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Abstract 

Background:  The inferior alveolar nerve (IAN) innervates and regulates the sensation of the mandibular teeth and 
lower lip. The position of the IAN should be monitored prior to surgery. Therefore, a study using artificial intelligence 
(AI) was planned to image and track the position of the IAN automatically for a quicker and safer surgery.

Methods:  A total of 138 cone-beam computed tomography datasets (Internal: 98, External: 40) collected from mul‑
tiple centers (three hospitals) were used in the study. A customized 3D nnU-Net was used for image segmentation. 
Active learning, which consists of three steps, was carried out in iterations for 83 datasets with cumulative additions 
after each step. Subsequently, the accuracy of the model for IAN segmentation was evaluated using the 50 datasets. 
The accuracy by deriving the dice similarity coefficient (DSC) value and the segmentation time for each learning step 
were compared. In addition, visual scoring was considered to comparatively evaluate the manual and automatic 
segmentation.

Results:  After learning, the DSC gradually increased to 0.48 ± 0.11 to 0.50 ± 0.11, and 0.58 ± 0.08. The DSC for the 
external dataset was 0.49 ± 0.12. The times required for segmentation were 124.8, 143.4, and 86.4 s, showing a large 
decrease at the final stage. In visual scoring, the accuracy of manual segmentation was found to be higher than that 
of automatic segmentation.

Conclusions:  The deep active learning framework can serve as a fast, accurate, and robust clinical tool for demarcat‑
ing IAN location.
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Background
The inferior alveolar nerve (IAN) is a branch of the 
mandibular division of the trigeminal nerve, and it is 
an important anatomical structure in dentistry since it 
transmits the sensation in mandibular teeth and lower 

lip [1]. The location of the IAN influences the progno-
sis of an orthognathic surgery, pathological treatment of 
benign, or malignant, and outpatient procedures, such as 
dental implants and extraction [1–3]. Compared to plain 
radiography, cone-beam computed tomography (CBCT) 
can easily determine the position of the IAN. However, it 
is still difficult to intuitively judge the three-dimensional 
(3D) position, and an operator is required to determine 
the location. Additionally, even if the location is judged, 
under static IAN tracking, the possibility of nerve dam-
age still exists [4].
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Since artificial intelligence (AI) was first introduced, the 
deep learning technology has been advanced consistently 
[5, 6]. Deep learning technology using a convolutional 
neural network (CNN) exhibits excellent performance 
in image analysis. This involves object detection, which 
refers to finding a specific object in an image; object clas-
sification, which refers to classifying the corresponding 
object; and object segmentation, which refers to finding 
and separating the area of a specific object [7]. Presently, 
AI can analyze and evaluate images, which can contrib-
ute significantly in medical diagnosis [8, 9].

Therefore, the segmentation technique has been stud-
ied to determine the precise position of the IAN using 
deep learning technology and 3D CBCT data. If the posi-
tion of the IAN is automatically detected on a CBCT 
image, the IAN can be dynamically tracked during the 
surgery, which reduces the burden on the surgeon and 
improves the accuracy of the procedure while making it 
quicker and safer.

Earlier, the statistical shape model (SSM) described 
by Abdolali et  al. was used for automatic segmentation 
of the IAN [10]. However, the SSM approach requires 
annotations for the segmented mandible during training. 
Thus, additional manual annotation or algorithm devel-
opment is required. In another method described by 
Moris et al., segmentation was performed by selecting a 
predefined threshold for the grayscale value of the image 
that best separates the IAN from other tissues [11]. How-
ever, since the Hounsfield unit (HU) scale is not accurate 
in CBCT scans and the results depend on the quality of 
the imaging device, methodological limitations exist [12].

In the present study, a stepped 3D nnU-Net method 
that enables active learning was utilized to increase 
training efficiency with limited data and reduce labeling 
efforts by including AI [13]. Here, a person evaluates 

and corrects the result obtained from an AI, and the AI 
learns iteratively for organic and dynamic performance 
improvement. In order to explore the possibility of 
dynamic tracking of IAN, our study aimed at determin-
ing the precise position of the IAN using AI and evalu-
ated its accuracy by comparing the predicted position of 
the nerve to the position manually designated by multiple 
specialists. In addition, it was verified that the segmenta-
tion accuracy and annotation efficiency can be improved 
with active learning.

Material and methods
Dataset collection
A study using dataset of multi-center was conceived and 
conducted for the study. Data pertaining to 138 patients 
who visited Korea University Anam Hospital (A), Korea 
University Ansan Hospital (B), and Korea University 
Guro Hospital (C) between January 2018 and May 2020 
were utilized in this study [Internal: 98 patients (A), 
External: 40 patients (20 each from B and C)]. Only 
CBCT data of adults whose mandible and inferior alve-
olar nerves have matured were extracted. In order to 
avoid the effects of marrow dystrophy, data of those aged 
60 years or older were not collected. The equipment used 
were KAVO 3D Exam 17–19 (Imaging Sciences Inter-
national, Hatfield, PA, USA) at A, CS 9300 (Carestream 
Dental, GA, USA) at B, and Vatech Pax-Reve3D (Vatech, 
Seong-Nam, Gyeonggi-do, Korea) at C (Table  1). This 
study was conducted in accordance with the Declaration 
of Helsinki under the approval of the institutional eth-
ics committee of each hospital [approved by the Insti-
tutional Review Board of A (2020AN0410, 11/01/2021), 
B (2021AS0041, 09/02/2021), and C (2021GR0148, 
07/04/2021)].

Table 1  Characteristics and data collection parameters for the study population

Internal dataset: Korea University Anam Hospital (A); External dataset: Korea University Ansan Hospital (B) and Korea University Guro Hospital (C)

FOV, field-of-view

Characteristic Training and tuning
(A)
(N = 83)

Internal validation
(A)
(N = 15)

External validation
(B)
(N = 20)

External validation
(C)
(N = 20)

Age (in years) 59.9 ± 17.2 63.1 ± 16.9 40.0 ± 19.7 43 ± 18.6

Male 44 8 10 10

Female 39 7 10 10

Tube voltage (kV) 120 120 90 90

Tube current (mA) 5 5 4 4

Scan time (s) 16.8 16.8 14.3 15

Voxel size (mm) 0.3 0.3 0.3 0.08 ~ 0.25

FOV (mm2) 230 × 170 230 × 170 170 × 135 150 × 150

Focal spot (mm) 0.58 0.58 0.70 0.50
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Training architecture
The overall design of the study was similar to a previous 
one where lesion and air of the maxillary sinus were seg-
mented [14]. In the present study, a customized nnU-Net 
was used for image segmentation [13] (Fig. 1). The nnU-
Net structure consists of an encoder that uses a convo-
lutional filter and max pooling, as well as a decoder that 
decodes the signal back to the original dimension. The 
first layer of the encoder consists of 30 convolutional 
filters, wherein the spatial information is compressed 
and reduced. Further, the spatial information is restored 
using deconvolution by the decoder, and the information 
on the boundary is reinforced.

Active learning
The active learning process comprised three steps. Here, 
a new dataset was added at each step while using the 
model learned in the previous step. This improved the 
model’s performance as much as possible with a limited 
training dataset.

The internal dataset of 98 patients was randomly 
divided into training, tuning, and testing sets at a 
ratio of 7:1:2 (68 patients: 15 patients: 15 patients). 

Two-dimensional (2D) segmentation maps along the 
vertical axis of the CBCT images were constructed. The 
ground truth of the IAN was provided by three special-
ists. The overall segmentation was performed using 
AVIEW Modeler software (version 1.0.3, Coreline Soft-
ware, Seoul, Korea). All input volumes were resized to 
320 × 320 pixels, and the intensity was normalized. Data 
augmentation was performed using gamma adjustment, 
random scaling, random rotation, mirroring, and ran-
dom elastic deformations. The dilation limit of the IAN 
thickness was set to 3 mm.

In the first stage, the ground truth was established 
by three specialists for 19 CBCT datasets from A. The 
AVIEW Modeler software was contained with the func-
tion of labeling the IAN in 3D view. First, the IAN was 
segmented automatically in the program, and then the 
IAN position was corrected manually on the sagittal, 
coronal, and axial cross-sectional images. After the labe-
ling process, training was conducted to segment the IAN 
using the labeled dataset. After the first step, a new train-
ing process was conducted with 49 datasets that added 
30 new unlabeled datasets. Using the model learned in 
the process, segmentation was first performed, and then 

Fig. 1  Deep learning architecture of the customized 3D U-Net adapted from nnU-Net
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three specialists adjusted it to determine the ground 
truth. In the third step, 34 new unlabeled datasets were 
added again, and additional training was performed 
using a total of 83 datasets. This process was repeated to 
train the model and improve its performance. Moreover, 
the model was tested using the remaining dataset. The 
accuracy of each model in IAN segmentation considering 
a total of 55 datasets, including the remaining 15 internal 
scans (A) and 40 external scans (20 each from B and C) 
were evaluated (Fig. 2).

Training setup
The random rectified linear unit (ReLU) function as the 
activation function was used. The cross-entropy, dice 
coefficient, and boundary loss functions were used for 
training. For IAN segmentation learning, adaptive layer-
instance normalization (AdaLin) and Adam optimizer were 
used along with an initial learning rate of 3 × 10–4, and a 
l2-weight decay value of 3 × 10–5. The change in the learn-
ing rate was reduced by a factor of 0.2 if the loss value did 
not improve during 30 epochs. Learning was terminated 
after 1000 epochs or when the learning rate was below 

10–6. For optimal model selection, tuning was performed 
throughout the training process per an epoch using the 
tuning set among training set in Table 1. The deep learning 
model was constructed using the TensorFlow framework 
(1.15.0). Learning was performed using an NVIDIA Titan 
RTX graphics card of 24 GB. The batch size was set to six, 
and the learning procedure was completed in approxi-
mately 100 epochs.

Evaluation
Segmentation was evaluated using dice similarity coef-
ficient (DSC) values. DSC comparatively analyzed the 
ground truth and the predicted values. It was obtained by 
determining the ratio of the overlapped area between the 
predicted value and the ground truth with the sum of the 
predicted value and the ground truth. A value closer to 1 
indicated the accuracy of the method. DSC was calculated 
as follows:

DSC(Vseg ,Vgs) =
2
∣

∣Vseg ∩ Vgs

∣

∣

∣

∣Vseg

∣

∣+
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∣Vgs

∣
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,

Fig. 2  Overall active learning process for inferior alveolar nerve segmentation on cone beam computed tomography images
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where Vgs was the volume for the ground truth, and Vseg 
was the segmented volume.

In addition, the time required for segmentation of each 
dataset was measured at each training step. The time 
required for the training step was automatically meas-
ured and recorded on AVIEW Modeler software (version 
1.0.3, Coreline Software, Seoul, Korea). Furthermore, 
a comparative evaluation of the accuracy between the 
manual and active learning segmentation obtained for 
the internal and external data was performed. For visual 
scoring, because intuitive scoring of IAN is difficult with 
2D images, 3D scoring was performed using the AVIEW 
modeler software. The visual scoring evaluation was per-
formed considering a grading scale, where four points 
were assigned for very accurate cases and one point for 
inaccurate cases. For visual scoring, three dentists con-
ducted grade examination (manual ground truth vs. deep 
learning). The mean grade was calculated by the three 
dentists as follows. Grade 4 (Very accurate): when the 
labelled IAN completely matches the original IAN (over 
95%); Grade 3 (Accurate): when the labelled IAN almost 
completely matches the original IAN (85%–9585–95%); 
Grade 2 (Mostly accurate): when the labelled IAN depicts 
the site of the original IAN (over 50%); Grade 1 (Inaccu-
rate): when the labelled IAN depicts outside of the IAN 
or only matches a small area of the original IAN (under 
50%).

Results
In this study, we validated the effect of active learning 
using a customized nnU-Net. The segmentation results 
improved as the steps progressed. The average DSC value 
for the IAN segmentation gradually increased after each 
learning step, with values of 0.48 ± 0.11, 0.50 ± 0.11, and 
0.58 ± 0.08 (Mean ± SD), respectively, and showed the 
best results in the last step (Table 2). When accuracy was 
evaluated using an external dataset after learning, the 
DSC value for data obtained from B was 0.55 ± 0.11, and 
that for the data from C was 0.43 ± 0.13 (Table  3). The 
low-performing and high-performing IAN segmentation 
results for data obtained from A, B, and C were depicted 
(Fig. 3).

The average time required for segmentation of each 
dataset was 124.8  s for manual partitioning in the first 

step and 143.4 s for manual correction after CNN-assis-
tance in the second step. In the last step, after CNN-
assistance, the time required for segmentation improved 
to 86.4  s after manual modification (Table  4). Further, 
in comparison to the first manual segment and the sec-
ond stage, the time required decreased by approximately 
38.4 s and 57.0 s, respectively.

The visual scoring results were presented in Table 5. It 
was observed that the accuracy of manual segmentation 
was higher than that of automatic segmentation.

Discussion
Determining the exact location of the IAN is an impor-
tant step in planning and realizing the treatment of the 
oral and maxillofacial areas using tools such as extrac-
tion, dental implants, and orthognathic surgery [1]. In 
general, the position of the IAN is designated and labeled 
manually in each section of the CBCT image. However, 
there are some limitations in manual IAN labeling using 
CBCT. First, it is difficult to accurately measure density 
and because of noise in the images [15]. Second, since 
the IAN travels in various directions in 3D, it is difficult 
to intuitively determine the exact shape [16]. Thirdly, it 
is difficult to determine whether the shape or position 
of the nerve has been deformed due to adjacent teeth or 
lesions [17]. Finally, if the cortical layer of the mandibu-
lar canal surrounding the IAN is unclear from the image, 
it is difficult to determine the exact location [18]. Due to 
these limitations, manually labelling an image slice can be 
time-consuming.

Therefore, in this study, a step-wise customized nnU-
Net method that enabled active learning with limited 
data was implemented. AI-based convenient labeling 
of IANs increases training efficiency. In fact, the over-
all improvement in the performance was observed after 
gradual refinements of AI with deep learning. As each 
step was completed, the DSC increased, and the seg-
mentation time gradually decreased; approximately 
two-thirds of segmentation time were accomplished 
comparable to the manual segmentation.

In addition, in comparison to other studies, a multi-
center dataset was used. The fact that using datasets 
from various institutions was a unique feature of this 

Table 2  Dice similarity coefficients after automatic 
segmentation of inferior alveolar nerve at the first, second, and 
last steps for the internal dataset (83 cases)

DSC, dice similarity coefficient; SD, standard deviation

Mean ± SD (range) First step Second step Last step

DSC 0.48 ± 0.11
(0.26–0.62)

0.50 ± 0.11
(0.32–0.62)

0.58 ± 0.08
(0.39–0.65)

Table 3  Dice similarity coefficients after automatic 
segmentation of inferior alveolar nerve in the test dataset 
[Internal: 15 cases (A), External: 20 cases each (B and C)]

DSC, dice similarity coefficient; A, Korea University Anam Hospital; B, Korea 
University Ansan Hospital; C, Korea University Guro Hospital; SD, standard 
deviation

Mean ± SD (range) Last step (A) Last step (B) Last step (C)

DSC 0.58 ± 0.08
(0.39–0.65)

0.55 ± 0.10
(0.39–0.69)

0.43 ± 0.13
(0.0–0.65)
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study that was different from other studies. The spec-
tral structure of the trained data and the spectral struc-
ture of actual clinical data may be different, so external 
validation was mandatory in AI research [19]. It was 

demonstrated that AI performance can be improved 
through diversification of the dataset. Since the multi-
center dataset was not utilized during learning, diver-
sity in the AI learning stage could not be implemented. 
However, by comparing the segmentation efficiency 
of datasets acquired using equipment from different 
companies and specifications at different hospitals, it 
was possible to identify areas that need improvement 
through further study. Additionally, the consistency of 
the study model was confirmed with visual scoring of 
the results from each institution.

In this study, a customized nnU-Net method was 
used as the network. The nnU-Net method is derived 
from a 3D U-net and batch normalization [13]. 3D 
U-Net is a widely used method for image segmentation, 

Fig. 3  High-performance and low-performance segmentation results from the internal and external test dataset

Table 4  Comparison of segmentation time for each dataset 
between the manual and convolutional neural network-assisted 
and manually modified segmentation approaches

CNN, convolutional neural network

First step Second step Last step
Manual 
segmentation

CNN-assisted 
and manually 
modified 
segmentation

CNN-assisted 
and manually 
modified 
segmentation

Average time (s) 124.8 ± 54.18 143.4 ± 102.66 86.4 ± 61.8
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but its overall performance may be affected by CNN 
structure, pre-processing, and learning [20]. In con-
trast, nnU-Net is based on 3D U-Net, but it is more 
robust and shows more stable and improved perfor-
mance owing to the self-adapting framework [13]. In 
the SegNet method, the decoder upsamples the func-
tional map using the maximum pooling index instead 
of learning similar to that in a fully convolutional net-
work (FCN) [21]. In contrast, the U-net up sampling 
operation learns to deconvolute the input function 
map, outputs it to the decoder, and combines it with 
the high-resolution function map [22]. In addition, as 
an extension of the 2D layer, a 3D layer was trained by 
randomly selecting 64 3D patches with 320 × 320 pixel 
images. The 3D network has the advantage of maintain-
ing valid padding with the original 3D architecture, as 
it obtains more contextual information [23].

Previous studies on IAN segmentation with deep learn-
ing have provided considerable insights. Kwak et  al. 
achieved an accuracy of about 0.82–0.99 in IAN seg-
mentation using 102 CBCT datasets, 2D SegNet, and 2D 
and 3D U-Nets [24]. Jaskari et  al. observed DSC values 
of about 0.57 to 0.58 using 637 CBCT datasets and 3D 
U-Nets [25]. Vinayahalingam et  al. used 82 panoramic 
images and 2D U-Net and observed a DSC value of 
approximately 0.77–0.80 [26]. Overall, our model per-
formance was similar to that of previous AI models in 
literature.

In an author’s previous study about automatic segmen-
tation of the lesion and air of the maxillary sinus, which 
was conducted in the same way as this study, the DSC of 
the lesion of the maxillary sinus obtained through learn-
ing was ~ 0.760, and that of the air was ~ 0.930, while the 
segmentation time was ~ 362  s. Thus, in comparison to 
the manual segmentation a higher DSC and faster seg-
mentation were achieved [14]. For IAN segmentation 
conducted in this study, a DSC of ~ 0.58 and a segmen-
tation time of ~ 86.4 s were observed, which were not as 

high as the maxillary sinus segmentation data. Presum-
ably, in the maxillary sinus image, the difference in the 
Hounsfield unit (HU) inside and outside the segmenta-
tion area was prominent, resulting in a lower error value 
during segmentation. However, considering the IAN, the 
difference in HU between the inner and outer bone mar-
row in the mandibular canal is relatively small, which can 
result in errors during segmentation. Indeed, accord-
ing to the literature, the HU in the mandibular canal is 
-726.4, and the HU in the cancellous bone is 416.2 [27]. 
Additionally, during IAN segmentation, a shorter time 
was observed. However, we need to consider a larger 
number of image cuts for comparison.

Another limitation of this study is that the shape of the 
anterior loop, which is partly inside the mental foramen 
at the end of the IAN, was not well implemented in deep 
learning (Fig.  4). We presume that due to the incom-
plete manual segmentation input data for learning, our 
model accuracy was lower. Thus, improvements in this 
direction should improve the accuracy of automatic IAN 
segmentation.

For the model developed in this study, we believe that 
effective learning is necessary to overcome the difference 
in segmentation efficiency for each anatomical appli-
cation site. In addition, the initial input value i.e., the 
manual segmentation dataset, should be more precise to 
improve the accuracy. Moreover, the amount and diver-
sity of the training dataset should be increased, and the 
segmentation performance should be improved using 
more diverse networks during training. Furthermore, 
additional multi-center datasets and comparisons with 
other segmented networks, such as cascade networks, 
must be performed to further verify the efficiency and 
stability of this methodology.

Manual IAN labeling is unintuitive, exhausting, and 
inconsistent, and it may not always be precise or con-
sistent. Labeling using active learning in future will 
surely replace existing methods. Therefore, the active 

Table 5  Qualitative results from visual scoring of automatic inferior alveolar nerve segmentation on cone beam computed 
tomography from 53 randomly selected data (Internal: A, External: B and C)

A, Korea University Anam Hospital; B, Korea University Ansan Hospital; C, Korea University Guro Hospital; Rt, right; Lt, left

Grade Manual nnU-net
(Last step of active learning)

A B C A B C

Rt Lt Rt Lt Rt Lt Rt Lt Rt Lt Rt Lt

4 (very accurate) 14.3 14.3 19 19 19 19 11 9.7 10.7 12.3 5.3 4.7

3 (accurate) 0.7 0.7 0 0 0 0 2.7 3 7.3 5 8.7 7

2 (mostly accurate) 0 0 0 0 0 0 1.3 2 1 1.4 3.3 6.3

1 (inaccurate) 0 0 0 0 0 0 0 0.3 0 0.3 1.7 1
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learning framework presented in this study is a robust 
tool that can support manual labeling by improving the 
accuracy and reducing the procedural time.

Conclusion
Through this study, we confirmed that the deep active 
learning framework can improve the labeling accuracy 
of the IAN. Further, efficient learning on the limited 
CBCT dataset reduces the segmentation time, which 
can be implemented as a convenient automatic IAN 
labeling technique for future clinical use.
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