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Abstract

Background: Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells
(DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative
(EMD) and platelet-derived growth factor (PDGF) are examples of materials that act as signaling molecules to enhance
periodontal regeneration. Mineral trioxide aggregate (MTA) has been proven to be biocompatible and appears to have
some osteoconductive properties. The objective of this study was to evaluate the effects of EMD, MTA, and PDGF on

DPSC osteogenic differentiation.

provide support for its use in periodontal regeneration.

Methods: Human DPSCs were cultured in medium containing EMD, MTA, or PDGF. Control groups were also
established. Evaluation of the achieved osteogenesis was carried out by computer analysis of alkaline phosphatase
(ALP)-stained chambers, and spectrophotometric analysis of alizarin red S-stained mineralized nodules.

Results: EMD significantly increased the amounts of ALP expression and mineralization compared with all other groups
(P < 0.05). Meanwhile, MTA gave variable results with slight increases in certain differentiation parameters, and PDGF
showed no significant increase in the achieved differentiation.

Conclusions: EMD showed a very strong osteogenic ability compared with PDGF and MTA, and the present results
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Background

The major goal of periodontal therapy is to regenerate
tooth-supporting structures destroyed by periodontal dis-
ease [1]. Periodontal tissue engineering involves complex
interactions between different cells and signaling mole-
cules, as well as biological scaffolds [2].

In an attempt to mimic the original developmental
events, the integrated use of precursor cell populations
with specific biologic stimulants is under investigation
[3, 4]. Stem cells represent primitive non-specialized
cells with wide capabilities for differentiation and tissue
regeneration. To date, mesenchymal stem cells have
been successfully isolated from several body organs [5],
including multiple tissues with dental origins [6-9].
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Such dental tissue-derived stem cells were found to re-
tain potent capacity for specific differentiation into
dental tissue-forming cells [6, 10, 11]. Gronthos and
colleagues successfully isolated human dental pulp stem
cells (DPSCs), and proved both their multipotency and
self-renewal capability [11, 12]. Further studies con-
firmed their findings [13, 14]. This multipotency, in
addition to their relative accessibility, made DPSCs an
appealing source of cells for application in regenerative
medicine [15-18]. In fact, several papers have proved
their superiority in different aspects, including osteo-
genic differentiation [19, 20], which supported their use
for regeneration of craniofacial defects [21, 22], as well
as alveolar bone defects [23, 24]. Additionally, the simi-
lar embryonic origins of dental pulp cells and periodon-
tal cells [25] and their presence within protective layers
of tooth structure have encouraged their use for peri-
odontal tissue regeneration [26, 27].
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Studies on tissue engineering have used biological medi-
ators to selectively enhance the recruitment of cellular
populations into periodontal wounds [28]. Enamel matrix
derivative (EMD) is a protein harvested from developing
porcine teeth that has been reported to induce cementum
formation and periodontal regeneration [29]. At the cellu-
lar level, EMD was proven to have regulatory effects on
multiple periodontal cell types [28, 30].

Platelet-derived growth factor (PDGF) is a very power-
ful regulatory factor that initiates nearly all wound heal-
ing events. The main function of PDGF is to stimulate
cell replication (mitogenesis) of healing-capable stem
cells and partially differentiated osteoprogenitor cells,
which are part of the connective tissue—bone healing
cellular make-up [31]. Significant increases in bone and
cementum formation have been reported histologically
[32]. At the cellular level, PDGF increased the number
of collagen-synthesizing cells [33] and stimulated bone
sialoprotein transcription [34].

Another material with the ability to induce regeneration
is mineral trioxide aggregate (MTA). MTA is a mixture of
dicalcium silicate, tricalcium silicate, tricalcium aluminate,
gypsum, and tetracalcium aluminoferrite [35]. Torabinejad
et al. [36] reported a favorable biologic performance of
MTA when in direct contact with bone, through the depos-
ition and formation of hydroxyl apatite on its surface. The
material was also found to enhance cellular production of
type I collagen, osteocalcin, alkaline phosphatase (ALP),
bone sialoprotein, and osteopontin [37]. A systematic re-
view on the histological responses of the periodontium to
the material concluded that MTA promoted healing toward
regeneration [38].

The above findings suggest similar clinical performances
for the three materials with no previous attempts for
direct comparisons. Accordingly, the purpose of the
present study was to examine and compare the effects of
EMD, PDGEF, and MTA on the osteogenic differentiation
of DPSCs.

Results

Cell isolation and characterization

Dental pulp stem cells in the primary cultures started to
appear in 5-14 days and became attached to the plate
surfaces (Fig. 1a). Cells from the second passage success-
fully formed multiple colonies, with around 50 cells per
colony (Fig. 1b). Flow cytometry analyses confirmed posi-
tive expressions of stromal cell-associated markers, with
negative expressions of hematopoietic and endothelial
markers (Fig. 1g). Cells that underwent osteogenic induc-
tion showed increased ALP staining compared with nega-
tive control cells (Fig. 1c, d), while cells cultured in the
adipogenic medium exhibited several oil red O-positive
lipid granules (Fig. 1e, f).
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Material application

ALP staining

The samples showed different degrees of ALP staining
(Fig. 2). One-way ANOVA revealed significant differences
among the compared groups (P < 0.0001) (Table 1).

For all parameters examined, EMD was significantly
higher than all other groups (P<0.05). EMD revealed
significantly higher percent total positive staining area,
average optical density, and histological scores (95.6 +
4.7 %, 0.35 £ 0.03, 221.99 + 23.8) than MTA (64.19 %, 0.26
+0.02, 114.34+20.90; P<0.05) PDGF (48.8 %+ 12.62,
0.24+0.02, 82.33 + 28.3; P < 0.05) and reference control.

In contrast, MTA gave inconsistent findings, although it
increased the ALP activity in a similar manner to the
reference control when evaluated by the average optical
density, the material resulted in reductions of the other
parameters compared with the reference control, although
those reductions were not always significant (P > 0.05).

With regard to PDGE, ALP expression generally re-
vealed lower results compared with the reference control
for the three parameters respectively, and these reductions
were consistently significant (P < 0.05; Table 1).

Alizarin red S staining

There were obvious differences in the amounts of
mineralization among the groups (Fig. 3). One-way
ANOVA revealed these differences to be significant (P <
0.0001) (Table 2).

The EMD group had a significantly increased amount of
mineralized nodule formation compared with all other
groups, giving a mean absorbance of 1.2 + 0.13 (P < 0.05).

The MTA group significantly increased amount of
mineralization (absorbance: 0.16 +0.12), relative to the
negative control group (0.08 £0.01), and PDGF group
(0.09 £ 0.01).

Although the mean absorbance of the PDGF group
(0.09 £0.01) appeared to be slightly different than the
other groups, these differences were statistically non-
significant (P > 0.05; Table 2).

Discussion

In this study, successful isolation of dental pulp cells was
achieved through the application of enzymatic digestion
with certain modifications to the protocol of Gronthos et
al. [11]. The obtained cells underwent several investiga-
tions to evaluate their properties. According to the Inter-
national Society for Cellular Therapy [39], the minimal
criteria for defining multipotent mesenchymal stromal
cells include: (1) adherence to plastic dishes; (2) multipo-
tent differentiation potential; and (3) expressions of spe-
cific stromal surface markers (CD73, CD90, CD105) with
lack of expressions of hematopoietic markers (CD45,
CD34, CD14 and/or CD11b, CD19, CD79x) and the



Ajlan et al. BMC Oral Health (2015) 15:132

Page 3 of 10

Counts
=0 10 20 30 40 50

3
2/ CD 44 95% |
gg APC
|
c.'! 'o!su'muﬂ m‘! 04 W au‘fmmn 104
2 8 8 & 2
¢ CD31 0% ¢ CD14 0% |  CD45 0%'92(:])34 0% ! ¢ HLA® 0% |
g8 FITC £8) APC 8| FITC 53' ITC £8 DR
3 38 8 & LB
oo 0 Fo0 W 2o o0 CNCNC S0 LA K e

Fig. 1 Inverted light microscopic images showing a dental pulp mesenchymal stem cells at primary culture, Magnification 5x. b Colony forming
unit Fibroblast (CFU-F) magnification 5%, ¢, d Alkaline phosphatase staining for DPSCs 14 days after osteoinduction (c) versus negative control (d),
magnification 10x, and QOil red O staining for DPSCs 14 days after adipogenic induction (e) versus negative control (f), magnification 40x. g FACS

analysis results of a representative dental pulp cell line

HLA-DR marker. The isolated cells in this study pre-
sented all of the above features.

Different material concentrations were evaluated, and
the concentrations with the best differentiation were
selected. These concentrations were 200 pg/ml for
EMD, 5 ng/ml for PDGF, and 0.05 mg/ml for
MTA. The same concentrations were previously used in
other studies [34, 40, 41]. In this study, computer

analysis for ALP activity and a semiquantitative evalu-
ation technique for alizarin red S staining were se-
lected, as these two techniques were reported to give
results with relative sensitivity, and have been applied
in previous studies [42, 43].

For EMD, the results revealed significant increases in
ALP expression and abundant mineralization enhance-
ment following its application. These findings are in
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Fig. 2 Scanoscope images for ALP stained different experimental groups of DPSCs. The internal image represents the evaluated field, which makes
around 1/4™ of the image. Original magnification 1.4x. Scale bar T mm. a Negative control, b Reference control (OT), ¢ EMD, d MTA, e PDGF

accordance with several other studies evaluating the ef-
fects of this material on multiple cell lines [40, 44—48].
Duan et al. [44] found that EMD enhanced the osteogenic
differentiation of induced pluripotent stem cell, as evi-
denced by increases in RUNX2 mRNA expression.
Kémoun et al. [45, 46] evaluated the effects of EMD on
follicular cells [45] and periodontal ligament stem cells
[46]. In both studies, EMD was found to enhance ALP re-
lease and calcium deposition, in addition to the elevation
of several mineralization markers. Another study by
Guven et al. [47] found that Emdogain was the most ef-
fective material for enhancing both proliferation and
odontogenic differentiation of human tooth germ stem
cells through the evaluation of ALP activity, Von Kossa
staining, and RT-PCR analyses for dentin sialophospho-
protein (DSPP), and immunostaining for collagen type I
and DSPP. A study by Wang et al. [48] found that Emdo-
gain enhanced the mineralization of DPSCs as well as
their osteogenic/odontogenic marker expression. How-
ever, studies with contradictory findings are also available
[49, 50]. It was reported that EMD might not have appre-
ciable effects on osteoblastic differentiation in periodontal
ligament cells [49] or rat bone marrow cells [50].

Although the exact control mechanism remains unclear,
these effects were explained by differences in the degrees
of cellular immaturity, i.e. the material was thought to en-
hance cellular proliferation of more immature cells, but
differentiation of cells at later stages of maturity [51].

In the present study, MTA gave inconsistent findings.
The material revealed mineralization enhancement in
comparison with the reference control, reductions in
certain ALP parameters (percent total positive staining
area and histological score), and maintenance of other
parameters (average optical density). Although Yasuda et
al. [52] and Lee et al. [53] reported that MTA increased
ALP production and/or mineralized nodule formation
compared with control cells, both Koh et al. [54] and
Nakayama et al. [55] reported similar ALP expression
between MTA-treated cells and negative control cells.
These inconsistencies suggest that further evaluation of
the different parameters guiding and affecting the per-
formance of this material is warranted.

With regard to PDGF in the present study, it was ob-
served that ALP expression generally revealed lower results
in comparison with the negative control group as well as
all of the other material groups, and the differences were



Ajlan et al. BVIC Oral Health (2015) 15:132

Table 1 Represents the alkaline phosphatase analysis results for
all groups

Material/  Average Standard Post hoc Tukey's test
Group Deviation (SD) for significance among
groups

Percent
Total
Positive

Negative 16.29 4.95 or*
control EMD*
MTA*
PDGF*
oT 7292 9.24 Negative control*
EMD*
MTA*
PDGF*
EMD 95.59 4.69 Negative control*
oT*
MTA*
PDGF*
MTA 64.19 9.95 -ve control*
oT*
EMD*
PDGF*
PDGF 48.80 1262 Negative control*
or*
EMD*
MTA*
Negative 0.18 0.01 oT*
control EMD*
MTA*

PDGF*

Average
Optical
density

oT 0.26 0.02 Negative control*
EMD*

MTA

PDGF*

EMD 0.35 0.03 Negative control*
or*

MTA*

PDGF*

MTA 0.26 0.02 Negative control*
or

EMD*

PDGF

PDGF 0.24 0.03 Negative control*
oT*

EMD*

MTA
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Table 1 Represents the alkaline phosphatase analysis results for
all groups (Continued)

7.034 or*
EMD*
MTA*
PDGF*

Histological Negative 20.633
Score control

oT 132974 22944 Negative control*
EMD*

MTA

PDGF*

EMD 221992 23818 Negative control*
or*

MTA*

PDGF*

MTA 114340 20914 Negative control*
oT

EMD*

PDGF*

PDGF 82330 28254 Negative control*
oT*

EMD*

MTA*

N.B.Intergroup comparison was statistically significant using ANOVA
test, P < 0.0001
*Indicates statistical significance with P < 0.05

always significant. Regardless of the material’s action in
proliferative enhancement, PDGF-BB appeared to have no
additional benefit for osteogenic differentiation, according
to the parameters evaluated in this study. Several other
authors observed similar results [33, 56]. In fact, PDGF
enhanced bone collagen degradation [33], and disrupted or
inhibited bone matrix formation [56]. Nakashima et al.
[57] found that PDGF increased DNA synthesis, while
causing 40-65 % inhibition of ALP activity. Tanaka and
Liang [58] reported that the material exerted no effect on
cellular ALP activity or collagen synthesis. Yokose et al.
[59] reported that PDGF-BB significantly reduced the ALP
activity of DPSCs.

Conclusions

Favorable cell-surface interactions with EMD were dem-
onstrated, including ALP expression and abundant
mineralization. EMD gave superior results compared
with MTA and PDGF regarding osteogenic differenti-
ation of DPSCs. The effects of MTA on osteogenesis of
DPSCs were inconclusive and further studies are re-
quired. Moreover, our data on PDGF did not support its
ability to induce osteogenic differentiation of DPSCs.
However, PDGF did facilitate cell attachment and
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Fig. 3 Inverted light microscopic image presenting Alizarin red S staining for different DPSCs experimental groups. Original magnification 10x.
Scale bar 200 um. a Negative control, b Reference control (OT), ¢ EMD, d MTA, e PDGF

growth, suggesting a different mechanism of action that
worth further investigation.

Methods

Isolation of stem cells

Human DPSCs were isolated and characterized by the
authors in the Stem Cell Unit, King Saud University,
Kingdom of Saudi Arabia (unpublished data). Teeth
were collected from patients after they provided signed
informed consent, according to a protocol approved by
the institutional ethical committee (College of Dentistry
Research Center-CDRC).

Briefly, the pulp contents of freshly extracted molar teeth
were combined and subjected to 20—40 minutes of enzym-
atic digestion using collagenase type I (1 mg/ml) and dis-
pase (5000 caseinolytic units). Subsequently, the cells were
allowed to grow under regular cell culture conditions (37 °
C, 5 % CO,), using Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 20 % fetal bovine serum
(FBS), 1 % penicillin-streptomycin (Pen-Strept), and

1 % non-essential amino acids (all purchased from
Gibco-Invitrogen, USA).

Characterization of stem cells

Colony forming unit-fibroblasts (CFU-F)

CFU-F were evaluated by culturing 2.5 x 10° cells at the
second passage in 6-cm culture dishes. At day 14, the
cells were fixed with 1 % paraformaldehyde, stained
with 0.5 % crystal violet, and subjected to microscopic
evaluation using a phase-contrast inverted light micro-
scope (Zeiss, Leica, Germany).

Flow cytometry

Fourth passage cells (1.5 x 10°) were washed with FACS
buffer (1x phosphate-buffered saline, 5 % FBS, 0.1 % so-
dium azide), and diluted in 1.5 ml of phosphate-buffered
saline. Next, PE-conjugated mouse anti-human CD146,
CD73, CD29, and HLA-DR, FITC- conjugated mouse
anti-human CD34, CD90, CD45, CD13, and CD31, and
APC-conjugated mouse anti-human CD105, CD14, and
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Table 2 Represents the average absorbance rate for Alizarin red
S stained chambers of all groups

Material/Group ~ Average Standard

Deviation (SD)

0.007 oT
EMD*
MTA*
PDGF

Post hoc Tukey's test for
significance among groups

Negative control  0.079

oT 0.107 0016 Negative control
EMD*

MTA

PDGF

EMD Negative control*
oT*

MTA*

PDGF*

MTA Negative control*
or

EMD*

PDGF*

PDGF 0.097 0.010 Negative control
oT

EMD*

MTA*

OT reference control for osteoinduction, EMD Emdogain, MTA Mineral trioxide
aggregate, PDGF Platelet derived growth factor-BB

N.B.Intergroup comparison was statistically significant using ANOVA

test, P <0.0001

*Indicates statistical significance with P < 0.05

CD44 antibodies were prepared in dark (all from BD
Biosciences, USA, except for the monoclonal antibody
against human CD105, which was purchased from R&D
Systems, USA) and utilized. In each FACS tube, 100 pl
of cells was mixed with 10 pl of the corresponding anti-
body, and incubated for 30 minutes in the dark at 4 °C.
The expressions of cellular markers were assessed using
a Becton Dickinson FACSCalibur Flow Cytometer (BD
Biosciences, USA), and the resulting data were analyzed
using Cell Quest Pro Software Version 3.3, BD bio-
science, USA).

Osteogenic and adipogenic differentiation

Cells at the fourth passage were cultured on 6-well
plates. At 60-70 % confluency, osteogenic differenti-
ation was induced using osteoinduction medium pre-
pared according to the protocol of Vishnubalaji et al.
[60], and composed of DMEM supplemented with 10 %
FBS, 1 % Pen-Strept, 50 pg/ml L-ascorbic acid (Wako
Chemicals GmbH, Germany), 10 mM glycerol phosphate
disodium salt (B-glycerophosphate), 10 nM dexametha-
sone, and 10 nM calcitriol (1a,25-dihydroxyvitamin D3)
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(Sigma, UK). Cells maintained in the regular culture
medium served as controls. The resultant osteogenesis
was evaluated after 14 days through cytochemical staining
for ALP.

Adipogenic differentiation was also induced using
standard adipogenic medium [60], composed of DMEM
supplemented with 10 % FBS, 10 % horse serum, 1 %
Pen-Strept, 100 nM dexamethasone, 0.45 mM isobutyl
methyl xanthine, 3 pg/ml insulin (all purchased from
Sigma, UK), and 1 uM rosiglitazone (BRL49653; Novo
Nordisk, Denmark). The resultant differentiation was
assessed at 14 days through the use of oil red O staining.

Material application

Initially, a pilot study was carried out to evaluate three dif-
ferent concentrations for each material, and the concen-
trations yielding the highest amount of differentiation
were selected for the comparisons (Fig. 4). Thereafter, cells
at the fourth passage were cultured and divided into five
groups as shown below.

1. Negative Control: Cells maintained in the regular
cell culture medium for the entire experiment
(DMEM with 20 % FBS, 1 % Pen-Strept, 1 % non-
essential amino acids).

2. Reference Control (OT): Cells cultured in the
osteoinduction medium, prepared according to the
protocol of Vishnubalaji et al. [60].

3. EMD Group: Cells cultured in the osteoinduction
medium supplemented with 200 ug/ml EMD
(Straumann, USA).

4. PDGF Group: Cells cultured in the osteoinduction
medium supplemented with 5 ng/ml PDGF-BB
(Osteohealth, USA).

5. MTA Group: Cells cultured in the osteoinduction
medium supplemented with 0.02 mg/ml MTA
(Dentsply, USA).

The achieved differentiation was analyzed by evaluation
of ALP expression through ALP staining and calcium ion
deposition through alizarin red S staining.

ALP activity

Cells were plated on 8-chamber slides at the density of
0.02 x 10° cells/chamber and allowed to attach and grow
to 50 % confluency. Thereafter, the slides were divided
into the above-mentioned five different groups and regular
or osteogenic medium was applied accordingly. On day 5,
the cells were fixed and stained for ALP with Naphthol-
AS-TR-phosphate solution (Sigma, UK). Next, the cham-
bers were evaluated under a high-resolution digital micro-
scope where the whole stained chambers were scanned
with a ScanScope slide scanner (Aperio Technologies Inc.,
USA) at 40x objective magnification. The digital images of
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Fig. 4 Scanoscope images for ALP stained different experimental groups of DPSCs. Original magnification 1.4x. Scale bar T mm. a, b, ¢ EMD at
concentrations of 50, 100, 200 ug/ml respectively. d, e, f PDGF at concentrations of 5, 10, 20 ng/ml respectively. g, h, i MTA at concentrations of
0.02, 0.2, 2.0 mg/ml respectively. j Percent total positive staining area for different concentrations of each examined material

Concentration 3

six different chambers from each trial were viewed and
analyzed using the viewing and image analysis tools of
Aperio Image Scope software (Version 10.2.2.2352; Aperio
Technologies Inc.). The whole experiment was repeated
three times independently, giving a total of 18 chambers/
group for analysis. The analysis output results were
exported to Excel sheets, focusing mainly on the percent
total positive staining area, average optical density, and
histological score as the parameters for statistical analysis
and comparison.

Alizarin red S staining

In the same manner, cells were cultured on 24-well plates,
and the five different groups were established. Media were
replaced twice per week with freshly-prepared regular or
osteogenic media. On day 12, the cells were stained with
40 mM AR-S Alizarin Red (Sigma, UK), and subjected to
spectrophotometric evaluation according to the protocol of
Gregory et al. [61] using a microplate reader (Gen5",
version 1.10; BioTek Instruments Inc.,, USA) to measure
the absorbance at 405 nM. The same protocol was
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repeated three times independently, giving nine different
readings for each trial.

Statistical analysis

Data was analyzed using SPSS statistical software (ver-
sion 16.0; SPSS, USA). Descriptive statistics (mean and
standard deviation) were used to describe the quantitative
outcome variables. One-way analysis of variance (ANOVA)
was used to compare the mean values of outcome var-
iables across the categorical variables (groups), followed
by a post-hoc Tukey test for pairwise comparisons.
Values of P<0.05 were considered to indicate statis-
tical significance.
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