the proposed treatment for 
patients of childbearing age has potential risks of infer-
tility [93] and that embryo cryopreservation is limited 
by time, cost, partner or donor sperm, and the cycle of 
ovarian stimulation, making it difficult for many young 
women undergoing chemotherapy to choose assisted 
reproduction methods, adding GnRHa therapy to chemo-
therapy is more acceptable in that it can be administrated 
in combination with other fertility protection methods, 
despite the side effects such as vasomotor symptoms and 
reduced bone density [88].

AMH in clinical application
AMH, a member of the TGF-β protein family in the form 
of NC complex consisting of N-terminal dimers and 
C-terminal dimers, may become a new approach to pro-
tect ovarian reserve and fertility including targeted ther-
apy since it is generated only by the ovaries and works 
primarily through specific receptors expressed by the 
ovaries [11], with the C-terminal dimers of AMH binding 
to the AMHRII receptor to produce activated AMHRI 
and phosphorylated Smads (Smad 1/5/8) which, in com-
bination with Smad4, enters into the nucleus to regu-
late AMH target genes [94]. RAMH, which is produced 
by recombination of the human C-terminal fragment of 
the AMH molecule, was found, in a recent mouse model 
study, able to be be transmitted to the ovary through IP 
injection, with the findings that that rAMH was abundant 
at 7 h after an injection but unavailable after 17 h, and the 
phosphorylation of SMAD1,5,8 began to rise at 3 h after 
injection, indicating that rAMH is biologically active 
within 3 to 6 h, but it has a relatively short half-life in vivo 
[95]. Since the apoptosis of the growing AMH-producing 
follicle granule cells occurs at 4–12 h after receiving Cy 
[10], injecting rAMH 30  min before Cy administration 
was discovered to be able to protect granulosa cells by 
increasing the level of AMH in the ovary. Further obser-
vation found that mice receiving rAMH combined with 
Cy treatment showed no significant increase in follicles 
compared to mice only treated with Cy after 24 h, simi-
lar proportion of follicles after 7 days and the comparable 
number of PMF after 3 weeks, leading to the hypothesis 
that rAMH might have a sustained protective effect on 
PMF reserve, which can be observed in protecting fer-
tility and reproductive ability during chemotherapy. In 
comparison with Cy-only animals, rAMH administra-
tion maintained fertility after Cy therapy and improved 
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the chances of pregnancy significantly, indicating that the 
combination treatment of rAMH in mice can protect fol-
licle reservoirs by reducing chemotherapy-induced fol-
licle activation and loss while maintain fertility without 
affecting the antitumor effects of chemotherapy [95].

It has been reported that MIS can suppress the devel-
opment of breast cancer cells in vitro by interfering with 
cell cycle progression and inducing apoptosis by activat-
ing the NFkappaB signaling cascade, which can act as 
an endogenous hormone regulator of NFkappB signal-
ing and growth in the breast [96], thus resulting in the 
hypotheses that AMH recombinant would be a new type 
of targeted new therapy in oncology and fertility protec-
tion and that AMH has the benefit of not causing sys-
temic actions or toxicity problems since it is a natural and 
highly specific follicular inhibitor [97], with the molecule 
requiring extensive experimental researches as well as 
further clinical studies, though. If the results are proved 
to be applicable to female treatment, AMH recombinant 
may be a potential option for FP during chemotherapy, 
which requires the evaluation of the indications, the 
methods of administration, the timing of administration, 
and the potential side effects to be performed [68].

Conclusions
Despite the fact that the breast cancer systematic treat-
ment can bring survival benefits to patients, but it may 
also bring about negative impacts on fertility, especially 
in combination with glandular toxicity treatment, and 
that AMH has been, with a certain fertility-protective 
effect, to be the most sensitive marker for predicting 
ovarian function to be the most sensitive marker for pre-
dicting ovarian function, further studies are required to 
be conducted on both the effects of metabolism on fertil-
ity and the relationship between BRCA gene and AMH 
which can guide the choice of fertility protection strate-
gies, thus showing AMH recombinant to be a novel type 
of targeted oncology and fertility protection therapy for 
young breast cancer patients.
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