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Deep learning for classifying the stages s
of periodontitis on dental images:
a systematic review and meta-analysis
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Abstract

Background The development of deep learning (DL) algorithms for use in dentistry is an emerging trend.
Periodontitis is one of the most prevalent oral diseases, which has a notable impact on the life quality of patients.
Therefore, it is crucial to classify periodontitis accurately and efficiently. This systematic review aimed to identify the
application of DL for the classification of periodontitis and assess the accuracy of this approach.

Methods A literature search up to November 2023 was implemented through EMBASE, PubMed, Web of Science,
Scopus, and Google Scholar databases. Inclusion and exclusion criteria were used to screen eligible studies, and the
quality of the studies was evaluated by the Grading of Recommendations Assessment, Development and Evaluation
(GRADE) methodology with the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool. Random-effects
inverse-variance model was used to perform the meta-analysis of a diagnostic test, with which pooled sensitivity,
specificity, positive likelihood ratio (LR), negative LR, and diagnostic odds ratio (DOR) were calculated, and a summary
receiver operating characteristic (SROC) plot was constructed.

Results Thirteen studies were included in the meta-analysis. After excluding an outlier, the pooled sensitivity,
specificity, positive LR, negative LR and DOR were 0.88 (95%C/ 0.82-0.92), 0.82 (95%C/ 0.72-0.89), 4.9 (95%Cl 3.2-7.5),
0.15 (95%C1 0.10-0.22) and 33 (95%CI 19-59), respectively. The area under the SROC was 0.92 (95%C/ 0.89-0.94).

Conclusions The accuracy of DL-based classification of periodontitis is high, and this approach could be employed in
the future to reduce the workload of dental professionals and enhance the consistency of classification.
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Background

Since the 1990s, periodontitis has been a global public
health burden, and severe periodontitis, with a 10.59%
prevalence rate, ranks 6th among 369 assessed diseases
and is responsible for 7.09 million disability-adjusted life
years (DALYs), according to the 2019 Global Burden of
Diseases (GBD) study [1-3]. Periodontitis affects local
health and systemic conditions, meaning that if peri-
odontitis is properly treated, systematic inflammation
will be reduced [4-8]. However, manual classification
based on dental images requires a lot of manpower and
time. Furthermore, image quality and radiographic inter-
pretation could compromise the accuracy of classifica-
tion. All these issues could be alleviated by deep learning
(DL) methods [9-11].

Both DL and machine learning (ML) are included in
artificial intelligence (AI). ML aims at self-training algo-
rithms based on existing data and making predictions
for new information [12]. DL is a subgroup of ML that
mimics the way the human brain works and is based on
neural network structures [13]. Recently, DL, especially
convolutional neural networks (CNNs), has been widely
used in various fields of medical image analysis, such as
segmentation, detection, classification of abnormality,
and computer-aided diagnosis [14]. CNNs identify visual
patterns directly from the raw pixels of an image, which
is similar to the way humans observe objects, to learn the
intrinsic features or patterns of the image [14]. They are
multi-layered, feed-forward, neural networks using back-
propagation algorithms, and consist of convolutional,
activation, and pooling layers. Currently, CNNs are still
considered the most successful method to process medi-
cal images [15].

In dentistry, there are four main applications of CNNs:
(1) segmentation; (2) detection; (3) classification; and
(4) image quality enhancement, which are all based on
dental images, including intraoral (periapical radiograph
and bite-wing image) and extra-oral (panoramic X-ray
and cone-beam computed tomography [CBCT]) X-rays
[9, 16]. For instance, Park et al. applied CNNs to seg-
ment tooth surfaces for caries diagnosis [17], and Lee
et al. proposed a computer-assisted detection system
to identify impacted mandibular third molar teeth [18].
Nowadays, there is a growing trend in the utilization of
CNNs in periodontitis fields. Jaiswal et al. developed a
novel Intelligent Ant Lion-based Convolution Neural
Model (IALCNM) to segment affected parts and classify
the wear and periodontitis using panoramic photographs
[19]. Moreover, Chen et al. developed an ensembled
CNN model to predict tooth position and recognize
radiographic bone loss (RBL) using periapical and bite-
wing radiographs [20]. Furthermore, Moran et al. evalu-
ated whether different pre-processing methods affect the
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result of periodontal bone loss (PBL) classification based
on periapical images [21].

Although there are numerous studies conducted in
the interdisciplinary of periodontitis and DL, the type of
DL architecture employed in periodontitis classification,
determination of the most effective model and compari-
son of performance against oral physicians have not been
systematically reported. Therefore, this study aimed to
review the studies on the classification of periodontitis by
evaluating various dental images using DL methods, to
summarise the types of different models employed, and
to compare the performance of these models. This could
identify the most appropriate model for the classification
of periodontitis based on oral photographs in clinical
practice. Moreover, we compared the performance of the
DL model to the dental professionals which determines
the reliability.

Methods

This systematic review and meta-analysis were conducted
referring to the guidelines for Preferred Reporting Items
for Systematic Reviews and Meta-analyses for Diagnos-
tic Test Accuracy Studies (PRISMA-DTA). The study was
registered at the National Institute for Health Research,
International Prospective Register of Systematic Reviews
(PROSPERO, registration number CRD 42022338627).
Additionally, the study protocol was based on the follow-
ing PIRD elements [22]:

Population patients’ diagnostic images that illustrate the
status of radiographic bone loss (RBL).

Index test deep learning models for classification of peri-
odontitis based on RBL.

Reference test expert opinions according to the classifi-
cation of periodontitis.

Diagnosis of interest classification of periodontitis.

Data sources

A reviewer (XL) searched publications through EMBASE,
PubMed, Web of Science, Scopus and Google Scholar
databases up to November 2023 according to strategies
set by two reviewers (DZ and XL). Search strategies com-
bined terms including (1) periodontitis or periodontal
disease or periodontal status; (2) image or image pro-
cessing or computer-aided diagnosis or computer-based
diagnosis or smart diagnosis; and (3) artificial intelligence
or machine learning or deep learning or convolutional
neural networks. The detailed search queries for all data-
bases were provided in Supplementary Table 1.
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Criteria for considering studies for this review

Studies that matched the following criteria were consid-
ered to be included: (1) Study population with a dental
image; (2) Diagnosing with DL technology; and (3) Eng-
lish publications with all statuses, including in-press and
unpublished studies. The exclusion criteria were: (1) Ani-
mal experiment; (2) Without full article; (3) Without sta-
tistical data; and (4) Conference proceedings or reviews
or books or patents. (Table 1)

Study selection and data collection

After screening the titles and abstracts of all identified
publications, two reviewers (XL and JXX) independently
read the full text of all eligible articles and excluded inap-
propriate articles according to the inclusion/exclusion
criteria. Disagreements between the reviewers were
solved by discussing until a consensus was reached or
by consulting a third reviewer (DZ). The following data
were extracted from each publication: study charac-
teristics (first author, publication year, country), study
design (data sets, modality of medical images, machine
learning algorithms, study factor, and its definition, algo-
rithms application, comparison), primary outcomes, and
conclusions.

Quality assessment

The quality of evidence was evaluated by the Grading of
Recommendations Assessment, Development and Evalu-
ation (GRADE) on the following domains: study design,
limitations (risk of bias), indirectness, inconsistency,
imprecision, and publication bias (https://gdt.gradepro.
org/) [23]. The quality of evidence was categorized into
four levels: high, moderate, low and very low.

Based on the recommendation of the Cochrane Col-
laboration, the QUADAS-2 (Quality Assessment of Diag-
nostic Accuracy Studies) tool was used to evaluate the
quality of all eligible articles in terms of the risk of bias
and applicability [24]. The assessment was conducted
by three reviewers (XL, JXX and YJL). When there were
disagreements, it was resolved by discussion or by con-
sulting a third reviewer (DZ) to make the final decision.
There were four domains for the risk of bias section:
patient selection, index test, reference standard, and flow

Table 1 Inclusion and exclusion criteria for this review

Inclusion Study population with a dental image

criteria Diagnosing with DL technology
English publications with all statuses, including in-press
and unpublished studies

Exclusion Animal experiment

criteria Without full article

Without statistical data
Conference proceedings or reviews or books or patents
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and timing; the first three of these domains formed the
applicability section [25].

Statistical analysis

Summarising the quality score to define high-quality
studies is not a recommended method [26]. More-
over, the overall estimate may be similar regardless of
the quality of the studies, but if only high-quality stud-
ies are analyzed, incomplete reporting may arise [27].
Therefore, all articles containing true positive (TP), false
positive (FP), true negative (TN) and false negative (FN)
data that were either supplied in the articles or could be
calculated from the information provided were used to
conduct a meta-analysis using Stata 16.0 software (Stata-
Corp LLC, College Station, TX, USA). Spearman cor-
relation analysis was conducted to assess the threshold
effect, without which combined sensitivity, specificity,
positive likelihood ratio (LR), negative LR and diagnos-
tic odds ratio (DOR) were calculated directly by using the
random-effects inverse-variance model. A forest plot of
sensitivity and specificity was generated to visually show
the differences among the included studies. Statistical
heterogeneity was assessed using the Chi-squared—based
Q statistic method and 7, and the level of significance
was indicated by P<0.05 and I°>50%, respectively. Influ-
ence analysis and subgroup analysis based on study fac-
tors including article quality (high/unclear risk of bias,
low risk of bias), dental image modality (periapical radio-
graph images, panoramic dental radiographs), model
type (single model, two-stage model) were performed
to detect the source of heterogeneity. Two meta-regres-
sion models with sensitivity and specificity were carried
out to investigate whether sample size has an impact on
classification outcomes. A summary receiver operating
characteristic (SROC) plot—a plot of scattered sensitiv-
ity-specificity points of each potentially eligible study—
was constructed, and the area under SROC (AUSROC)
was computed [24]. In addition, a Fagan nomogram was
drawn to describe how DL methods may have helped cli-
nicians increase the probability of an effective classifica-
tion of periodontitis. Publication bias was investigated by
Deeks’ funnel plot asymmetry test.

Results

Study selection

Figure 1 shows the study selection process and describes
the reasons for full-text article exclusion. The five data-
bases (EMBASE, PubMed, Web of Science, Scopus and
Google Scholar) identified 1546 potentially relevant pub-
lications with 279 duplications. After screening the titles
and abstracts of the 1267 remaining studies, 49 articles
were selected for full-text reading. Based on the inclusion
and exclusion criteria, 27 studies were included in this
systematic review [20, 21, 28-52].
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[
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(n=27)
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-Non-Periodontitis disease
(n=5)

-Traditional image
processing methods (n=2)
-The severity of
periodontitis or the
performance of deep
learning algorithms was
not assessed (n=7)

-Not English and the
research was similar to
Chang (2020) (n=1)
-Periodontitis treatment
(n=1)

-Differential diagnosis
(n=5)
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A 4

Studies included in meta-
analysis (n =13)

Fig. 1 PRISMA Flow chat of study selection process

Reports excluded:

TP, FN, FN and TN were
not reported and could not
be calculated
(n=14)
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Methodological quality

The risk of bias and applicability were assessed using
QUADAS-2 for all included articles, and the results
were shown in Supplementary Fig. 1 and Supplementary
Fig. 2, respectively. Nearly half of the included studies
did not have clear information on whether patients were
consecutively or randomly enrolled, resulting in 42.9% of
the articles (12/27) showing an unclear risk of bias in the
patient selection domain [20, 30, 32, 34-36, 38, 45, 48,
52, 37, 42]. Two studies were rated as having a high risk
of bias, with one [29] designed to be a case-control study
with a convenient sample collection and the other [31]
using inappropriate exclusion criteria. Approximately
one-fourth of the studies did not mention a prespecified
threshold before a test, consequently, 22.2% of the arti-
cles (6/27) were ranked as having unclear risk of bias in
the index test domain [21, 35, 39, 49, 51, 52]. Four studies
were unable to accurately diagnose periodontitis based
on their reference tests, as these studies attempted to
classify healthy cases and periodontitis only using radio-
graphs [21, 28, 42, 49]. The other studies (85.2%, 23/27)
were ranked as having a low risk of bias in the reference
standard domain [20, 29-41, 43—48, 50-52]. As the diag-
nostic tests are being conducted by DL algorithms, which
do not affect the flow and timing, all articles in the pres-
ent analysis were ranked as low risk. For the applicabil-
ity section, all studies were ranked at low risk of bias in
patient selection, 74.1% of the included studies (20/27)
were ranked as low risk of bias in the index test and refer-
ence standard [20, 29, 30, 32-34, 36—48, 52]. The study
quality assessment results are presented in Supplemen-
tary Table 2.

The quality of evidence based on the GRADE analy-
sis can be found in Supplementary Table 3. Results are
shown in different subgroups of model type and den-
tal image modality. When one study was ranked as high
risk of bias or unclear risk of bias based on QUADAS-2,
the subgroup’s limitation was assessed as a high risk of
bias. As a result, all subgroups were considered to be at
high risk of bias, leading to one level of evidence qual-
ity deduction. Two level of evidence quality was down-
graded in the single model using periapical radiograph
images and two-stage model subgroups due to inconsis-
tency and imprecise data. While one level of evidence
quality was reduced in the single model using panoramic
dental radiographs. Consequently, the quality of evidence
was scored as very low in the single model with periapical
radiograph images and the two-stage model and low in
the single model with panoramic dental radiograph.

Study characteristics

The characteristics of all included studies are sum-
marised in Table 2. All articles were published within the
last five years, and there was a surge in 2021 with twice as
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many articles published than in 2020, while in 2022, the
number of articles published was 1.5 times that of 2021
(Supplementary Fig. 3). Studies originated from 11 coun-
tries, most of which were in Asia. Except for one study
that never mentioned data splitting [20], all included
studies (26/27) split the datasets or used cross-validation,
an approach to avoid model overfitting and evaluate the
generalization ability of the model. Three studies used an
external dataset to evaluate the performance of the algo-
rithms [29, 43, 48]. In addition, three studies used pub-
lic databases [35—37]. In terms of dental image modality,
the studies employed periapical radiograph images, pan-
oramic dental radiographs, and CBCT images to classify
periodontitis, among which panoramic radiographs were
used the most (15/27) [28-30, 32, 33, 35, 36, 38, 39, 42,
47-51] and only one study used CBCT [44]. More than
two-thirds of articles (19/27) processed images before
applying DL techniques by some common approaches,
such as augmentation, normalisation and resizing the
images [21, 28, 29, 31-34, 36, 38—-40, 43-45, 47, 48, 50—
52]. Furthermore, the DL-aided task has changed over
time. In 2019 and 2020, the diagnosis of periodontitis was
predominantly chosen, whereas the classification of peri-
odontitis stages was selected in 2021 and 2022. Half stud-
ies opted diagnosis task and half chose the staging task
in 2023. Regarding the algorithms, the studies mainly
utilised deep CNNs (DCNN), with one article involving
lightweight CNNs (LCNN) [35]. Eleven studies (11/27)
used a two-stage design containing a tooth-identification
or segmentation stage and a periodontitis-staging step
[20, 30-32, 35, 36, 38, 42, 44, 47, 51]. Eight (8/27) stud-
ies utilised transfer learning [20, 21, 33, 39, 41, 45, 49,
51]. Reference tests were either experts’ direct opinions
of periodontitis or their annotation of regions of inter-
est (ROIs) based on different definitions. Sixteen studies
(16/27) employed the new criteria proposed in the 2017
World Workshop on the Classification of Periodontal and
Peri-Implant Diseases and Conditions [20, 29-34, 36—40,
42, 43, 45, 48], while one study (1/27) [41] used the Inter-
national Workshop for Classification of Periodontal Dis-
eases and Conditions (1999). Three studies (3/27) [28, 47,
52] carried out according to the World Health Organiza-
tion’s standardized Community Periodontal Index (CPI)
and four studies (4/27) [21, 44, 46, 49] roughly defined
periodontitis based on the depth of bone resorption; the
remaining two studies (2/27) [50, 51] did not mention the
classification criteria. All studies compared the diagnos-
tic performance of DL algorithms either with specialists
or among different algorithms. More than two-thirds of
articles (19/27) reported accuracy, while sensitivity, spec-
ificity, recall, precision, F1-score, ROC and AUROC were
also reported among included studies.
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Meta-analysis
From the 27 articles selected for the systematic review,
14 were excluded from the subsequent meta-analysis
because TP, FN, FP and TN were not reported and could
not be calculated. Consequently, 13 studies were included
in the meta-analysis [21, 29, 33-35, 40, 41, 43, 47, 49-52].
The correlation analysis showed heterogeneity due to the
threshold effect (r=0.13; P=0.02). Therefore, instead of
directly combining the sensitivity and specificity to dem-
onstrate the overall accuracy, an SROC curve was gener-
ated (Supplementary Fig. 4). The AUSROC was 0.94 (95%
confidence interval [95%CI] 0.91-0.96). To investigate
the source of heterogeneity, we conducted an influence
analysis (Supplementary Fig. 5). Supplementary Fig. 5(c)
and Supplementary Fig. 5(d) both indicated that the sev-
enth article was an outlier [43], which can affect the sta-
bility of the results. When this article was removed, the
threshold effect disappeared (r=—0.45; P=0.20), and the
combined sensitivity, specificity, positive LR, negative
LR and DOR were 0.88 (95%CI 0.82—0.92), 0.82 (95%CI
0.72-0.89), 4.9 (95%CI 3.2-7.5), 0.15 (95%CI 0.10-0.22)
and 33 (95%CI 19-59), respectively.

Figure 2 illustrates the forest plot of sensitivity and
specificity of the DL algorithms for the periodontitis
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classification. The AUSROC (Fig. 3) was 0.92 (95%CI
0.89-0.94), which implied that the diagnostic test had
high accuracy. According to the Fagan nomogram (Sup-
plementary Fig. 6), the prior probability of this diagnos-
tic test was 50%, the positive LR was 6, the posterior
probability after a positive test was 85%, and the nega-
tive LR was 0.10. The posterior probability after a nega-
tive test was 9%. The subgroup analysis results showed
that heterogeneity of sensitivity was statistically signifi-
cant in model type and dental image modality, and het-
erogeneity of specificity was statistically significant in
article quality (Fig. 4). In detalil, a single model would get
a significantly higher sensitivity than a two-stage model
(P<0.01). Moreover, the modality of dental images may
cause heterogeneity of sensitivity (P<0.01). Diagnosis
sensitivity based on periapical images was higher than
that on panoramic images. Furthermore, articles scored
as high or unclear risk of bias would get a significantly
lower specificity than low risk of bias articles (P=0.03).
Both meta-regression results indicate that there is no
statistically significant correlation between sample size
and sensitivity (P=0.069), as well as between sample size
and specificity (P=0.252) (Supplementary Fig. 7, Supple-
mentary Fig. 8). The influence analysis demonstrated that

SENSITIVITY (95% CI) SPECIFICITY (95% CI)
StudyTd : StudyTd :
| |
| |
| |
Jae-Hong Lee/2018 l® | 0.97[0.94-0.99] Jae-Hong Lee/2018 —o- 0.80[0.72 - 0.87]
| |
Jaeyoung Kim/2019 —o— : 0.66 [0.57 - 0.75] Jaeyoung Kim/2019 : () 0.94[0.92 - 0.96]
| |
Joachim Krois/2019 —o- | 0.81[0.74 - 0.87] Joachim Krois/2019 .- 0.81[0.74 - 0.86]
| |
Sevda Kurt Bayrakdar/2020 —:0- 0.94[0.88 - 0.98] Sevda Kurt Bayrakdar/2020 II—.- 0.89[0.81 - 0.94]
| |
Bhornsawan Thanathornwong/2020 ®—— | 0.86[0.42 - 1.00] Bhornsawan Thanathornwong/2020 ®— | 0.85[0.55-0.98]
| |
Maira Moran/2021 —;0- 0.94 [0.86 - 0.98] Maira Moran/2021 —o— : 0.48 [0.34 - 0.62]
Ghala Alotaibi/2022 —e— : 0.79 [0.69 - 0.87] Ghala Alotaibi/2022 —o—: 0.72[0.61 - 0.81]
| |
Rini Widyaningrum/2022 —et 0.89[0.77 - 0.96] Rini Widyaningrum/2022 | @ | 096[0.93-0.98]
| |
Jennifer Chang/2022 —0—: 0.87[0.79 - 0.92] Jennifer Chang/2022 :—0- 0.88[0.81 - 0.93]
| |
Nektarios Tsoromokos/2022 —{® | 0.96[0.86 - 1.00] Nektarios Tsoromokos/2022 —— | 0.43[0.22 - 0.66]
| |
1
Kubilay Muhammed Sunnetci/2022 . : 0.79[0.76 - 0.82] Kubilay Muhammed Sunnetci/2022 I. 0.85[0.81 - 0.87]
| |
Q. Liu /2023 —o- 0.83[0.76 - 0.89] Q. Liu /2023 —o 0.74 [0.65 - 0.81]
| |
| |
| |
|
COMBINED <>| 0.88[0.82 - 0.92] COMBINED <> 0.82[0.72 - 0.89]
| |
| Q=108.00, df = 11.00, p = 0.00 | Q=186.39, df=11.00, p = 0.00
| |
: 12=289.81[85.31 - 94.32] : 12=94.10[91.88 - 96.32]
T T
1.0 0.2

4
SENSITIVITY

Fig. 2 The forest plot for sensitivity and specificity of deep learning for periodontitis diagnosis

1.0
SPECIFICITY
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Fig. 3 The summary receiver operating characteristic curve of diagnostic
accuracy of periodontitis by deep learning excludes the seventh article.
SENS, sensitivity; SPEC, specificity; SROC, summary receiver operating
characteristic; AUC, area under curve

the results were stable by removing one study at a time
(Fig. 5). Deeks’ funnel plot asymmetry test illustrated no
publication bias (¢=0.74, P=0.48) (Fig. 6).

Discussion

In this systematic review, we compiled and evaluated
studies that utilised DL methods to classify periodon-
titis based on dental images. With the rise of DL tech-
nology, an increasing number of articles have been
published on the intersection of periodontitis classifi-
cation and DL, especially in 2022. The overall quality
of the included studies was limited, more high-quality
studies are urgently needed. In addition, more than half
of the included articles reported that the accuracy, sen-
sitivity, and specificity of their algorithms for classifying
periodontitis were >0.8. The SROC curve also showed
the high accuracy of the DL methods for classification.
The study by Lee et al. [43], which reported the specific-
ity as 1 for distinguishing non-periodontitis individuals,
was an outlier in our meta-analysis. Moreover, the Fagan
nomogram indicated that when a DL method classifies a
positive result, there is a high probability of periodonti-
tis, and if the classification is negative, the probability of
periodontitis is low. These findings are further discussed
in the following sections.

Characteristics of dental images

There are very few large and high-quality public databases
of dental radiographs. Consequently, dental radiographs
must be manually labeled, which is time-consuming and
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needs to be urgently addressed. Random shift augmenta-
tion, oversampling, adjusting weights in the loss function,
and transfer learning were used to overcome class-imbal-
anced issues, which detrimentally contributed to DL clas-
sification performance [30, 39, 41, 42, 50, 51, 53].

In terms of modalities of dental images, the studies
included in our analysis predominantly used periapi-
cal images, panoramic images and CBCT images for
periodontitis classification. Nine studies detected RBL
in periapical radiograph images. Periapical radiograph
images capture the teeth and the surrounding alveolar
bone, and therefore can fully provide information on
RBL. However, the view of this modality is small, with
only three to four teeth on a single image [54]. Over half
of the studies in our analysis detected RBL in panoramic
X-ray images, which show the whole mouth. However, as
two-dimensional modalities, both periapical radiograph
images and panoramic X-ray images cannot provide
three-dimensional information and have problems with
geometric distortion and anatomic noise [55]. All these
limitations may affect the performance of periodontitis
classification. Only one study in our analysis used CBCT
and did detect RBL in the resulting images [44]. Although
CBCT can provide three-dimensional information, there
are still some limitations caused by artifacts, noise and
poor soft tissue contrast [56]. Consequently, dental image
processing plays a vital role in periodontitis classification.

Processing of dental images

Two aspects should be considered for an accurate peri-
odontitis classification. One is the quality of dental
images, and the other is model performance. To deal with
image quality problems, the included articles employed
super-resolution and noise reduction methods. One
study conducted in Brazil reconstructed high-resolution
images from low-resolution images by using four con-
ventional interpolation methods (nearest, bilinear, bicu-
bic, Lanczos) and two DL methods (super-resolution
CNN and a variation of the super-resolution generative
adversarial network) [21]. Two studies used the contrast-
limited adaptive histogram equalization technique for
image denoising [39, 40]. Besides noise reduction, one
study conducted in the USA also introduced a series of
processes to precisely draw the contour of bone, tooth,
and cemento-enamel junction after model prediction to
improve model performance [43]. In addition, a quar-
ter of the studies resized and normalised the images to
improve model performance. Furthermore, because
obtaining dental images is difficult, almost half of the
included articles used data augmentation techniques to
increase the number of images [48, 50, 52].
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Univariable Meta-regression & Subgroup Analyses

High/unclear risk of — —e—i
bias
Low risk of bias —e+—
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T T
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Sensitivity(95% CI)

#p<0.05, **p<0.01, ***p<0.001
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Specificity(95% CI)

#p<0.05, *¥p<0.01, ***p<0.001

Fig. 4 Subgroup analysis based on article quality, dental image modality and model type

Classification using dental images

Regarding the task of classification using DL models,
classical models such as U-Net and YOLO were often
utilised in the included studies [57, 58], regardless of the
specific diagnosis task chosen. For tasks involving a two-
stage design, U-Net was typically used for segmenting
ROIs, while YOLO was employed for object detection.
U-Net has been proven to quickly and accurately iden-
tify targets in medical images and generate high-quality
segmentation results [59]. Additionally, the structure of
U-Net can be flexibly adjusted according to the specific
needs of the task [59]. Various versions of YOLO, from
YOLOV3 to YOLOV5, have been utilised based on dif-
ferent study purposes. Feature Pyramid Network (FPN)
was also employed for the ROI segmentation stage [60].

FPN fuses multi-layered features and makes predictions
at each fused feature layer, thus, it shows significant
improvement in small-object detection without consider-
ably increasing computation. Faster region-based CNN
(Faster R-CNN) combines a Region Proposal Network
(RPN) and a Fast R-CNN that shares full-image convolu-
tional features to overcome the computational problem,
which is why Faster R-CNN is popular in periodontitis
diagnosis [61]. Mask R-CNN, which is an extension of
Faster R-CNN, has also been employed [62]. Danks et al.
employed a symmetric hourglass network that can cap-
ture every scale information and combine them to make
the final predictions [45].

Based on the included publications, transfer learning
is an efficient method for training datasets with limited
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(b) Bivariate Normality
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samples, and it can enhance the model training efficiency.
In addition, using appropriate regularisation methods
can improve model performance.

Strengths and limitations
Strengths

1) The strength of this review is that we systematically
summarised and evaluated the studies on DL for
periodontitis classification based on dental images.
Moreover, we have described the development trend
of DL technology in the field of periodontitis.

2) In addition, we used meta-analysis to quantitatively
evaluate the threshold effect and heterogeneity of the
included articles and analysed the possible sources of
heterogeneity in detail.

Limitations

1) DL-based periodontitis classification is an emerging
field and most studies conducted thus far have
predominantly focused on Asian populations. This
limited regional focus has resulted in a constrained
sample representation, thereby impacting the
external validity of the findings.

Except for three articles that utilised publicly
available databases, the samples in the other studies
were solely derived from hospital settings, thereby
lacking representation from community-based data.
No study described the demographic information
pertaining to the included subjects. Considering that
demographic information could potentially influence
the severity of periodontitis and consequently
contribute to the heterogeneity observed, it is
essential to address this aspect in future research.

4) Only three studies incorporated an external dataset
to assess the performance of DL-based models.

In contrast, all the other studies relied on training
and testing datasets derived from the same source,
potentially limiting the generalisability of their
results.

Since the gold standard of periodontitis diagnosis
and classification should be clinical attachment

loss (CAL), it would lead to underestimation of
periodontal status only based on RBL. However, the
classification is still important in the clinical practice
when the direct evidence (CAL) is not available.

2

~

3

=

5

=

Conclusions

In summary, the accuracy of DL is high for classifying
periodontitis based on dental images. DL is an efficient
approach to reducing the workload of dentists and the
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time consumed during clinical practice. Furthermore,
the various DL models have their advantages and dis-
advantages, and the choice of model should be based
on the specific task objectives and requirements. Future
research should be designed rigorously to reflect the DL
truth performance. The optimisation of DL architecture
can promote the performance of periodontitis classifi-
cation with dental images. Moreover, improving dental
image quality and performing regularisation can yield
higher periodontitis diagnostic accuracy. In addition,
data imbalance is an issue that needs to be considered to
enhance diagnostic performance.
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DL Deep learning
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