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Abstract 

Background:  2019 Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has already had a serious influence on human 
existence, causing a huge public health concern for countries all around the world. Because SARS-CoV-2 infection 
can be spread by contact with the oral cavity, the link between oral illness and COVID-19 is gaining traction. Through 
bioinformatics approaches, we explored the possible molecular mechanisms linking the COVID-19 and periodontitis 
to provide the basis and direction for future research.

Methods:  Transcriptomic data from blood samples of patients with COVID-19 and periodontitis was downloaded 
from the Gene Expression Omnibus database. The shared differentially expressed genes were identified. The analysis 
of Gene Ontology, Kyoto Encyclopedia of Genesand Genomes pathway, and protein–protein interaction network was 
conducted for the shared differentially expressed genes. Top 5 hub genes were selected through Maximal Clique Cen-
trality algorithm. Then mRNA-miRNA network of the hub genes was established based on miRDB database, miRTar-
base database and Targetscan database. The Least absolute shrinkage and selection operator regression analysis was 
used to discover possible biomarkers, which were then investigated in relation to immune-related genes.

Results:  Fifty-six shared genes were identified through differential expression analysis in COVID-19 and periodon-
titis. The function of these genes was enriched in regulation of hormone secretion, regulation of secretion by cell. 
Myozenin 2 was identified through Least absolute shrinkage and selection operator regression Analysis, which was 
down-regulated in both COVID-19 and periodontitis. There was a positive correlation between Myozenin 2 and the 
biomarker of activated B cell, memory B cell, effector memory CD4 T cell, Type 17 helper cell, T follicular helper cell 
and Type 2 helper cell.
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Background
2019 Coronavirus disease (COVID-19) is an infectious 
disease caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) also that World 
Health Organization proclaimed a worldwide pandemic 
on March 11, 2020 [1]. The COVID-19 pandemic has 
already had a significant impact on human existence, 
because to its rapid spread and significant public health 
threat to nations all over the world [2]. Direct contact, 
droplet inhalation, or contact with oral, nasal, or ocu-
lar mucosa are the main ways that SARS-CoV-2 infec-
tion spreads. Patients with COVID-19 frequently report 
experiencing fever, coughing, dyspnea, muscle pains, and 
sleepiness [3]. Aside from efforts to reduce its economic 
burden, manage virus spread, and develop efficient pre-
ventative and treatment measures, there is a need to 
comprehend the disease’s epidemiology and pathophysi-
ologic components, as well as the risk factors that could 
lead various populations to severe clinical manifestations 
and an increased probability of death. Diabetes, hyper-
tension, aging, immunodeficiency, and cardiovascular 
disease are among some of the risk factors for COVID-
19 disease [4]. Furthermore, poor oral health, tooth loss, 
and periodontitis are regarded as common risk factors 
for adverse COVID-19 outcomes [5]. Some researchers 
have also indicated that excellent dental hygiene could 
help reduce the incidence of viral acute respiratory illness 
[6, 7]. In COVID-19 patients, these researches suggested 
a possible connection between oral and systemic health. 
Individuals with COVID-19 frequently experience oral 
symptoms such altered taste and smell, mouth ulcers, 
gingival pain, and bleeding [8]. The angiotensin-convert-
ing enzyme 2 (ACE2) receptor, which is a target of SARS 
CoV-2, has already been proved to be expressed in gingi-
val epithelial cells, tongue taste cells, and salivary glands 
[9]. As a result, the oral cavity, sensitive to SARS-CoV-2, 
is regarded to be a possible area for human-to-human 
viral transmissions. A theoretical connection between 
poor dental status and COVID-19 severity and outcome 
was proposed in an observational analysis based on clini-
cal oral examination and X-ray examination. This was 
because patients with poor dental health, such as caries 
and alveolar bone loss, had a higher rate of hospitaliza-
tion [5].

"Bing cong kou ru," an ancient and well-known Chinese 
saying, was usually interpreted as "a closed mouth catches 

no flies." Several earlier investigations have discovered 
a link between periodontitis and many systemic disor-
ders such as hypertension, diabetes, and premature birth 
in neonates [10, 11]. Periodontitis was common in the 
United States, with around 50% of persons over 30 years 
old having periodontitis and 8% having severe periodon-
titis [12]. In China, the prevalence of periodontitis was 
significantly greater. More than 90% of persons over the 
age of 35 had periodontitis at different levels, accord-
ing to the Fourth National Oral Epidemiological Survey 
[13]. Periodontitis is a chronic inflammatory disease that 
results in the soft and hard tissues surrounding the teeth 
deteriorating, placing a significant load on global health, 
causing tooth displacement and even tooth loss [14]. 
Patients with periodontitis have gingival inflammation 
and bacteremia, which stimulate the host’s inflammatory 
response and result in the release of various pro-inflam-
matory cytokines into the bloodstream, affecting general 
health [15]. Microbial invasion and the human immune 
inflammatory response were significant elements in 
periodontitis development, and genetic and epigenetic 
variables may impact periodontitis and other systemic 
disorders by modifying the host immunological response 
generated by periodontal pathogens [16]. COVID-19 has 
been linked to severe periodontitis. Gupta et al.[17] dis-
covered that as the severity of periodontitis increased, so 
did hospital admissions, supplemental breathing require-
ments, and COVID-19 pneumonia in a cross-sectional 
research. Because SARS-CoV-2 infection can be spread 
by contact with the oral cavity, the link between oral ill-
ness and COVID-19 is gaining traction.

In recent years, bioinformatics and sequencing tech-
nology have advanced dramatically, and they are now 
commonly used to identify disease biomarkers [18]. Dif-
ferently expressed mRNA, miRNA, and lncRNA can be 
found using sequencing or microarray technologies in 
a variety of disease samples, and bioinformatics can be 
utilized to further explore the function of the differen-
tially expressed molecules in disease development. The 
Gene Expression Omnibus (GEO) database was used to 
download transcriptome information from blood sam-
ples of COVID-19 and periodontitis patients for the 
current investigation. Further through bioinformatics 
approaches, we explored the possible molecular mecha-
nisms linking the two diseases to provide the basis and 
direction for future research.

Conclusion:  By bioinformatics analysis, Myozenin 2 is predicted to correlate to the pathogenesis and immune infil-
trating of COVID-19 and periodontitis. However, more clinical and experimental researches are needed to validate the 
function of Myozenin 2.

Keywords:  2019 Coronavirus disease, Periodontitis, Gene expression omnibus, Bioinformatics
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Materials & methods
Data sources
The transcriptomes datasets of blood samples from 
patients with COVID-19 (GSE164805) and periodonti-
tis (GSE12484) were obtained from the GEO database in 
NCBI (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). GSE164805 
was mRNA expression profile in GPL26963 (Agi-
lent-085982 Arraystar human lncRNA V5 microarray), 
including 5 blood samples from healthy participants and 
10 blood samples from COVID-19 patients. The periph-
eral blood mononuclear cells separated from blood were 
used for microarray analysis in GSE164805. GSE12484 
was an expression profiling by array in GPL96 ([HG-
U133A] Affymetrix Human Genome U133A Array), 
including 2 blood samples from chronic periodonti-
tis patients and 2 blood samples from age/sex matched 
healthy controls. The peripheral blood neutrophils from 
blood were used for microarray analysis in GSE12484.

Differentially expressed genes analysis
To find differentially expressed genes (DEGs), GEO2R, 
the GEO Online Analysis Tool (http://​www.​ncbi.​nlm.​
nih.​gov/​geo/​geo2r/), was used to identify DEGs in 
GSE164805 and GSE12484 between the diseased groups 
and control groups. DEGs were defined by the evalua-
tion criteria of adjust P-value < 0.05 and |log2(FC)|> 2.0 
for GSE164805. The threshold of P-value < 0.05 and 
|log2(FC)|> 2 was set for GSE12484. Then venn diagram 
was established to identify the intersected parts of the 
DEGs. Heatmap was used to show the 20 genes with the 
highest up- or down-regulation of expression each in 
COVID-19 and periodontitis, separately. BioGPS data-
base (http://​biogps.​org/) was screened to find the tissue-
specific expression of the intersected DEGs.

Functional enrichment analysis of DEGs
To identify the biological function of intersected DEGs, 
Gene Ontology (GO) analysis and Kyoto Encyclopedia 
of Genesand Genomes (KEGG) pathways enrichment 
were conducted through Metascape database (https://​
metas​cape.​org/). [19] GO analysis shows a description 
of genes in different dimensions and at different levels, 
which generally contains cellular component, biological 
process and molecular function. KEGG pathways enrich-
ment systematically analyzes biological pathways that 
the genes participate in [20]. STRING database (https://​
string-​db.​org/) was applied to identify protein–protein 
interactions (PPI). Cytoscape was used to visualize the 
PPI. Furthermore, CytoHubba, a plug-in of Cytoscape, 
was applied to find the top 5 hub genes through Maximal 
Clique Centrality algorithm.

Interacted mRNA‑miRNA network
The miRDB database (https://​mirdb.​org/),  [21] miRTar-
base database (https://​mirta​rbase.​cuhk.​edu.​cn/) [22] and 
Targetscan database (https://​www.​targe​tscan.​org/) [23] 
were screened to identify the miRNAs interacted with 
the top 5 hub genes. The miRNA-mRNA network was 
built through the Cytoscape software.

Interacted genes identified by LASSO regression analysis
To further identify the most valuable genes, the expres-
sion values of intersected DEGs in COVID-19 and peri-
odontitis were used as characteristic values, which was 
used to conduct the “glmnet” package of R project (ver-
sion 4.1.3). (Additional file: 1) Least absolute shrinkage 
and selection operator (LASSO) Regression Analysis 
were applied, and then the DEGs identified by calculation 
were the potential biomarkers. After that, the expression 
values of the potential biomarkers in all COVID-19 and 
periodontitis samples were used for the Wilcoxon test to 
show the expression level between disease samples and 
control samples.

The correlation between the identified potential 
biomarkers and immune cells
The immune related genes of different immune cells 
were obtained from the previously published literature 
[24]. The 782 immune-related genes that belonged to 
biomarkers of adaptive and innate immune cells were 
downloaded. (Additional file: 2) The expression value of 
the 782 immune related genes in COVID-19 and perio-
dontitis were extracted. The Pearson correlation test was 
used to determine the expression association between 
the putative biomarkers discovered by LASSO regression 
and the 782 immune relevant genes.

Results
DEGs in COVID‑19 and periodontitis
The flowchart of this research is shown in Fig.  1. In 
GSE12484, the 819 differentially expressed genes (730 
up-regulated genes and 89 down-regulated genes) were 
obtained, and the 1526 differentially expressed genes 
(855 up-regulated genes and 671 down-regulated genes) 
are acquired in GSE164805. The expression profiles of 
all genes of GSE12484 and GSE164805 are displayed in 
Fig.  2A, 2B. The expression level of 40 genes with the 
highest |log2(FC)|-values in GSE12484 and GSE164805 
are displayed in Fig. 2C, 2D. The 56 genes are found dif-
ferentially expressed in both COVID-19 and periodonti-
tis. (Fig.  2E) Tissues with the highest intersected DEGs 
expression are shown in Fig. 2F.

https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://biogps.org/
https://metascape.org/).
https://metascape.org/).
https://string-db.org/
https://string-db.org/
https://mirdb.org/)
https://mirtarbase.cuhk.edu.cn/)
https://www.targetscan.org/)
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Functional enrichment analysis
The function of intersected DEGs is enriched in regu-
lation of actin filament bundle assembly, regulation of 

hormone secretion, regulation of secretion by cell, pro-
tein phosphorylation, cell chemotaxis. (Fig. 3A) Through 
KEGG analysis, the intersected DEGs are found to be 
involved in Gap junction, Phospholipase D signaling 
pathway, Rap1 signaling pathway, Rheumatoid arthritis. 
(Fig. 3B).

Construction of PPI network and miRNA network 
of intersected DEGs
The PPI network of the intersected DEGs is shown in 
Fig. 4A. The intersected DEGs with no interactions to 
other proteins were not displayed. The top 5 hub genes 
are DEAD-Box Helicase 56 (DDX56), GNAS Com-
plex Locus (GNAS), Glutamate activates metabotropic 
receptor 5 (GRM5), C–C Motif Chemokine Ligand 5 
(CCL5) and Carbonic Anhydrase 10 (CA10). GRM5 
interacts with GNAS and CA10. The miRNAs, that 
are predicted to interact with each hub gene in the 
miRDB database, miRTarbase database and Targetscan 

Healthy
Blood samples

Periodontitis
Blood samples

GSE12484
DEmRNAs

GSE164805
DEmRNAs

Intersected
DEGs

Tissue-specific 
expression GO/KEGG PPI

miRDB/Targetscan/
miRtarbase

Predicted 
miRNA

LASSO 
regression 

Healthy
Blood samples

COVID-19
Blood samples

Potential
biomarker

Immune 
cells relation

Top 5 hub genes

Fig. 1  Research flow. The process of the present study

Fig. 2  DEGs analysis in COVID-19 and periodontitis. A Volcano plot of mRNAs expression level in GSE12484. Threshold of P-value < 0.05 and 
|log2(FC)|> 2 was set. The red dots represented significantly highly expressed genes, and the blue dots represented significantly lowly expressed 
genes; B Volcano plot of mRNAs expression level in GSE164805. The evaluation criteria included adjust P-value < 0.05 and |log2(FC)|> 2.0. The 
red dots represented significantly highly expressed genes, and the blue dots represented significantly lowly expressed genes; C The heatmap 
showed the expression of top 20 up-regulated mRNAs and down-regulated mRNAs in GSE12484; D The heatmap showed the expression of top 20 
up-regulated mRNAs and down-regulated mRNAs in GSE164805; E Then venn diagram showed the overlapping parts of GSE164805 and GSE12484: 
F The tissue-specific expression of the intersected DEGs
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database, are taken the intersection. (Fig. 4B–F) After 
that, 0 miRNA interacted with DDX56 is left. The 18 
miRNAs are finally identified for GNAS. The number 
of miRNA interacted with GRM5, CCL5 and CA10 are 
31, 6 and 5, separately. Then, the miRNA network of 

intersected DEGs is constructed. (Fig.  4G) The hsa-
miR-4645-3p is found to interact with GRM5 and 
CA10.

Fig. 3  GO/KEGG analysis of the intersected DEGs between COVID-19 and periodontitis. A The top 10 terms of GO analysis of intersected DEGs; B 
The KEGG pathway analysis of intersected DEGs

Fig. 4  PPI network and mRNA-miRNA network of the intersected DEGs between COVID-19 and periodontitis. A PPI network of intersected DEGs, 
with DDX56, GNAS, GRM5, CCL5 and CA10 as the top 5 hub genes; (B–F) The venn diagram showed the overlapping parts of miRNA interacting 
with DDX56, GNAS, GRM5, CCL5 and CA10 from miRDB database, miRTarbase database and Targetscan database; G The mRNA-miRNA network of 
GNAS, GRM5, CCL5 and CA10. There was no intersected miRNA interacting with DDX56 from miRDB database, miRTarbase database and Targetscan 
database. DDX56 was not included in the mRNA-miRNA network
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LASSO regression analysis of the intersected DEGs
There are 56 intersected DEGs, and LASSO regression 
analysis is applied to further explore the potential bio-
markers of both COVID-19 and periodontitis. (Fig. 5A–
D) Through screening, 11 intersected DEGs are identified 
in COVID-19, and 3 intersected DEGs are identified in 
periodontitis. They share Myozenin 2 (MYOZ2) (Fig. 5E). 
The expression values of MYOZ2 in COVID-19 and peri-
odontitis are shown in scatter plot, and the expression of 
MYOZ2 in COVID-19 and periodontitis is lower than 
that in the normal samples. (Fig. 5F, G).

Correlation between MYOZ2 and immune cells
In the gene profiles of COVID-19, MYOZ2 is signifi-
cantly positively correlated to ADAM Metallopeptidase 
Domain 28 (ADAM28), the biomarker of Activated B cell, 
C–C Motif Chemokine Ligand 4 (CCL4), the biomarker 
of Activated CD4 T cell, C1GALT1 Specific Chaperone 
1 (C1GALT1C1), the biomarker of Activated CD8 T cell, 

and many other biomarkers of adaptive immune cells 
and innate immune cells. (Fig.  6, Additional file: 3) In 
the gene profiles of periodontitis, MYOZ2 is significantly 
positively correlated to ATP Binding Cassette Subfamily 
B Member 1 (ABCB1), the biomarker of Type 17 T help 
cells, Caspase 3 (CASP3), the biomarker of effector mem-
ory CD4 T cell, CD36 Molecule (CD36), the biomarker of 
Gamma delta T cell, and many other biomarkers of adap-
tive immune cells and innate immune cells. (Fig. 7, Addi-
tional file: 4) In addition, bioinformatic procedure of this 
study was listed step-by-step in Additional file: 5

Discussion
By boosting the release of pro-inflammatory cytokines 
and encouraging neutrophils to enter the periodon-
tal lesion, microbial imbalance in periodontitis triggers 
the host immune response against pathogenic bacte-
ria [25]. Periodontal pathogenic bacteria may enter the 
lungs via the oral-pulmonary respiratory axis or salivary 

Fig. 5  LASSO regression analysis of the intersected DEGs. A, B Change curves of characteristic gene for COVID-19 and periodontitis. Logarithm 
of the lambdas and variable coefficient were the horizontal and vertical coordinates, separately. The values on the top of the coordinate axis 
represented the number of variable genes with variable coefficient was not 0 under the log value of the current lambda, which might be more 
valuable in the gene dataset. C, D The outcomes of cross-referencing the lambda result. In the illustration, there are two dashed lines: lambda.
min with the smallest mean square error and lambda. 1se with the standard deviation from the mean square error; E The venn diagram showed 
the overlapping parts of the results of LASSO analysis of COVID-19 and periodontitis; F, G The expression of MYOZ3 in COVID-19 and periodontitis 
samples were tested by the Wilcoxon test
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transmission, and they exacerbate the severe pulmonary 
infection induced by SARS-CoV-2 by stimulating the 
release of inflammatory cytokines [26]. Additionally, per-
iodontal inflammation promotes the inflammatory and 
innate immune responses by facilitating the production 
of reactive oxygen species, which damages DNA in cells 
[27]. Moreover, induced DNA damage can cause lung 
epithelial cell malfunction, which favors SARS-CoV-2 
invasion [28]. Even though several pertinent studies on 
the connection between COVID-19 and periodontitis 
have been done, more research are needed to be done on 
the probable mechanisms and biomarkers that connect 
the two diseases.

The present study find that 56 genes are significantly 
co-expressed in COVID-19 and periodontitis. The func-
tion of these genes is enriched in regulation of hormone 
secretion, regulation of secretion by cell, protein phos-
phorylation, cell chemotaxis. GO analysis shows that cel-
lular ion homeostasis is mediated by Lysophosphatidic 
acid receptor 1 (LPAR1), Endothelin 3 (EDN3), GRM5, 
CCL5, and Ubiquitin Protein Ligase E3A (UBE3A). 
Serum levels of hepcidin, a systemic iron-regulatory 
hormone, were greater in severe COVID-19 cases [29]. 
Hepcidin is upregulated by IL-6 and may have a role in 

systemic inflammation caused by periodontitis [30]. 
KEGG analysis indicates that DEGs are found to be 
enriched in Gap junction. Infection with SARS-CoV-2 
increases soluble E-cad protein and causes dysregula-
tion of other cell adhesion proteins, affecting tight-, 
adherens-, and gap-junctions in pulmonary tissue [31]. 
A junctional epithelium connects the teeth and gingiva. 
In periodontitis, microbial stimulation affects the usual 
defensive mechanisms in periodontal tissue, causing dis-
ruption of the junctional epithelium and promoting the 
entry of periodontal pathogens and their metabolites into 
the periodontal tissue [32].

The top 5 hub genes are identified through Maximal 
Clique Centrality algorithm, including DDX56, GNAS, 
GRM5, CCL5 and CA10. DDX56 was involved in a 
variety of cellular activities involving RNA secondary 
structure modification, including translation initiation, 
nuclear splicing, and ribosome and spliceosome assem-
bly [33]. GNAS may suppress the adenylyl cyclase-stim-
ulating activity of G(s) subunit alpha, which is generated 
from the same locus but in a different open reading frame 
[34]. An epigenome-wide DNA methylation analysis by 
Zhou et  al. revealed that GNAS may play an important 
role in the course of COVID-19 [35]. GRM5 causes a 

Fig. 6  The correlation between MYOZ3 and immune related genes in COVID-19. (A–O) the correlation of gene expression between MYOZ3 and 
the biomarker of activated B cell, central memory CD4 T cell, activated CD4 T cell, gamma delta T cell, activated CD8 T cell, immature B cell, effector 
memory CD4 T cell, regulatory T cell, Type 1 T helper cell, central memory CD8 T cell, effector memory CD8 T cell, Type 17 T helper cell, T follicular 
helper cell, Type 2 T helper cell, memory B cell
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conformational shift that initiates signaling via guanine 
nucleotide-binding proteins (G proteins) and affects the 
activity of downstream effectors [36]. One of the key 
HIV-suppressive factors produced by CD8 + T-cells, 
CCL5 is engaged in immunoregulatory and inflamma-
tory processes [37]. Lipopolysaccharide induced the 
expression of CCL5 in CD14 + sorted cells from gingi-
val crevicular fluid of periodontitis patients [38]. SARS-
CoV-2 infection induced CCL2, CCL5 and IL-6 release 
from placental cells, which might promote the cytokine 
storm in pregnant women with COVID-19 [39]. CA10 is 
regarded as a functional gene in the central nervous sys-
tem, and Chondroblastoma and Non-Suppurative Otitis 
Media are two diseases linked to CA10 [40].

Myozenin 2 (MYOZ2) is identified by LASSO regres-
sion analysis. MYOZ2 may function as intracellular 
binding proteins that connect Z line proteins, and be 
essential for the control of calcineurin signaling [41]. It 
is found in our study that MYOZ2 is down-regulated in 
both periodontitis and COVID-19. Further we explore 
the correlation between MYOZ2 and immune-related 
genes. The results shows that there is a positive correla-
tion between MYOZ2 and the biomarker of activated B 
cell, memory B cell, effector memory CD4 T cell, Type 
17 helper cell (Th17), T follicular helper cell and Type 

2 helper cell (Th2). The down-regulation of MYOZ2 
might lead to the less infiltration of the mentioned 
immune cells in periodontitis and COVID-19 to fur-
ther affect the immune response during the pathogen-
esis of the two diseases. B cells’ primary job is to create 
antibodies that mediate humoral immune responses, 
and activated B cells can deliver soluble antigens [42]. 
Antibodies produced by B cells inhibit pathogens from 
attaching to target cells, stopping further infection. 
Moreover, after the antibody binds to the pathogen’s 
surface, the complement is activated, and an antigen–
antibody-complement complex is formed, bringing 
the pathogen to the phagocyte and making it easier to 
devour [43]. Various immune cell infiltrations were pre-
sent in the periodontitis lesions, with B cells account-
ing for approximately 18% of all infiltrating leukocytes 
[16]. B cell insufficiency causes more severe alveolar 
bone deterioration in mice with experimental peri-
odontitis, which is related with increased osteoclast 
activity [44]. Using single-cell sequencing methods, 
Zhang et al.[45] discovered that the fraction of memory 
B cell subsets in COVID-19 patients was significantly 
lower than in healthy people. Furthermore, a single B 
cell cloning technique can be used to select monoclonal 
antibodies against SARS-CoV-2, which has implications 

Fig. 7  The correlation between MYOZ3 and immune related genes in periodontitis. (A–O) the correlation of gene expression between MYOZ3 and 
the biomarker of Type 17 T helper cell, central memory CD4 T cell, effector memory CD4 T cell, gamma delta T cell, immature B cell, effector memory 
CD8 T cell, activated CD8 T cell, Type 2 T helper cell, activated CD4 T cell, regulatory T cell, T follicular helper cell, activated B cell, memory B cell, 
central memory CD8 T cell, Type 1 T helper cell
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for the diagnosis and treatment of COVID-19 disease. 
[43] T cells are important in the immune response to 
periodontitis and COVID-19. In response to the acti-
vation of a periodontal pathogen, periodontal tissue 
expresses chemokines, and chemotactic polymorpho-
nuclear granulocytes and monocytes migrate to the 
site of inflammation [46]. When inflammation persists, 
bacterial products stimulate antigen-presenting cells 
(APCs) to contact undifferentiated T cells, activate 
T cells, and promote the differentiation of various T 
cell subsets [47]. Activation of Th2 can lead to activa-
tion of B cells, further increasing antibody production, 
and activation of Th17 [47]. Dendritic cells (DCs) and 
macrophages can engulf virus-infected cells during the 
early stages of SARS-CoV-2 infection, triggering T-cell 
responses through antigen presentation. CD4 + T cells 
then drive B cells to make virus-specific antibodies, 
while cytotoxic CD8 + T cells attack virus-infected cells 
[48]. In addition, it was reported that more than 70% 
of COVID-19 convalescent patients had SARS-CoV-
2-specific T cells [49].

However, there are no research about the function of 
MYOZ2 in periodontitis and COVID-19. Our present 
study provides a new perspective for the potential links 
between periodontitis and COVID-19. More relevant 
studies are needed.

Conclusion
By bioinformatics analysis, MYOZ2 is predicted to cor-
relate to the pathogenesis and immune infiltrating of 
COVID-19 and periodontitis. However, more clinical and 
experimental researches are needed to validate the func-
tion of MYOZ2.
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sette subfamily B member 1; CASP3: Caspase 3; CD36: CD36 molecule.
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