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Abstract 

Background  Conventional glass ionomer cements (GICs) are currently the most widely used dental cements due 
to their chemical bonding into tooth structure, release of fluoride, and ease of manipulation and usage. One of their 
drawbacks is their low mechanical properties and high solubility. Carbon nanotubes (CNTs) could be utilized in den-
tistry due to their several potential applications. CNTs can be used as fillers to reinforce polymers or other materials. 
Additionally, silver (Ag) nanoparticles are highly effective at preventing dental biofilm and enhancing mechanical 
properties.

Objectives  The aim of the present in vitro study is to evaluate the compressive strength, surface microhardness, 
solubility, and antimicrobial effect of the conventional GIC reinforced with manual blending of 0.01 wt.% Ag doped 
CNT fillers.

Methods  The control group was prepared by mixing dental GIC powder with their liquid. The innovatively reinforced 
dental GIC group was prepared by incorporating 0.01 wt.% Ag doped CNT fillers into the GIC powder prior to liquid 
mixing. Chemical characterization was performed by XRF. While, physical characterization was done by measuring film 
thickness and initial setting time.

The compressive strength, surface microhardness, solubility, and antimicrobial effect against Streptococcus mutans 
bacteria using an agar diffusion test were measured. The data was statistically analyzed using independent sample 
t-tests to compare mean values of compressive strength, surface microhardness, solubility, and antimicrobial activity 
(p ≤ 0.05).

Results  The results revealed that innovative reinforced GIC with 0.01 wt.% Ag doped CNT fillers showed higher mean 
compressive strength, surface microhardness, and antimicrobial effect values than the conventional GIC control 
group; there was no significant difference between different groups in relation to the solubility test (P ≤ 0.05).

Conclusion  The innovatively reinforced GIC with 0.01 wt.% Ag doped CNT fillers had the opportunity to be used 
as an alternative to conventional GIC dental cements.
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Background
Polymers have widely dental applications [1–4]. Glass 
ionomer cement (GIC) is an aesthetic restorative mate-
rial with a self-adhesive property [5, 6]. It is a mix-
ture of fluoro-aluminosilicate glass powder and liquid 
polyacrylic acid in terms of chemistry [7].  It has been 
employed in a variety of dental applications, including 
minimally invasive and atraumatic direct restoratives, 
liner and bases, pit and fissure sealants, and endodon-
tic sealers [8, 9]. Clinicians prefer to use GICs for long-
term temporary restorations, the sandwich approach, 
luting agent, root caries, and permanent restorations 
in non-stress bearing areas, also cementation of ortho-
dontic appliances and prosthodontic frameworks on the 
primary teeth [10–12]. Their properties are generally 
attractive for these applications and include high aes-
thetic properties, biocompatibility, fluoride-releasing 
and remineralization ability, chemical adhesion to the 
tooth surface, and matching the coefficient of thermal 
expansion of the natural tooth [13, 14]. Despite these 
benefits, their main disadvantage is low early mechani-
cal properties in sites subjected to high stresses, and 
low wear resistance, in addition to their high solubil-
ity, which may affect their survival rates when used in 
load-bearing regions [13]. Film thickness and the initial 
setting time of the dental cements are two significant 
physical properties of an important aspect of restora-
tive dentistry [15]. Several attempts were performed 
to improve the conventional GICs to stun their draw-
backs, many studies aimed to enhance the mechanical 
characteristics of GICs. This was accomplished by add-
ing nanofiller particles to GICs, such as bioactive glass, 
hydroxyapatite powders, metallic powders, nanoclay, 
and glass fibers [16–19].

Carbon nanotubes (CNTs) are cylindrical hollow 
structures consisting of a hexagonal network of car-
bon atoms at the nanoscale [20]. CNTs can be utilized 
as fillers to strengthen polymers or other materials, 
forming metal-based inorganic nanoparticles [21]. 
Multi-walled CNTs have emerged as superior fillers 
due to their larger surface area, high loading capacity, 
and potential to interact with biological membranes 
[22]. Consequently, their higher mechanical features 
and enhanced antimicrobial activity suggest that they 
would be utilized as promising fillers for dental applica-
tions [23]. They demonstrated adequate performance in 
reinforcement due to the load transfer on the interfacial 
bonding of the reinforced material and the CNTs [24].

Several metals, like silver, copper, gold, titanium, and 
zinc, have been employed as antimicrobial materials. 
Each of these metals has unique properties and a range 
of activities [25]. Silver (Ag) nanoparticles have long 
been utilized in dentistry due to their antibacterial activ-
ity. They are considered an efficient antibacterial filler, 
have great potential to inhibit biofilm, and also act as 
strengthening agents [20]. Functionalizing CNTs with 
other metallic nanoparticles such as gold, palladium, 
platinum, and silver may be able to produce nanofillers 
with predictable superior properties [26]. The doping of 
CNTs with Ag nanoparticles has potential applications 
as advanced nanocomposites with enhanced mechanical 
properties and antibacterial potential [22].

The aim of the present study was to evaluate the com-
pressive strength, surface microhardness, solubility, and 
antimicrobial effect of dental GIC reinforced with Ag 
doped multi-walled CNT fillers against the untreated 
GIC (control). The null hypothesis was that the incor-
poration of 0.01 wt.% Ag doped CNT into conventional 
GIC would not affect the compressive strength, surface 
microhardness, solubility, or antimicrobial effect against 
Streptococcus mutans compared to the untreated control 
group.

Methods
The present experimental study was approved by the 
Medical Research Ethical Committee (MREC) of the 
National Research Centre (NRC), Cairo, Egypt (Refer-
ence number: 98072032023).

For this study, a commercially available conventional 
chemically cured GIC was provided in powder and liquid 
form: Fuji IX GP Extra (GC Corporation, Tokyo, Japan). 
Commercial multi-walled CNT doped with 12 wt.% Ag 
nanoparticle powder was also used (Nanografi Nano 
Technology, Jena, Germany). The specifications of the 
Ag-doped CNT were: an average particle length range of 
15–25 nm, an average outside diameter less than 50 nm, 
an average inside diameter of 5 nm, and an average purity 
of more than 97 wt.%.

Preparation of the specimens
A total of 80 specimens were used. The specimens were 
divided into two main groups (n = 40/group) based on the 
type of powder used in the mixing process. The sample 
size was calculated using the G*Power (version 3.1.9.7) 
sample size calculator based on means and standard devi-
ations [27]. The estimated sample size for each group was 
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10. The control group was prepared by mixing the con-
ventional GIC powder with their liquid; the treated group 
was obtained by hand-mixing of 0.01 wt.% silver-doped 
CNT fillers with the conventional GIC powder using a 
mortar and pestle to obtain a homogenous powder. The 
prepared powder was then mixed with their liquid. The 
mixing of powder and liquid was done according to the 
manufacturer’s instructions. The mixed material from 
each group was placed in custom-made Teflon molds 
according to each test. A polyester strip was placed to 
prevent air trapping, and gentle compression was applied 
to the materials on both sides of the mold by a glass slide. 
Specimens were removed from the mold after the setting 
time specified by the manufacturer. The specimens were 
then examined visually for imperfections.

Characterization of prepared specimens
Chemical characterization of the control and treated 
specimens were performed using a non-destructive X-ray 
fluorescence (XRF) analysis (X-MET3000TXR, Oxford 
Instruments GmbH Co., Borsigstrasse, Germany) to ver-
ify their chemical composition [28].

Physical characterization of the control and treated 
specimens were assessed by measuring film thickness 
and setting time. The film thickness of the control and 
treated specimens was investigated according to the 
International Standard Organization (ISO) ISO stand-
ard 9917–2 instructions [29]. Using an electronic digital 
caliper (Digital Vernier Caliper, Mitutoyo, Japan), the 
thickness of two flat glass plates fastened in contact was 
measured four times to the nearest 0.1  m. This reading 
was recorded as reading A. The cement for each group 
(n = 10) was mixed according to the manufacturer’s 
instructions. After mixing, a consistent amount of each 
cement mixture was then distributed between the two 
glass plates. A load of 147 N was applied on the upper 
glass plate using a universal testing machine (Shimadzu 
Autograph AG–X Plus, Kyoto, Japan). The overall thick-
ness of the plates with the specimen in between was 
recorded as reading B after seven minutes. The final 
combined film thickness for the specimen under test was 
determined as the difference between the thickness of the 
plates with and without the material between (B-A) [29].

Initial setting times was determined by the Gillmore 
needles (Humboldt MFG., Norridge, IL, USA) accord-
ing to ADA specifications [30]. The initial setting time 
was calculated using a light needle with a tip diameter of 
2.12 mm and a weight of 113.4 g. Every 30 s, the needle 
was positioned on the surface. Initial setting times were 
determined from the beginning of mixing until the nee-
dle did not leave a mark on the surface, respectively. Ten 
samples were measured for each group [31].

Testing of specimens
All the specimens were polished to remove any irregular-
ities using 600-grit sandpaper. Specimens were protected 
with one layer of GIC varnish [32].

Compressive strength test
Ten cylinder-shaped specimens per group (12  mm in 
height and 6 mm in diameter) were prepared according 
to the standard specification for dental glass ionomer 
cements, ANSI/ADA Specification No. 66 (1989) [33]. 
The specimens were removed from the molds and stored 
in an incubator (CBM, S.r.l. Medical Equipment, 2431/V, 
Cremona, Italy) for 24  h in 95 ± 5% relative humidity at 
37 °C. Specimens were loaded in compression at a cross-
head speed of 1.0 mm/min in a universal testing machine 
(Shimadzu Autograph AG–X Plus, Kyoto, Japan) until 
fracture occurred [34].

Microhardness test
Ten disc-shaped specimens per group (5  mm in height 
and 2  mm in diameter) were prepared. The specimens 
were removed from the molds and incubated for 24 h in 
a highly humid environment at 37 °C. Surface microhard-
ness for each specimen was determined using a digital 
Vickers hardness tester (NEXUS 400TM, INNOVATEST, 
model no. 4503, Maastricht, Netherlands). The inden-
tations were made within 15 s of dwell time at a load of 
100 g at 20 × magnificence. The mean surface microhard-
ness value for each specimen was expressed in Vickers 
hardness numbers (VHN) [35].

Solubility test
Solubility was investigated using a Teflon mold meas-
uring 7 mm in diameter and 2 mm in thickness [36], to 
obtain a disc-shaped specimen (n = 10). The specimens 
of each group were stored in a desiccator with silica gel 
(Merck KGaA, Darmstadt, Germany) for 2  h and then 
incubated in an incubator at 37  °C for 22  h. Specimens 
were weighed on a precision analytical balance instru-
ment (Adam equipment 4 digits precision weighing 
balance, Adam Equipment Inc., Oxford, UK) with an 
accuracy of 0.001  g to obtain the initial mass (M1) val-
ues. Then, the specimens were immersed in a plastic flask 
containing 25  mL of distilled water, stored for 7  days, 
and incubated at 37  °C for 7 days. Then, each specimen 
was removed, dried gently with absorbent paper, and 
weighed again to get the mass values of the specimens 
after immersion (M2) [37]. The percentage of solubility 
was calculated using the equation [38]:

where M1 is the initial mass and M2 is the final mass of 
the specimens. The test was repeated three times [36].

(M1−M2)/M1X 100%
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Antibacterial activity test
Ten-disc specimens for each group measuring 2  mm in 
height and 4 mm in diameter were prepared. The speci-
mens were stored in an incubator for 24 h at 37 °C. Then 
antibacterial activity of the specimens was evaluated 
against Streptococcus mutans bacteria. The antibacte-
rial activity was investigated using agar diffusion method 
[39]. The Streptococcus mutans (EMCC 1815) bacterial 
strains were acquired. The samples were inoculated on 
Brain Heart Infusion (BHI) agar plates (HiMedia M211, 
HiMedia Laboratories Pvt. Limited, Mumbai, India) and 
then incubation at 37  °C for 3 days, the inhibition zone 
was observed. The total diameter of the inhibition zone 
in mm for each group was measured.

Statistical analysis
The statistical analysis was performed using the Statisti-
cal Package for the Social Sciences (SPSS) 16.0 statistical 
software (IBM-SPSS version 27.0, New York, NY, USA). 
Data was analyzed using independent sample t-tests to 
compare mean values of compressive strength, surface 
microhardness, solubility, and antimicrobial activity. The 
significance level was set at p ≤ 0.05.

Results
Chemical characterization results
The chemical composition of the control and treated 
specimens analyzed by XRF is represented in Table 1.

Physical characterization results
Film thickness
The results of the film thickness of the control and 
treated specimens are represented in Table 2. There was 
no significant difference (P = 0.07) in the film thickness 
values between untreated GIC (control) and treated GIC 
(24 µm and 24.4 µm respectively).

Setting time
The results of the initial setting time of the control and 
treated specimens are represented in Table 3. There was 
no significant difference (P = 0.5) in the initial setting 
time between untreated GIC (control) and treated GIC 
(97.7 and 98.7 s respectively).

Testing results

Compressive strength results  The results of the com-
pressive strength are represented in Table  4. The com-
pressive strength value of the treated GIC with the Ag-
doped CNT group (172.7 MPa) was significantly higher 

Table 1  Chemical compositions (mol%) of the treated and 
untreated GIC specimens by XRF analysis

Chemical Composition Untreated GIC (control) Treated GIC

SiO2 24.43 23.9

Al2O3 13.55 13.35

Fe2O3 0.93 0.92

P2O5 6.55 7.1

CaO 35.44 34.34

CaF2 15.57 16.2

SO3 2.52 2.66

K2O 0.16 0.17

SrO 0.26 0.32

TiO2 0.18 0.23

ZnO 0.1 0.1

ZrO2 0.23 0.42

MoO3 0.05 0.05

Nb2O5 0.03 0.03

Ag - 0.2

C - 0.01

Table 2  Descriptive statistics. Mean, Median, Maximum, Minimum, and Standard Deviation values for film thickness test (µm)

* Corresponds to statistically significant difference (P ≤ 0.05)

Mean Median Maximum Minimum Standard 
Deviation

P value

Untreated GIC (control) 24.04 24.1 24.6 23.3  ± 0.371 P = 0.07

Treated GIC 24.42 24.5 25.1 23.5  ± 0.487

Table 3  Descriptive statistics. Mean, Median, Maximum, Minimum, and Standard Deviation values for initial setting time test (seconds)

* Corresponds to statistically significant difference (P ≤ 0.05)

Mean Median Maximum Minimum Standard 
Deviation

P value

Untreated GIC (control) 97.7 98 102 94  ± 2.86 P = 0.5

Treated GIC 98.7 99.5 105 92  ± 4.16
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than the untreated GIC (control) group (105  MPa), 
(P = 0.0001*).

Microhardness results
The results of the microhardness are represented in 
Table 5. The Vickers microhardness value of the treated 
GIC with the Ag-doped CNT group (92.5 VHN) was sig-
nificantly higher than the untreated GIC (control) group 
(61.3 VHN), (P = 0.0001*).
Solubility results
The results of the solubility are represented in Table 6. 
There was no significant difference in solubility mean 
values among the control group (3.4%) and treated 
group (3.1%), (P = 0.1).

Antibacterial activity test
The results of the agar diffusion test against Strepto-
coccus mutans are represented in Table  7. There was 
a significant difference in the antibacterial activity 
against Streptococcus mutans in both groups. The con-
trol group showed a significantly lower inhibition zone 
value around the discs (1 mm). While the treated group 
showed a significantly higher inhibition zone value 
around the peripheries of the treated discs (9  mm), 
(P = 0.0001*).

Discussion
Conventional GICs are extensively used in dentistry 
because of their distinctive qualities, such as chemi-
cal bonding to tooth structures, necessitating the least 
amount of dental preparation [40], chemical bonding 
with base metals, thermal compatibility with enamel, 
biocompatibility and low cytotoxicity, fluoride release 
ability, and provide chemical bonding to tooth structure, 
thus requiring a minimum tooth preparation [40]. How-
ever, one of the main issues with GIC is that it has a lower 
mechanical properties than recent resin composite mate-
rials [41]. The durability of GIC is affected by numer-
ous factors, such as microhardness and solubility [36]. 
Solubility is one of the most crucial factors for evaluat-
ing the quality of materials used for liners, bases, luting 
agents, and restorations [36]. The solubility of restorative 

materials has a great influence on their stability, biocom-
patibility, and longevity [36].

As secondary caries is one of the most prevalent causes 
of dental restoration failure, it has also frequently been 
noted that the presence of biofilm on the surface of the 
restorative materials may facilitate the emergence of sec-
ondary caries lesions [42]. Secondary caries is mainly 
developed by the invasion of cariogenic bacteria, princi-
pally Streptococcus mutans [43]. Therefore, the antibac-
terial activity of restorative materials is of great value to 
avoid the possibility of secondary caries along the tooth-
restoration interface [44]. The ideal’ dental cement and 
restoration should have several features, such as high 
surface and mechanical characteristics, adequate setting 
time, and a low film thickness (less than 25 µm) for the 
luting agent [45].

The development of nanotechnology has led to the 
development of new caries management strategies. In 
low concentrations, Ag nanoparticles have substantial 
antibacterial activity against Streptococcus mutans [46]. 
Ag nanoparticles may exhibit a synergistic antibacterial 
effect  when combined with other antibacterial element 
[47].

The exceptional mechanical characteristics of CNT 
make it possible to be incorporated into dental materi-
als for a pioneering functional application [48]. Ag-nan-
oparticles and CNTs could be functionalized together 
to create novel fillers that could be able to enhance the 
mechanical properties, surface microhardness, solubility, 
and antimicrobial activity of conventional GIC [24]. The 
functionalized CNT fillers were incorporated in a mini-
mal concentration of 0.01 wt.% in an attempt to improve 
the mechanical properties without deterioration of the 
surface microhardness [49].

A compressive strength test simulates the load exerted 
on materials used in dental practice, the majority of mas-
tication stresses are compressive in nature [50]. Com-
pressive tests represent the critical value at which the 
material can withstand during the masticatory process 
[51]. The posterior teeth can withhold masticatory forces 
up to 125  MPa, while the primary dentition can only 
withstand compressive strength up to 100 MPa [52].

The current study has been carried out to evaluate the 
effect of incorporating 0.01 wt.% Ag-doped CNT fillers 

Table 4  Descriptive statistics. Mean, Median, Maximum, Minimum, and Standard Deviation values for compressive strength (MPa)

Different superscript letters (a,b) indicate significance
* Corresponds to statistically significant difference (P ≤ 0.05)

Mean Median Maximum Minimum Standard 
Deviation

P value

Untreated GIC (control) 105a 105 106 103  ± 0.33 P = 0.0001*

Treated GIC 172.7b 172.3 175 171  ± 0.43
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into commercially available conventional GIC on com-
pressive strength, surface microhardness, solubility, and 
antimicrobial activity against Streptococcus mutans. The 
null hypothesis was rejected, where the incorporation of 
0.01 wt.% Ag-doped CNT into conventional GIC signifi-
cantly affected the compressive strength, surface micro-
hardness and antimicrobial activity against Streptococcus 
mutans compared to the control group.

The result of the XRF confirmed that the chemical com-
pounds of the Ag-doped CNTs were incorporated into 
glass ionomer material specimens. In accordance with 
ADA No. 8 [53], dental cement should have a film thick-
ness no more than 25 µm for water-based luting cements 
and no more than 50 µm for resin-based cements. Mini-
mal film thickness will lead to enhanced restoration 
retention and reduce marginal discrepancies [54]. Both 
treated and control groups provide a film thickness lower 
than 25 µm. Moreover, the results revealed no significant 
difference between groups, which may be attributed to 
the lower concentration of the added fillers in the treated 
groups. As regard the initial setting time, the results 
revealed no significant difference between groups, which 
may also be attributed to the lower concentration of the 
added fillers in the treated groups, which leads to a neg-
ligible effect.

The results of the present study showed that the addi-
tion of 0.01 wt.% Ag-doped CNT fillers into dental GIC 
significantly improved the compressive strength. This 
finding may be attributed to the expected reinforcing 
effect of Ag-doped CNT fillers [17]. Moreover, the incor-
poration of the minute amount of the strong CNT nano-
fillers may be responsible for inhibiting crack propagation 
by transferring the stress from the weaker matrix to the 
stronger nanoparticle fillers without deterioration of the 
interfacial bonding [55]. These results are in accordance 
with previous studies that showed a reinforcement ability 
for dental restorations after incorporation of CNT [56]. 
However, these results disagree with the study conducted 
by Spinola et al., which reported that the incorporation of 
1 wt.% CNT fillers had a negative effect on the compres-
sive strength of glass ionomers, which may be due to the 
non-homogeneous distribution of the nanoparticle fillers 
and the consequent formation of voids [57].

Moreover, The increase in surface microhardness in 
the treaed groups can be referred to the homogenous 
dispersion of hard Ag-doped CNT filler nanoparticles 
within the matrix [58]. Both the control and modi-
fied groups exhibited similar solubility percentages; 
this finding may be explained by the small amount of 

Table 5  Descriptive statistics. Mean, Median, Maximum, Minimum, and Standard Deviation values for microhardness (VHN)

Different superscript letters (a,b) indicate significance
* Corresponds to statistically significant difference (P ≤ 0.05)

Mean Median Maximum Minimum Standard 
Deviation

P value

Untreated GIC (control) 61.3a 61.3 62 60  ± 0.72 P = 0.0001*

Treated GIC 92.5b 92.4 94 91.5  ± 0.81

Table 6  Descriptive statistics. Mean, Median, Maximum, Minimum, and Standard Deviation values for solubility (%)

* Corresponds to statistically significant difference (P ≤ 0.05)

Mean Median Maximum Minimum Standard 
Deviation

P value

Untreated GIC (control) 3.4 3.2 4 2.9  ± 0.32 P = 0.1

Treated GIC 3.1 3.0 4.2 2.4  ± 0.44

Table 7  Descriptive statistics. Mean, Median, Maximum, Minimum, and Standard Deviation values for Streptococcus mutans inhibition 
zone after 3 days (mm)

Different superscript letters (a,b) indicate significance
* Corresponds to statistically significant difference (P ≤ 0.05)

Mean Median Maximum Minimum Standard 
Deviation

P value

Untreated GIC (control) 1a 1 1.2 0.8  ± 0.13 P = 0.0001*

Treated GIC 9b 9 9.3 8.8  ± 0.14



Page 7 of 9Hamdy ﻿BMC Oral Health          (2023) 23:777 	

Ag-doped CNT nanoparticle fillers added, which was 
not enough to improve the dissolution of the matrix. 
Furthermore, the incorporation of Ag-doped CNT 
nanoparticle fillers improved the antibacterial effect of 
the treated groups. This finding may be due to the fact 
that Ag nanoparticles displayed powerful bactericidal 
activity against Streptococcus mutans by rupturing their 
outer cellular membrane [59, 60]. Additionally, multi-
walled CNT exhibit potent antibacterial properties and 
have the ability to penetrate bacterial cell walls [61]. 
Moreover, other aspects could have a significant impact 
on the mechanical characteristics of GICS, such as the 
depth of cure [62, 63]. Therefore, future studies are 
needed, taking into careful account also these variables.

The present study’s limitation is that the experimental 
conditions did not completely replicate clinical ones. 
However, all the specimens were subjected to the same 
testing conditions. Further studies are recommended to 
assess the effect of the incorporation of Ag-doped CNT 
to GIC in different concentrations in order to recognize 
the optimum concentrations required to improve the 
mechanical properties. Moreover, it is recommended 
to investigate the color changes associated with each 
concentration.

Conclusions
The innovatively reinforced GIC with 0.01 wt.% Ag 
doped CNT fillers had the opportunity to be used as 
an alternative to conventional GIC dental cements 
as it provides enhanced compressive strength, sur-
face microhardness, and anti-bacterial activity against 
Streptococcus mutans compared to the conventional 
GIC.
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