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Advances in novel therapeutic approaches 
for periodontal diseases
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Abstract 

Periodontal diseases are pathological processes resulting from infections and inflammation affecting the periodon‑
tium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and 
perpetuate this disease in susceptible hosts. In some cases, broad‑spectrum antibiotic therapy has been a treatment 
of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has 
become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the 
pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human 
microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis 
in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and 
the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate 
harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and 
new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that 
target biofilm formation, bacterial quorum‑sensing systems and other virulence factors have been reviewed. New and 
exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal 
disease, are also discussed.
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Background
Periodontal disease is one of the most common chronic 
inflammatory diseases in humans, affecting up to 90% of 
the global population [1, 2]. It is the pathologic process 
affecting the periodontium. According to the American 
Academy of Periodontology (AAP) and European Fed-
eration of Periodontology (EFP) guidelines, periodontal 
diseases and conditions are classified into the following 
categories: periodontal health, gingival diseases, and con-
ditions; periodontitis; and other conditions affecting the 
periodontium. Based on the severity and complexity, per-
iodontal disease can be further classified into stage I-IV 

[3, 4]. The most common forms of periodontal disease 
are gingivitis and periodontitis. These conditions involve 
a group of oral pathogens that can form biofilms on the 
tooth’s surface and in the periodontal pocket and elicit 
a host inflammatory response. Dental biofilm-induced 
gingivitis involves the accumulation of dental biofilm and 
is characterized clinically by swelling, redness, and tis-
sue bleeding [5]. In patients with gingivitis, the alveolar 
bone and the periodontal ligaments are usually not dam-
aged [6]. In contrast, periodontitis is characterized by the 
destruction of alveolar bone and periodontal ligaments 
[5]. The clinical manifestations of periodontitis involve 
the periodontal pocket, an ideal place for the coloniza-
tion of bacteria [7]. The primary oral pathogens that con-
tribute to the initiation and progression of periodontitis 
include Porphyromonas gingivalis, Tannerella forsythia 
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and Treponema denticola. These bacteria are known as 
the red complex as they are found together in periodon-
tal pockets where extensive periodontal tissue damage 
is evident [8]. Other periodontitis-associated bacteria 
include Fusobacterium nucleatum, Aggregatibacter actin-
omycetemcomitans, and Prevotella intermedia [9]. In 
addition to pathogenic bacteria, the disease progression 
is influenced by host-specific and environmental risk fac-
tors (Fig. 1).

Physical removal of the biofilms and calculus by scal-
ing has been the most widely used clinical option in 
periodontal disease treatment [10]. While dental bio-
film-induced gingivitis can be reversed by improved 
oral hygiene and supragingival scaling, surgical peri-
odontal procedures are performed with more advanced 
periodontal disease. Antimicrobial agents such as chlo-
rhexidine and systemically administered antibiotics are 
sometimes used in conjunction with surgical treatments 
for periodontal diseases. The most commonly used sys-
temic antibiotics include amoxicillin or metronidazole 
and extended-release doxycycline. Antibiotics are often 
given to patients for prophylactic purposes follow-
ing invasive periodontal surgeries. However, in align-
ment with the current trend of increasing antimicrobial 
resistance in human pathogens, antibiotic resistance has 
increased among patients with periodontal disease in 
recent years [11]. The unique periodontal environment 

and biofilm formation make these bacteria less suscep-
tible to antibiotics [12]. New therapeutic strategies are 
needed for periodontal diseases.

Several new therapeutic and preventive periodontal 
disease approaches have emerged in recent years due to 
the advancement in understanding bacterial pathogen-
esis, the human microbiome, and host-microbe interac-
tion. Anti-virulence therapy combats against periodontal 
pathogens by neutralizing their virulence properties, rep-
resenting a promising alternative to antibiotic treatment 
[13]. Host immune modulation by phytocompounds and 
microbiome-based approaches, such as oral microbiota 
replacement, are exciting new developments for peri-
odontal disease treatment and prevention. This review 
discusses the challenge of antibiotic resistance and 
alternative strategies for periodontal disease treatment. 
Although this is not a systemic review, we have listed the 
literature search strategy in Fig. 2.

Antibiotic therapy and drug resistance 
in periodontal bacteria
Antibiotics are used to treat infections in the oral cavity 
and are given in certain circumstances for prophylactic 
purposes during intraoral procedures where bacteremia is 
expected to occur [14]. The commonly used local and sys-
temic antibiotics to treat periodontitis are listed in Tables 1 
and 2. Local delivery means that the antibiotics are placed 

Fig. 1 Overview of periodontal disease and factor that affects susceptibility to periodontal infections. Periodontal pathogens use an array of 
virulence factors to initiate periodontal disease. These virulence factors help the pathogens escape host cells’ immune response. The progression 
of periodontal disease depends on the host’s response to microbial dysbiosis in biofilms. The severity and extent of periodontal disease are also 
influenced by host‑specific, genetic, and environmental factors [7]
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directly in the diseased periodontal pocket, and antibiotics 
for systemic delivery are usually administrated orally.

Antimicrobial resistance in periodontal bacteria is a 
growing concern worldwide. Bacterial pathogens become 
resistant to antibiotics via several central mechanisms, 
including degrading antibiotics, altering antibiotic tar-
gets, and actively effluxing the drugs from the cell [15].

Pathogens become resistant to antibiotics contain-
ing β-lactam rings by producing β-lactamases, which can 
degrade or modify β-lactam antibiotics [16]. Studies have 
reported β-lactamase production by periodontal pathogens, 
including Porphyromonas, Prevotella, and Fusobacterium 
species [17]. For P. gingivalis, the β-lactamase (amoxicillin-
based) production rate in clinical isolates is around 7.6% 
[18]. Walker et  al. reported that from 406 samples taken 
from the gingival crevicular fluid of patients with periodon-
tal disease, β -lactamase property was detected in 64% of 
the periodontal patients [19]. β-lactamases can be found 
frequently in periodontal pockets of more than 3 mm deep 
[19]. Feres et  al. demonstrated that bacterial species from 

subgingival plaque showed resistance against metronidazole 
and amoxicillin [20]. 21.6% of the P. gingivalis isolates from 
patients with periodontitis were reported to be resistant to 
metronidazole [21]. Different antibiotic-resistant levels in A. 
actinomycetemcomitans have also been reported depending 
on geographical distributions [22].

The tet gene is known to be responsible for tetracycline 
resistance. Most tet genes originated from periodontal 
pathogens such as P. gingivalis and F. nucleatum [23]. 
The percentage of tetracycline-resistant isolates in den-
tal plaque-associated bacteria is high in children from 
South Asia and Japan [24]. Isolates of T. denticola that 
are resistant to tetracycline have also been reported [25]. 
Resistance to tetracycline is a frequent co-marker among 
penicillin-resistant species of oral origin [26]. Resistance 
to erythromycin usually occurs due to acquiring two sig-
nificant genes, ermF and erm. Major periodontal bacteria 
such as T. forsythia and P. gingivalis can carry both emr 
and tet resistance genes [27]. Clindamycin resistance 
shows a high prevalence among periodontal isolates of F. 

Fig. 2 Flowchart of the literature search strategy and selection criteria. The literatures were retrieved from two databases: PubMed and Scopus. 
Search terms used in two separate searches includes: 1. (periodontal) AND (antibiotic) OR (virulence) OR (biofilm) OR (immunomodulatory AND 
therapy) OR (probiotic) OR (quorum AND sensing); 2. (periodontal* AND disease) AND (therapeutic*) AND (antibiotics OR antimicrobials) AND NOT 
(regenerative) AND NOT (rat or animal) AND NOT (case AND reports). The literatures were limited to articles published in English and within 15 years 
(2008–2022), while those of animal studies, case studies, or presented in the form of abstracts were excluded. 215 references relevant to the topics 
were cited in this review
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Table 1 List of local antibiotics delivery systems used to treat periodontal patients

Drugs Polymer Type Outcomes References

Metronidazole Polycaprolactone (PCL) Nanofiber Effective local delivery system of metronida‑
zole in combination with scaling and root 
planing showed betterment of clinical criteria, 
for example, plaque index (PI), pocket depth 
(PD), and gingival index (GI)

[158]

Doxycycline PCL Controlled delivery of drug was able to 
improve PD, PI, and GI effectively in periodon‑
tal disease

[159]

Minocycline hydrochloride Carbopol Liposome Liposomes containing minocycline hydro‑
chloride showed biocompatibility along with 
improvement in rat periodontitis

[160]

Minocycline hydrochloride Poly Ethylene Glycol (PEG) 2% minocycline hydrochloride nanoliposomes 
strongly inhibited TNF‑α secretion by LPS‑
stimulated macrophages up to 60 h

[161]

Doxycycline Carbopol Slow release of drug from nanoliposome gel 
decreased MMP‑8 in rat model of periodontitis

[162]

Metronidazole,
Doxycycline

Polymersomes Nanoparticle Antibiotics encapsulated in polymersomes 
decreased the number of P. gingivalis in mon‑
olayer cells as well as in organotypic cultures 
significantly

[163]

Metronidazole benzoate Thiolated
Chitosan
(TCS)‑
Poly(methacrylic
acid) (PMAA)

TCS‑PMAA delivery system provided sustained 
and site‑directed release of the drug. Also, 
the system led to an improvement in oral 
availability

[164]

Doxycycline Chitosan Pre‑clinical studies showed that nanoparticles 
loaded with doxycycline showed entrapment 
efficacy of 75% and showed antimicrobial 
activity against P. gingivalis

[165]

Metronidazole Chitosan Microparticle Hydrogel prepared from chitosan micropar‑
ticles released metronidazole at an optimal 
pattern

[166]

hydroxyapatite (HA) and Ofloxacin Poly Lactic‑Co‑glycolic acid (PDLGA) PDLGA microspheres were shown to be bio‑
compatible and porous in nature. This system 
delivered the drug optimally against E. coli and 
S. aureus

[167]

Minocycline hydrochloride Chitosan Use of microsphere containing minocycline 
hydrochloride resulted in the decrease of PDs 
at 6 months. In addition, bleeding on probing 
was also decreased significantly in patients

[168]

Doxycycline Gelatin Local delivery of antibiotics in the periodontal 
pocket along with scaling and root planing led 
to decrease in PDs. Moreover, the treatment 
method reduced the number of P. gingivalis 
significantly

[169]
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nucleatum (36%), P. gingivalis (23%), and Prevotella mel-
aninogenica (22%) in Columbia [22].

Bacteria associated with periodontal disease naturally 
form biofilms. Biofilm formation also contributes to the 
resistance of antibiotics to periodontal pathogens. Studies 
have demonstrated the increased exchange of antibiotic 
resistance encoding genes in biofilms [28], which causes 
the spreading of antibiotic resistance among periodontal 
bacterial species [29]. The biofilms matrix usually com-
prises extracellular polymeric substances (EPS), which 
hinders the dissemination of antibiotics into the bacterial 
biofilms [30]. The organized structure of biofilms and its 
matrix also confer diffusion–reaction inhibition to antibi-
otics, which leads to antibiotic tolerance. Sublethal con-
centrations of antibiotics in biofilms can also lead to the 
selection of drug resistance [31]. The slow growth of some 
bacterial cells in biofilms and the presence of persister 
cells are major contributing factors to the decreased anti-
biotic susceptibility in biofilms. It has been reported that 
bacteria cells in a biofilm can be 1000-fold more resistant 
to antibiotics than planktonic cells [32].

Novel treatment strategies for periodontal 
diseases
Coinciding with the increasing antibiotic resistance among 
periodontal pathogens, the primary goal of periodontal 
therapy has shifted in recent years to restoring homeostasis 

in oral microbiota and its harmonious balance with the host 
periodontal tissue. Such a shift in the treatment goal and the 
challenge of drug resistance calls for alternative approaches 
to traditional antibiotic therapy that indiscriminately elimi-
nates resident commensal or pathogenic bacteria.

Periodontal pathogens use virulence factors to initi-
ate periodontal disease and promote its progression. A 
promising alternative to antibiotic therapy is targeting 
pathogenic bacteria’s virulence factors and their regu-
latory systems that control pathogenicity [13]. Such an 
approach aims to inhibit bacterial virulence factors and 
thus avert the harmful bacterial pathogens render to 
the host and reduce pathogen-induced host immune 
response, reducing the damage to the host tissues. 
Agents with anti-virulence properties could potentially 
stop the pathogenic activities of periodontal bacteria [33, 
34], disarming its ability to cause periodontal diseases. 
Strategies can also be developed to target biofilms as 
forming biofilms by periodontal bacteria causes antibi-
otic resistance and enables them to evade host immune 
responses [35, 36]. Because host inflammatory response 
plays a vital role in periodontal disease, modulators of 
host innate immunity are another promising strategy to 
address periodontal disease. The novel oral microbiota 
replacement therapy resulting from recent advance-
ments in human microbiome studies could potentially 
be an alternative measure for preventing and treating 

Table 1 (continued)

Drugs Polymer Type Outcomes References

Azithromycin PLGA Gel Site‑directed delivery of 0.5% of azithromycin 
showed better clinical output in periodontitis 
patients

[170]

Metronidazole Poly‑gamma‑glutamic acid Hydrogel was prepared from a non‑toxic and 
biodegradable material such as poly‑gamma‑
glutamic acid. This hydrogel system could be 
polymerized by light and showed remarkable 
swelling ability along with a controlled man‑
ner of drug release

[171]

Clarithromycin Carboxy methylcellulose In adjunction with scaling and root planing 
treatment, local delivery of 0.5% clarithromy‑
cin showed better clinical outputs at 6 months 
in smokers

[172]

Moxifloxacin Pluronic
Chitosan

Reduction in PD was observed in patients 
who received moxifloxacin gels at 3 months. 
In addition, these gels were safe to use and 
significantly reduced the load of P. gingivalis 
among the periodontal pathogens
Shows efficacy against A. actinomycetemcomi-
tans

[173]
[174, 175]

Chlorhexidine Chitosan, beta‑glycerophosphate Nontoxic hydrogel system carrying 0.1% 
chlorhexidine effectively reduced the number 
of oral pathogens

[162]

Doxycycline Hydroxyapatite Scaffolds Scaffolds loaded with doxycycline helps in the 
process of pre‑osteoblasts of bone and tissue 
repairment in periodontal patients

[176, 177]
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periodontal disease. Probiotics and oral microbiota 
replacement therapy are substituting resident periodon-
tal bacteria with non-pathogenic bacteria and restoring 
healthy homeostasis of the oral microbiome [37].

Virulence factors in periodontal pathogens 
and anti‑virulence agents
Virulence factors are either cellular components or 
secreted products of a pathogen that enable the patho-
gen to invade the host, evade the host’s immune response 
or cause damage to the host. Several recent therapeutic 
approaches have been investigated that target critical 
virulence factors to disrupt the pathogenic processes of 
periodontal bacteria, which are summarized in Fig. 3.

A. Cell surface components as an anti‑virulence target 
against initial infection
Capsules are required for microbial attachment to the 
host tissue surfaces, marking the first step in bacterial 

pathogenesis. Co-aggregation of P. gingivalis and F. nucle-
atum in the subgingival plaque is mediated by a capsular 
polysaccharide (CPS) and lipopolysaccharide (LPS) [38]. 
Increased encapsulation correlates well with increased 
evasion from phagocytosis and reduced host immune 
response [39]. The capsular polysaccharide of Actinoba-
cillus actinomycetemcomitans upregulates the expression 
of Interleukin (IL) 1-β by activating the JNK pathway in 
macrophages. Increased levels of IL 1- β leads to inflam-
mation and bone resorption. Such results support a pos-
sible therapeutic strategy to combat this periodontal 
pathogen by targeting its capsule [40]. IL 1-β could also 
be targeted for periodontal diseases as it contributes to 
periodontal pathology and the production of proteinase, 
which can contribute to the destruction of periodontal 
tissues. [41].

Natural compounds, alpha-mangostin and grape seed 
proanthocyanidin extracts, can inhibit the damaging 
effects of LPS [5]. Apart from that, the soluble film of 

Fig. 3 Schematic representation of anti‑virulence strategies covered under this review. 1. Targeting virulence factor: (a) Protease Inhibitors: 
Microbial protease plays an essential role in the progression of periodontal diseases and thus could be a potential therapeutic target. The 
therapeutic approach focused on Gingipain inhibitor (Kgp specific inhibitor A71561) can significantly decrease virulence. (b) LPS inhibition: 
Cell surface components like LPS could be targeted for treating periodontal diseases. α‑Tocopherol reduces inflammatory cytokines while 
increasing antimicrobial peptides, and β‑defensins, thereby counteracting the damaging effects of LPS, which play a vital role in the pathogenesis 
of periodontal diseases. (c) Inhibition of fimbrial assembly: Fimbriae are a major structural component of periodontal bacteria. Studies have 
shown that peptides originating from the conserved C‑terminal of FimA and Mfa1 subunits prevent the fimbrial assembly of P. gingivalis and 
interfere with biofilm formation. (d) Targeting IL‑1β as a potential therapy: It has been shown that the capsular polysaccharide upregulates the 
expression of IL 1‑β by activating the JNK pathway in macrophages. Increased IL 1‑ β levels lead to inflammation and bone resorption, indicating 
a possible therapeutic strategy to combat this periodontal pathogen. (e) Toxin inhibition by receptor‑based peptide: A. actinomycetemcomitans, 
associated with periodontal disease, produces leukotoxin (LtxA) during colonization in the host to escape the host immune response. LtxA is 
the critical virulence factor of A. actinomycetemcomitans, which kills leukocytes by recognizing cholesterol and the β2 strands of lymphocyte 
function‑associated antigen‑1 (LFA‑1) integrin. Molecular inhibitors mimic the target to compete for toxin binding, thus neutralizing toxin binding 
activity. Small synthetic receptor‑specific peptides can hinder LtxA‑mediated cytotoxicity by binding to the β domain of transmembrane protein 
LFA‑1. 2. Targeting quorum sensing signalling: QS is the most distributed and studied bacterial communication, which helps periodontal bacteria 
communicate with each other through signalling molecules and behaviour coordination. Various compounds can block quorum‑sensing signals 
produced by periodontal pathogens, thus inhibiting the disease progression pathway
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alpha-mangostin showed antimicrobial and anti-inflam-
matory activity against periodontal pathogens, especially 
on P. gingivalis [42]. Grape seed contains proanthocyani-
din, which helps to reduce the progression of periodon-
tal disease by inhibiting the extracellular collagenase 
[43]. α-tocopherol reduces inflammatory cytokines while 
increasing antimicrobial peptides and β-defensins, which 
can modulate the immune response and counter the det-
rimental effects of LPS [44] [45]. Tormentic acid can be 
a potential therapeutic agent against periodontal diseases 
since it inhibits the production of IL-6 and IL-8 in gingi-
val fibroblasts of humans [5, 46].

Fimbriae are proteinaceous appendages that protrude 
from the bacterial outer membrane that helps microbes 
attach to host cell surfaces and other microbial surfaces. 
P. gingivalis possess two antigenically distinct fimbriae 
subunits, FimA and Mfa1. FimA is found in short fim-
briae, and Mfa1 is found in long fimbriae [5]. Immu-
nization with a 43-kDa purified fimbrial protein offers 
protection against periodontal damage caused by P. gin-
givalis in a germ-free rat model [47]. In a recent study 
by Alaei et  al., peptides originating from the conserved 
C-terminal of FimA and Mfa1 subunits prevent the fim-
brial assembly of P. gingivalis and interfer with biofilm 
formation. The study also showed that treating these pep-
tides reduces P. gingivalis adhesion to Streptococcus gor-
donii in a dual-species model [48].

B. LtxA disruption
Toxins play an essential role in bacterial pathogenesis. 
The Gram-negative bacteria A. actinomycetemcomitans, 
associated with periodontal disease, produces leukotoxin 
(LtxA) during colonization in the host to escape the host 
immune response [49]. Another toxin these bacteria pro-
duce is a cytolethal distending toxin (CDT). Both toxins 
play a role in compromising the host immune system by 
targeting different cells [50]. LtxA is the critical virulence 
factor of A. actinomycetemcomitans, which kills leuko-
cytes by recognizing cholesterol and the β2 strands of 
lymphocyte function-associated antigen-1 (LFA-1) inte-
grin [51]. Mechanical removal of plaque and antibiotic 
treatment, preferably tetracycline, was used. Antibiotics 
may be considered to treat molar/incisor pattern perio-
dontitis, but only after scaling and root planing have been 
deemed ineffective. Increased resistance against antibi-
otics in A. actinomycetemcomitans calls for developing 
alternative treatment methods [52]. It has been reported 
that small synthetic receptor-specific peptides can hinder 
LtxA-mediated cytotoxicity by binding to the β domain 
of transmembrane protein LFA-1 [53]. Studies have 
found that targeting virulence factors like LtxA could 
effectively measure against periodontal diseases [54, 
55]. Catechins, one class of flavonoids, can inhibit LtxA 

activity in its soluble form and outer membrane vesicle 
(OMVs) bound form [56]. At the same time, Chang et al. 
showed that catechins restructure the soluble form of 
LtxA, which prevents its interaction with cholesterol on 
the host cell surface [49].

C. Enzymatic virulence factors and their antagonists
Proteases, including gingipains, aminopeptidase IV, and 
collagenases, play a role in bacterial adhesion, degrada-
tion of host proteins (i.e. immunoglobulins), modulat-
ing inflammatory responses, and damaging host tissues 
[57]. Thus, restricting the functionality of these crucial 
virulence factors will collectively inhibit the microbes’ 
pathogenicity.

Microbial proteases Microbial proteases play a crucial 
role in the progression of periodontal disease, directly 
damaging host tissues or indirectly activating a myriad of 
host proteases and inactivating protease inhibitors in the 
host [37]. Extracellular proteases can be divided into the 
following groups: aspartic proteases, cysteine proteases, 
serine proteases, and metalloproteases [37]. Microbial 
proteases can serve as important therapeutic targets for 
treating periodontal diseases. Inhibitors of microbial 
proteases may prevent infection. These inhibitors can be 
inorganic or synthetic agents or modified “host products” 
[37]. Salivary histatin is a peptide with anti-protease activ-
ity against many proteases involved in periodontal dis-
eases. Histatin has been delivered subgingivally to treat 
infections [58, 59]. Other inorganic or synthetic protease 
inhibitors, including chelators, such as EDTA that inhibit 
the metalloproteinases, and thiol-blocking agents that 
inhibit serine and cysteine proteases, are potential agents 
to inhibit the pathogenicity of periodontal pathogens [37].

P. gingivalis gingipains Members of cysteine proteinases 
in P. gingivalis are called “trypsin-like enzymes” as they 
cut after the arginine or lysine residue at the C-terminal 
of polypeptides [5]. These enzymes are collectively known 
as gingipains, which can be one of two types: 1. Arginine 
specific that includes RgpA, RgpB, and 2. Lysine specific 
is known as KgpA [37]. Gingipains hydrolyze a wide range 
of extracellular and cell-bound proteins encoded by P. gin-
givalis [60].

In a mouse model, treatment of P. gingivalis before 
infection by a Kgp-specific inhibitor (A71561) designed 
by Curtis et al. decreased the P. gingivalis virulence signif-
icantly. In contrast, the Rgp-specific inhibitor leupeptin 
did not influence the pathogenicity [61]. It is stated that 
leupeptin can attenuate the degradation of an antimi-
crobial peptide (LL-37), suppress platelets’ aggregation, 
and prevent the inhibition of chemoattractant proteins 
of monocyte caused by arginine-specific gingipains. The 
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compound further precludes the destruction of collagens 
and recovers the IL-2 levels [62].

It has been reported that a compound in rhubarb 
roots named rhein can cause the downregulation of both 
genes, rgpA and kgp, in P. gingivalis when combined with 
polyphenols synergistically [63]. Another dual protease 
inhibitor that is synthetic in nature, KYT-41, can inhibit 
both rgpA and kgp proteases and show anti-inflamma-
tory responses [64]. Recent studies have shown that 
synthetic molecule 2-deoxy-2,3-didehydro-N-acetylneu-
raminic acid, commonly known as DANA, helps inhibit 
the growth and biofilm of P. gingivalis by decreasing the 
activity of gingipains in vivo model [65].

The primary component of black tea, theaflavin, has 
dual effects on gene expression and the catalytic activity 
of these proteases. Theaflavin not only downregulates the 
expression of rgpA and kgp protease genes at sub-MICs 
but also inhibits the hydrolytic activity of gingipains in a 
dose-dependent manner [66, 67]. Fractions of cranberry 
polyphenols inhibited rgpA and kgp activities in P. gingi-
valis at a concentration of one µg/ml [68]. Macrocarpals 
found in the leaves of Eucalyptus globules inhibited both 
Arg- and Lys-specific gingipains in P. gingivalis in a dose-
dependent manner [69].

Inhibition of Biofilms
Dental biofilm formation in the supragingival and sub-
gingival areas is required to develop dental caries and 
periodontitis [70]. Bacteria in biofilms exhibit increased 
resistance to antimicrobial therapy compared to plank-
tonic microbes. Biofilms are hard to treat with the use of 
antibiotics for several reasons, including decreased pen-
etration of antibiotics to the microbes in the biofilms, 
increased expression of multiple efflux pumps, reduced 
growth as well as metabolism, induction of microbial 
stress response and changes in the expression of outer 
membrane proteins [70]. Recent randomized clinical 
trials showed that guided biofilm therapy, together with 
erythritol powder usage and ultrasonic piezo, is effective 
against biofilms in periodontal disease [71]. Besides that, 
several medicinal herbs and herbal compounds have been 
shown to inhibit biofilm formation and reduce inflamma-
tion; therefore, they have been explored as potential ther-
apeutics for oral diseases, including periodontitis [72].

Oxyresveratol or trans-2,4,3′,5′-tetrahydroxystilbene, 
the main bioactive element of tropical tree Artocarpus 
lakoocha, has been shown to have antioxidant properties 
[73]. This compound interferes with bacterial cell wall 
integrity and prevents the growth and biofilm of perio-
dontal pathogen A. actinomycetemcomitans [74].

Panduratin A, a natural compound found in Kaempfe-
ria pandurate, has antibiofilm and bactericidal activities 
[75]. Epigallocatechin gallate (EGCG), a polyphenol in 

green tea, has strong anti-oxidative and anti-inflamma-
tory characteristics [76]. This compound is a catechin 
derivative with a galloyl group attached which interrupts 
the adhesion of periodontal bacteria to the infection site 
[77]. Studies showed that epigallocatechin gallate could 
significantly inhibit the biofilm formation of a significant 
periodontal pathogen P. gingivalis [78].

Cranberry extract containing bioactive compounds 
such as Licocalchone A and Proanthocyanidins also 
shows promising benefits against gingivitis by reducing 
inflammation, biofilm formation and inhibiting proteo-
lytic activity of periodontal pathogens [79, 80]. Pome-
granate extract interferes with quorum sensing signalling, 
which leads to biofilm disruption and impairment of bac-
teria motility [81]. In addition, pomegranate extract rich 
in flavonoids reduces inflammation via reducing oxida-
tive stress and interference with NF-κB activity [82].

The effect of the bioactive compounds of plant origin 
on the growth and biofilm formation of periodontal path-
ogens and their potential mechanisms of action are sum-
marized in Table 3.

Quorum sensing and quorum quenching in periodontal 
pathogens
Bacterial communication plays a vital role in establish-
ing a host-infection process successfully [83]. Commu-
nication between oral biofilms has been demonstrated 
in numerous studies. Quorum sensing (QS) is the most 
distributed and studied bacterial communication, which 
helps periodontal bacteria communicate with each other 
through signalling molecules and behaviour coordination 
[84]. QS gene expression and signalling are mostly limited 
to periodontal pathogens, including  P. gingivalis  and  A. 
actinomycetemcomitans  isolated from patients with 
dental biofilm-associated diseases [85]. P. gingivalis uses 
signalling molecules for interspecies interaction to pro-
mote a microbial dysbiosis which leads to periodontal 
disease [86]. Thus, targeting those signalling pathways 
serves a new way for preventing periodontal diseases 
[86]. A study conducted by Azakami et al. reported that 
the homologous luxS gene (required for the synthesis of 
autoinducers-2), found in other periodontal pathogens, 
P. intermedia, and F. nucleatum, as well as in Eikenella 
corrodens, initiates the formation of biofilms in the oral 
cavity through LuxS-dependent pathway [87]. A. actino-
mycetemcomitans can also form mature biofilm through 
autoinducer-2 dependent quorum sensing manner [88]. 
AHL-mediated QS, like Aliivibrio fischeri, has not been 
reported in periodontal pathogens [85].

Developing a drug that could inhibit quorum sens-
ing has been gaining attention in recent years. Quorum 
quenching, commonly known as inhibiting the signalling 
pathway of quorum sensing, can be an attractive solution 
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for targeting periodontal bacteria by destroying bacte-
rial communication, a critical aspect of biofilm forma-
tion and virulence factor expression [89, 90]. Plancak 
et  al. have discovered naturally occurring inhibitory 
compounds and synthetic derivatives, which are classi-
fied based on their structural quorum sensing properties, 
[88]. Studies have shown that Delisea pulchra, a marine 
alga produces various components of vanilla extract, 
garlic, halogenated furanones and vanilla extract. These 
compounds have quorum quenching properties that 
help block the quorum sensing singling in periodon-
tal pathogens [91–94]. It has been reported that add-
ing ribose derivatives to the culture media was shown 
to negatively affect the formation of biofilms in  A. 
actinomycetemcomitans [95].

Similar functional properties are shared by ribose bind-
ing protein and autoinducer-2; ribose binding protein 
acts as an antagonist on the receptors of autoinducer-2 
[95]. Brominated furanones have a negative influence on 
biofilms of P. gingivalis, although they do not affect the 
growth  of P. gingivalis  [94]. Studies have shown that 
acylase, lactonase and oxyreductase are potential quorum 
quenching agents that inactivate the acyl-homoserine 
lactone, potentially affecting periodontal pathogens [96]. 
Thus, autoinducer-2 inhibition is an attractive therapeu-
tic intervention target for treating periodontal diseases.

Immune modulation as a therapeutic approach 
for periodontal disease
Recently, immunomodulatory therapy that regulates the 
immune response has received much attention. Immu-
nomodulatory therapy is a promising option for treating 
periodontal diseases [97]. Immunomodulators help to 
reduce bone loss by controlling the osteolytic and inflam-
matory process [98], preventing or intervening in the 
progression of periodontal disease.

The immune microenvironment of periodontitis-
related tissue is critically essential for periodontal dis-
ease. Increased infiltration of leukocytes and the release 
of inflammatory molecules can resolve inflammation 
effectively. However, excessive amounts of this inflamma-
tory response can cause serious harm to the periodontal 
tissues and the alveolar bone. Modulation of this micro-
environment can not only supplement traditional treat-
ments for periodontal disease but also may promote 
periodontal regeneration [97]. Different approaches have 
been taken to modulate leukocytes and the other inflam-
matory cytokines in the microenvironment, including 
immunomodulatory drug therapy, stem cell therapy, and 
gene therapy.

Among the leukocytes, macrophages play a significant 
role in various stages of periodontitis [99]. Neutrophils 

are key players in maintaining the homeostasis of peri-
odontal health and are considered the first line of defence 
against periodontitis [98, 100, 101]. Monocytes also con-
tribute to the defence system, and monocyte cells present 
in higher numbers in the intermediate stage of peri-
odontal disease [102]. At the same time, T lymphocytes 
can play a vital role in gingival health and alveolar bone 
resorption [103–105].

Drug therapy targeting immune response is promis-
ing for treating periodontal diseases. Resveratrol is a 
natural polyphenol and can inhibit NF-kB activation in 
macrophages, and it shows immunomodulatory effects 
on F. nucleatum by upregulation of the antioxidant path-
way [106, 107]. Metformin can inhibit the production of 
nitric oxide synthase in monocytes, affecting periodonti-
tis [108]. Metformin reduces inflammation by the regula-
tion of IL-1β [109]. Catechin is another polyphenol used 
as an immunomodulator. In the mice model, catechin is 
effective against gingivitis by reducing the lL-1β in the 
macrophage [110]. Gliclazide has antioxidant properties 
and can reduce the infiltration of neutrophils and mac-
rophages, as shown in the rat model with periodontal 
disease [111]. Moreover, it can reduce inflammation by 
decreasing the level of TNF-α [111].

Recent studies have shown that curcumin can release 
pro-inflammatory molecules, which is effective against 
periodontal pathogens [112]. CMC2.24 is a modified ver-
sion of curcumin that reduces phagocytic activity in mac-
rophages, and its anti-inflammatory properties have been 
shown against periodontal disease [113, 114].

Trans-cinnamic aldehyde is also used as a drug for 
treating A. actinomycetemcomitans, which involves the 
downregulation of TNF-α and IL-1β cytokines [115]. 
Kava-205Me lowers the level of IFN-γ and IL-12 and is 
effective against P. gingivalis. Other drug therapy includes 
carnosic acid, glyburide, and bismuth drugs, which show 
their immunomodulation by infiltrating inflammatory 
cells and reducing pro-inflammatory cytokines such as 
IL-6, IL-1β and TNF-α [116, 117].

Immuno-related gene therapy is another novel 
approach targeting host immunity. It has been shown 
that downregulation of T-cell immune response cDNA7 
(TIRC7) leads to a lower number of T-cells in gingival tis-
sue, which affects the periodontal disease [118]. Plasmid 
DNA encoding miR-200c injected into gingiva has been 
shown to prevent gingival inflammation [119]. Cathepsin 
K (Ctsk) can reduce inflammation and osteoclast activ-
ity by lowering the level of TNF-α, INF-γ, IL-1α, IL-1β, 
and IL-12, thus regulating periodontal health [120]. 
P2X7 receptor (P2X7R) can modify the local microen-
vironment of periodontitis and improve the bone tissue 
regeneration [121]. The mode of action of TNF receptor 
and immunoglobulin Fc (TNFR: Fc) involves infiltration 
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of leukocytes and reduction of cytokines, notably IL-1β, 
TNF-α, IL-6 and IL-10 [122].

Stem cell therapy has significant potential to impact 
periodontal health. Different mesenchymal stem cells 
can modulate the microenvironment coupled with the 
inflammatory response of leukocytes and cytokines 
associated with periodontal disease. These stem cells are 
being explored as a promising therapeutic intervention 
for periodontal disease. Periodontal ligament stem cells 
(PDLSCs) can interact with immune cells by modulat-
ing their activities and thus work as a potential thera-
peutic approach for treating periodontal diseases [123]. 
PDLSc can enhance tissue regeneration by converting 
macrophages to anti-inflammatory phenotypes and sup-
press the immune response by inactivating B-cells [124, 
125]. PDLSc can be drastically elevated with resveratrol 
treatment. In periodontal patients, resveratrol treat-
ment partially decreases bone loss and inhibits the infil-
tration of T-cells [126]. Gingiva-Derived Mesenchymal 
Stem cells (GMSCs) promote the polarization of M1 to 
M2 macrophages, lower the infiltration of neutrophils 
and decrease pro-inflammatory cytokines [127–129]. 
Mesenchymal stem cells derived from human exfoliated 
deciduous teeth showed reduced levels of TNF-α, IFN-γ 
and IL-2 and promoted anti-inflammatory response 
in macrophages [130, 131]. Dental Follicle Stem Cells 
(DFSCs) regulate peripheral blood mononuclear cells 
by enhancing the levels of IL-10 but lowering the levels 
of IFN-γ and IL-4 and can thus play an essential role as 
immunomodulators in the treatment of periodontal dis-
eases [132, 133]. Bone marrow mesenchymal stem cells 
and dental pulp stem cells (DPSCs) decrease the level of 
TNF-α, IFN-γ and IL-17 in periodontal pathogens [131, 
134, 135]. In addition, DPSCs can regenerate different tis-
sue, which includes bone, and those cells are easy to store 
[136]. Thus, these approaches are getting much attention 
for treating periodontal diseases.

Low dose antibiotics are another group of agents that 
can modulate host immune response, potentially con-
tributing to the periodontal disease progression or reso-
lution. Doxycycline at a low dose, i.e. at sub-inhibitory 
concentrations, inhibits matrix metalloproteinase‐8 
(MMP-8), which is present abundantly in periodontitis 
[137]. A pilot study by Ryan et al. investigated chemically 
modified tetracycline-3 in periodontal patients receiving 
scaling and root planing. Administration of this antimi-
crobial agent at a low dose (10 mg/d) reduced the levels 
of interleukin‐1-beta and matrix metalloproteinase‐8 in 
gingival crevicular fluid moderately [138]. Several other 
studies have shown reduce pocket depth (PD) and gain 
in clinical attachment level (CAL) in patients with peri-
odontal disease when sub-antimicrobial dose of doxycy-
cline was administrated [139, 140]. Also, studies reported 

significantly improved clinical parameters and reduced 
gingival inflammation in the host [139, 141, 142].

Table 4 lists the recent studies in the literature in which 
the immune microenvironment is targeted, together with 
the cytokines and leukocyte targets of these immune 
therapies.

Modification of periodontal microbiota by probiotic 
and microbiota replacement therapy
In contrast to the traditional view of individual patho-
gens being responsible for disease onset, the new per-
spective of periodontal disease deems that the transition 
from health to disease status is attributed to a shift in 
the global balance of the microbial flora (i.e. disruption 
of microbial homeostasis). Periodontal disease is con-
sidered a result of disrupted microbial homeostasis and 
microbe-mediated disruption of host homeostasis. Such 
a perspective has opened new paths for periodontal dis-
ease treatment, including restoring the homeostasis of 
the microbiota associated with periodontal health.

Recent studies have suggested probiotic therapy for 
treating periodontal diseases in the oral cavity [143, 144]. 
Probiotics help control diseases presumably through 
immune modulation and colonization resistance to path-
ogens. The selection of the microbial strain is crucial for 
the treatment outcome of the probiotic therapy. Most of 
the chosen probiotics originated from gut microbiota or 
fermented foods [145]. Recent clinical trials have shown 
that the administration of probiotics improves bacte-
rial dysbiosis in periodontal patients [146]. Beneficial 
bacteria create a substantial barrier against colonization 
of endogenous and exogenous pathogens [8]. Antago-
nistic bacteria of probiotics have the potential to fight 
against periodontal bacteria [37]. The study by Van et al. 
has shown that clinical isolates collected from healthy 
patients significantly inhibited the growth of  P. inter-
media  or  P. gingivalis,  which was high in the diseased 
patient sample [147]. These pathogen-inhibiting isolates 
include  Bifidobacterium, Streptococcus,  and  Actinomy-
ces. Commercially available dietary probiotics have been 
shown to have more substantial inhibitory properties 
against periodontal bacteria [8]. A successful periodontal 
therapeutic approach is characterized by the alleviation 
of periodontal inflammation, which relates to changes 
in microflora, and in that aspect, probiotic therapy may 
potentially plays a role [148].

A study comparing the prevalence of oral Lactoba-
cilli in healthy subjects and patients with periodonti-
tis (chronic) showed that Lactobacillus fermentum and 
Lactobacillus gasseri were the most common species in 
healthy subjects. In contrast, Lactobacillus plantarum 
was the most prevalent species in patients with peri-
odontitis [149]. In addition, four species of Lactobacilli 
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have shown to have the greatest antimicrobial proper-
ties, which is confirmed by international guidelines for 
probiotics evaluation. Those isolates include Lactobacil-
lus salivarius, Lactobacillus plantarum, Lactobacillus 
rhamnosus and Lactobacillus paracasei, which can be 
used as a probiotics for maintaining oral health [150]. A 
report showed that Lactobacillus reuteri could be as effi-
cacious as probiotics for reducing dental-biofilm induced 
by systemic or local risk factors [151]. Studies of fifty-
one patients showed yogurt supplemented with Bifido-
bacterium animalis significantly impacted inflammatory 
parameters of gingiva and bacterial plaque [152].

Microbiota replacement therapy is a new disease treat-
ment/prevention measure in which microbiota from 
healthy donors is transplanted to diseased patients. 
Replacement therapies have been successfully used to 
treat Clostridium difficile infections. Also, it has shown 
efficacy for treating one class of inflammatory bowel dis-
eases known as Crohn’s disease. [153, 154]. Microbiota 
replacement therapies are currently being explored as an 
alternative approach to treating periodontal disease [37]. 
Naturally occurring and laboratory-derived oral bacte-
ria can be used in replacement therapy of periodontal 
diseases. Protocols have been suggested for transferring 
microbiota from a healthy donor to a patient with peri-
odontal diseases [155, 156]. Recent study protocol has 
shown that oral microbiota transplant therapy could 
effectively treat periodontal disease by modulating the 
oral microbiota. For oral microbiota transplant therapy, 
details of the donor’s medical history and microbiota 
analysis are essential [157]. With the advancement of the 
human microbiome and a better understanding of the 
relationship between oral microbiota and oral diseases, it 
is expected that more practical and more effective micro-
biota replacement therapy approaches for periodontal 
diseases will be available in the future.

Conclusion
Although anti-virulence therapeutic strategies are relatively 
new in preventing and treating periodontal disease, novel 
drugs targeting the critical virulence factors of periodontal 
pathogens have already been identified, which serve as a 
promising alternative in the era of antibiotic resistance. A 
growing library of novel targets will open the door to rapidly 
identifying anti-virulence drugs.

Among the approaches that target specific virulence 
factors to treat periodontal diseases, protease inhibitors 
against gingipains have been tested in  vivo. Although 
receptor-based peptide inhibitors against LtxA activity 
and peptides interfering with fimbrial biogenesis show 
significant results, animal models’ potency must be 
tested to validate their effectiveness.

The formation of biofilm by oral pathogens makes these 
pathogens challenging to treat with antibiotics. Com-
pounds with bioactive in quorum quenching and down-
regulating adherence factors in microbes can be used to 
prevent or clear up microbial biofilms. Further studies 
are required to test the quorum quenching strategies to 
combat biofilm formation by periodontal pathogens.

Plant-derived natural bioactive compounds impart 
general inhibitory effects on many oral pathogens. 
The growing emergence and spread of antimicrobial 
resistance call for renewed interests in plant-based 
compounds such as polyphenols, which have few side 
effects to the host. Antimicrobial activity and anti-
inflammatory effects of these natural compounds 
make them an attractive remedy for periodontal dis-
eases. However, the effective doses of these natural 
antimicrobial compounds need to be determined and 
their antimicrobial mechanisms assessed before they 
can be used in conjunction with traditional treatment 
approaches.

Immunomodulatory therapy and microbiome-based 
therapies show exciting promises in treating periodontal 
diseases. Still, further research is needed to improve their 
efficacy and to understand their long-term effects.

In summary, significant progress has been made in 
our understanding of periodontal disease and its treat-
ment strategies in recent years. We can expect novel 
approaches will become available for periodontal disease 
prevention and treatment in the near future.
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