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Abstract 

Background  Obesity is the most important driver of non-alcoholic fatty liver disease (NAFLD); nevertheless, the rela-
tionship of weight-adjusted waist index (WWI), a new obesity index, with NAFLD is unclear.

Methods  This retrospective study used data from the NAGALA project from 1994 to 2016. WWI values were calcu-
lated using waist circumference (WC) and weight measurements of the participants. Three stepwise adjusted logistic 
regression models were developed to assess the relationship of WWI with NAFLD in the whole population and in both 
sexes. Additionally, we also conducted a series of exploratory analysis to test the potential impact of body mass index 
(BMI), age, smoking status and exercise habits on the association of WWI with NAFLD. Receiver operating characteris-
tic (ROC) curves were used to estimate cut-off points for identifying NAFLD in the entire population and in both sexes.

Results  The current study included a population of 11,805 individuals who participated in health screenings, includ-
ing 6,451 men and 5,354 women. After adjusting for all non-collinear variables in the multivariable logistic regres-
sion model, we found a significant positive correlation of WWI with NAFLD. For each unit increase in WWI, the risk 
of NAFLD increased by 72% in the entire population, by 84% in men, and by 63% in women. Furthermore, subgroup 
analyses revealed no significant discrepancies in the correlation of WWI with NAFLD across individuals with varying 
ages, exercise habits, and smoking status (all P-interaction > 0.05), except for different BMI groups (P-interaction < 0.05). 
Specifically, compared to the overweight/obese group, the relationship of WWI with NAFLD was significantly stronger 
in the non-obese group, especially in non-obese men. Finally, based on the results of ROC analysis, we determined 
that the WWI cut-off point used to identify NAFLD was 9.7675 in men and 9.9987 in women.

Conclusions  This study is the first to establish a positive correlation between WWI and NAFLD. Moreover, assessing 
the influence of WWI on NAFLD in individuals without obesity may yield more valuable insights compared to those 
who are overweight or obese.
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Background
NAFLD, the prevailing chronic liver disease globally, 
encompasses a range of liver conditions varying from 
uncomplicated steatosis to fibrosis [1–3]. As the meta-
bolic syndrome manifestation in the liver, NAFLD is 
not only linked to the progression of liver cirrhosis and 
hepatocellular carcinoma but is also closely linked to the 
occurrence of cardiovascular diseases, chronic kidney 
disease, diabetes and malignancies [1, 4–8]. Alarming 
trends emerge as lifestyle shifts and obesity rates soar, 
causing a drastic surge in NAFLD prevalence. Relevant 
data showed an escalation from 25.3% (1990–2006) to 
38.2% (2016–2019), impacting roughly one-third of the 
world’s population [2]. This presents a significant chal-
lenge to healthcare systems [3, 9]. Therefore, NAFLD risk 
screening in the general population is very necessary.

As we all know, obesity is an important risk factor for 
NAFLD [3, 10, 11], and especially the existence of central 
obesity is closely related to the occurrence of NAFLD [1, 
12]. Previously, various obesity-related indices have been 
widely used to identify or predict NAFLD. Many obesity 
indices, including the commonly used waist circumfer-
ence (WC) and BMI, have been shown to be indepen-
dently associated with NAFLD [13, 14]. However, it is 
important to note that BMI cannot differentiate fat distri-
bution [15], and there are limitations in using BMI due to 
the influence of the "obesity paradox" [16–19]. Addition-
ally, WC, although highly correlated with BMI, may not 
be suitable as a substitute for BMI [20].

WWI is a recently proposed new anthropometric 
index, which exhibits a weaker correlation with BMI and 
reduces the risk of the "obesity paradox" associated with 
BMI [21]. Furthermore, high WWI not only reflects both 
low muscle mass and high-fat mass in the body simulta-
neously [22], but also can be used to evaluate the subcu-
taneous and visceral fat area [23]. Previous studies have 
found strong associations of WWI with cardiovascular 
diseases, type 2 diabetes, hyperuricemia, and adult uri-
nary protein excretion [21, 24–29]. However, the research 
on NAFLD and WWI is limited, with only one study 
published in May 2023 reporting an independent associa-
tion between hepatic steatosis and WWI in a population 
of Americans [30]. Therefore, this study aimed to further 
explore the association of WWI with NAFLD using data 
from the NAGALA project.

Methods
Data source and study design
The data for current research was obtained from the 
NAGALA project. In summary, the NAGALA research 
project began in 1994 and recruited and collected data 
from the general population participating in the Human 

Dockyard Examination Program at the Murakami 
Memorial Hospital in Japan. The project’s objective was 
to identify and evaluate long-term health conditions 
and associated risk elements. The study design has been 
described in more detail in other publications [31]. Addi-
tionally, the research data from the study has been made 
publicly available on the DRYAD public database by Oka-
mura and colleagues [32]. In accordance with the Dryad 
Terms of Service, the data can be used for secondary 
analysis with new research hypotheses. It is important 
to note that the implementation of the NAGALA pro-
ject was authorized by the Murakami Memorial Hospital 
Ethics Committee, and informed consent for data usage 
was obtained from each participant [31]. The current 
study is a post-hoc analysis based on the data from the 
NAGALA project, and the research protocol and design 
were authorized by Jiangxi Provincial People’s Hospital 
Ethics Committee (IRB 2021–066).

This study’s purpose was to assess the relationship of 
NAFLD with WWI using the NAGALA dataset. With the 
new research hypothesis, we conducted a cross-sectional 
design and included 20,944 individuals who underwent 
medical examinations between 1994 and 2016. Among 
these individuals, we further excluded participants with a 
diagnosis of diabetes or liver disease (excepted fatty liver) 
at baseline, as well as those with FPG > 6.1 mmol/L, using 
medications, having the habit of drinking, and covariable 
data missing, resulting in a final analysis cohort of 11,805 
participants (Fig. 1).

Data collection and measurements
Experienced healthcare professionals measured and 
recorded various anthropometric measurements of the 
participants, including WC, height, weight, and arterial 
blood pressure. BMI was calculated on the basis of weight 
and height. WWI was calculated as WC(cm)

√

Weight(kg)
 [21].

Information on age, drinking status, sex, smoking sta-
tus, and exercise habits was collected through a ques-
tionnaire. The classification of smoking status included 
individuals who were not smokers, those who used to be 
smokers, and individuals who were currently smokers. 
Exercise habits were determined based on engaging in 
any type of physical activity at least once per week.

After fasting for 8  h, venous blood samples were col-
lected from the antecubital vein of the subjects and 
stored in siliconized glass tubes containing sodium fluo-
ride. These samples were then centrifuged immediately 
and stored at -80 degrees Celsius until analysis. Blood 
tests were carried out using a modular analysis system 
(Hitachi High-Technologies Corp., Ltd., Tokyo, Japan), 
which involved measuring biochemical parameters 
such as high-density lipoprotein cholesterol (HDL-C), 
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aspartate aminotransferase (AST), fasting plasma glu-
cose (FPG), gamma-glutamyl transferase (GGT), total 
cholesterol (TC), alanine aminotransferase (ALT), and 
triglycerides (TG). According to the manufacturer’s data, 
the coefficients of variation of the above biochemical 
parameters are 1.7%, 1.9%, 2.3%, 2.5%, 2.1%, 2%, 2.3% and 
1.2%, respectively. Additionally, glycated hemoglobin A1c 
(HbA1c) was measured using high-performance liquid 
chromatography.

Evaluate NAFLD
The professional ultrasound technician examined the 
participants’ abdomen by color ultrasound. To avoid 
selection bias, gastroenterologists did not have access to 
participants’ clinical information when making the diag-
nosis. They evaluated several key items, including liver 
brightness, liver-kidney echo contrast, deep attenuation 
and vascular blurring based on abdominal ultrasonogra-
phy, and made a diagnosis of NAFLD [33].

Statistical analysis
First, subjects were divided into 2 groups according to 
gender, and the distribution type of continuous variables 
was assessed using QQ plots. Categorical variables were 

shown in the baseline table as frequency (percentage), 
and continuous variables were shown as median (inter-
quartile distance) or mean (standard deviation); Chi-
square test, Mann–Whitney U test, and t-test were used 
for between-group comparisons.

Second, we used multivariate linear regression to assess 
the collinearity between WWI and covariates (Supple-
mentary Table 1) [34], and then performed multivariate 
logistic regression models with stepwise adjustment of 
non-collinear variables to determine the relationship of 
NAFLD with WWI. The results were presented as ORs 
with 95% confidence intervals (CIs). Model 1 firstly made 
preliminary adjustments for sex, BMI and age. Model 2 
further adjusted for participants’ lifestyle habits (drinking 
status, smoking status, exercise habits). Model 3 included 
adjustments for all non-collinear variables. Subsequently, 
based on Model 3, we conducted four sensitivity analyses: 
Sensitivity-1 excluded participants with exercise habits at 
baseline, Sensitivity-2 excluded participants over 60 years 
old at baseline, Sensitivity-3 excluded participants with 
systolic/diastolic blood pressure ≥ 140/90  mmHg at 
baseline, and Sensitivity-4 only participants with base-
line BMI less than 25 kg/m2 were included. Sensitivity-5 
excluded patients with hypertriglyceridemia at baseline. 

Fig. 1  Flow chart for inclusion and exclusion of study participants
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After determining the association between WWI and 
NAFLD, we further used restricted cubic spline (RCS) 
to fit and visualize the association between WWI and 
NAFLD. It is noteworthy that, considering the significant 
differences between sexes in terms of body composition, 
shape, and energy metabolism [35], the aforementioned 
correlational analyses were conducted separately within 
the entire population and within each gender.

Third, we performed exploratory stratified logistic 
regression analysis to test the relationship of WWI with 
NAFLD in different ages, BMI, smoking status, and exer-
cise habits subgroups and examined differences among 
subgroups using likelihood ratio tests. In addition, we 
also used the ROC curve to analyze the recognition value 
of WWI to NAFLD in the whole population, men and 
women, and calculated the corresponding area under the 
curve, cut-off point, sensitivity and specificity. Further-
more, we applied ROC curves to analyze the discrimi-
native value of WWI for NAFLD in the entire cohort, as 
well as in males and females separately. This included cal-
culating the area under the curve (AUC), cut-off points, 
sensitivity, and specificity for each respective group.

In this research, all data analyses were conducted using 
R software (version 3.4.3) and Empower Stats (version 
2.0), and the significance standard was set to P < 0.05 
(two-sided).

Results
Baseline information
Eleven thousand eight hundred five participants were 
eventually included in the current study, including 6,451 
men and 5,354 women. Table 1 shows the baseline char-
acteristics of the study population grouped by gender. It 
can be seen that at baseline, male participants had sig-
nificantly higher levels of weight, height, BMI, WC, ALT, 
AST, GGT, TC, TG, FPG, SBP, DBP and lower levels of 
WWI and HDL-C than those of the female population. 
In addition, male participants had significantly more 
smoking habits and a significantly higher prevalence of 
NAFLD (30.31% vs 7.21%).

Association of WWI with NAFLD and sensitivity analysis
Significant positive correlations of NAFLD with WWI 
were observed in multivariate logistic regression models 
in all the whole population and men or women (Mod-
els 1–3) (Table  2). Although the associations weakened 
to some extent with stepwise adjustment of covariates, 
the positive correlation between WWI and NAFLD 
remained unchanged. After adjusting for all non-col-
linear variables, for every additional unit of WWI, the 
risk of NAFLD increased by 72% in the whole population, 
84% in men and 63% in women.

Furthermore, based on Model 3, we carried out five 
sensitivity analyses. The sensitivity analysis results were 
consistent with the main results, indicating a significant 
positive correlation between WWI and NAFLD, with 
increasing NAFLD risk as WWI increased (Table  3). 
These findings further confirmed the relatively stable 
positive correlation of WWI with NAFLD.

Subgroup analysis
After confirming the relationship of WWI with NAFLD, 
we further explored the differences in this association 
among different subgroups; notably, stratified analysis 
was separately carried out in the whole population and 
in men and women. According to the common clinical 
cut-off points, we stratified BMI and age, while the strati-
fication methods mentioned earlier were used for smok-
ing status and exercise habits. The new analysis results 
(Table 4) found no significant differences in the relation-
ship of WWI with NAFLD among different subgroups 

Table 1  Baseline characteristics of the study population are 
summarized according to sex group

Values were expressed as mean (SD) or medians (quartile interval) or n (%)

Abbreviations: NAFLD non-alcoholic fatty liver disease, BMI body mass 
index, WC waist circumference, ALT alanine aminotransferase, AST aspartate 
aminotransferase, GGT​ gamma-glutamyl transferase, HDL-C high-density 
lipoprotein cholesterol, TC total cholesterol, TG triglyceride, HbA1c hemoglobin 
A1c, FPG fasting plasma glucose, SBP systolic blood pressure, DBP diastolic blood 
pressure, WWI weight-adjusted-waist index

Women Men P-value

No of subjects 6451 5354

Age, years 42.00 (37.00–49.00) 41.00 (36.00–49.00) 0.843

Weight, kg 51.60 (47.20–56.70) 66.40 (60.60–73.10) < 0.001

Height, m 1.58 (0.05) 1.71 (0.06) < 0.001

BMI, kg/m2 21.03 (2.95) 23.10 (3.09) < 0.001

WC, cm 71.66 (8.11) 80.32 (8.10) < 0.001

WWI 9.89 (0.68) 9.80 (0.51) < 0.001

ALT, IU/L 14.00 (11.00–17.00) 20.00 (15.25–29.00) < 0.001

AST, IU/L 16.00 (13.00–19.00) 18.00 (15.00–23.00) < 0.001

GGT, IU/L 12.00 (10.00–14.00) 18.00 (14.00–25.00) < 0.001

HDL-C, mmol/L 1.60 (1.37–1.86) 1.22 (1.03–1.45) < 0.001

TC, mmol/L 5.09 (0.88) 5.16 (0.86) < 0.001

TG, mmol/L 0.56 (0.40–0.81) 0.91 (0.63–1.37) < 0.001

HbA1c, % 5.19 (0.32) 5.19 (0.32) 0.639

FPG, mmol/L 5.15 (0.41) 5.20 (0.41) < 0.001

SBP, mmHg 114.28 (14.87) 115.40 (14.74) < 0.001

DBP, mmHg 71.43 (10.36) 72.28 (10.27) < 0.001

Exercise habits 1018 (15.78%) 955 (17.84%) 0.003

Smoking status < 0.001

  non 5750 (89.13%) 2157 (40.29%)

  Former 354 (5.49%) 1458 (27.23%)

  Current 347 (5.38%) 1739 (32.48%)

NAFLD 465 (7.21%) 1623 (30.31%) < 0.001
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based on age, habits of exercise, and smoking status, 
except for different BMI groups (P-interaction < 0.05). 
Specifically, compared to the overweight/obese group 
(BMI ≥ 25 kg/m2), the correlation of NAFLD with WWI 
was higher in the non-obese group (BMI < 25 kg/m2).

Nonlinear association between WWI and NAFLD
Using RCS, we further modeled the dose–response rela-
tionship of WWI with NAFLD in the whole population 
and in both sexes. As shown in Fig. 2, after adjusting for 
all non-collinear variables, we observed that the posi-
tive trend between WWI and NAFLD risk remained 
unchanged. Individuals with higher levels of WWI had 
a stronger correlation with NAFLD compared to those 
with lower WWI levels. Furthermore, the RCS analysis 

indicated a non-linear relationship of NAFLD with WWI 
(All P for non-linearity: < 0.05). It can be observed that in 
the analysis of the whole population and for both sexes, 
the increasing trend of the correlation between WWI and 
NAFLD gradually slowed down when WWI was around 
10.

ROC analysis
Table 5 presents the ROC analysis results of WWI for the 
identification of NAFLD. The findings revealed that the 
AUCs of WWI for detecting NAFLD in the entire popula-
tion, males, and females were 0.6868, 0.7184, and 0.7631, 
respectively, with corresponding cut-off values of 9.7300, 
9.7675, and 9.9987. Compared to the other groups, WWI 
demonstrated higher accuracy in identifying NAFLD in 
females, and also had a higher cut-off value.

Discussion
This observational study involving 11,805 subjects 
revealed a positive correlation of WWI with NAFLD. 
This association was consistent across different age 
groups, exercise habits and smoking status, except for 
different BMI groups. Notably, the relationship of WWI 
with NAFLD was stronger in the non-obese population 
compared to the overweight/obese population.

As far as we know, this is the first study investigating 
the relationship of WWI with NAFLD. Previous stud-
ies have shown that obesity as defined by the traditional 
obesity index BMI is closely related to the occurrence of 
NAFLD, and there is a significant dose-dependent rela-
tionship [13]. In recent years, with the in-depth study of 
obesity and NAFLD, people pay more attention to the 
role of central obesity in the occurrence and development 
of NAFLD, and people’s concept has gradually changed to 
that central obesity is the key factor leading to the devel-
opment of NAFLD [1, 12, 14, 35]. In the current study, 
we revealed an independent correlation between WWI, 
an index assessing central obesity, and NAFLD. For each 

Table 2  Logistic regression analyses for the association between WWI and NAFLD

Model 1 adjusted for sex, age, height and BMI

Model 2 adjusted for sex, age, height, BMI, smoking status and exercise habits

Model 3 adjusted for sex, age, height, BMI, smoking status, exercise habits, ALT, AST, GGT, HDL-C, TC, TG, FPG, HbA1c and DBP

Note: Sex itself is not adjusted in the analysis based on sex stratification

Abbreviations: WWI weight-adjusted-waist index, CI confidence interval, OR Odds ratios

OR (95% CI)

Crude model Model 1 Model 2 Model 3

WWI (All population) 2.78 (2.56, 3.01) 2.21 (1.94, 2.51) 2.19 (1.92, 2.50) 1.72 (1.49, 1.98)

Sex

  Men 5.04 (4.40, 5.78) 2.65 (2.21, 3.18) 2.60 (2.17, 3.13) 1.84 (1.50, 2.26)

  Women 4.09 (3.54, 4.73) 1.78 (1.48, 2.14) 1.78 (1.49, 2.15) 1.63 (1.34, 1.98)

Table 3  Adjusted odds ratios and 95% confidence intervals for 
NAFLD risk associated with the WWI in different test populations: 
sensitivity analysis

Adjusted for sex, age, height, BMI, drinking status, smoking status, exercise 
habits, ALT, AST, GGT, HDL-C, TC, TG, FPG, HbA1c and DBP

Note 1: (1) sensitivity-1: excluding subjects with exercise habits at baseline; 
(2) sensitivity-2: excluding subjects more than 60 years of age at baseline; 
(3) sensitivity-3: excluding subjects whose baseline SBP ≥ 140 mmHg 
or DBP ≥ 90 mmHg; (4) sensitivity-4: excluding subjects whose baseline 
BMI ≥ 25 kg/m2; (5) sensitivity-5: excluding subjects whose baseline 
TG ≥ 1.7 mmol/L

Note 2: Habit of exercise was not included in sensitivity-1; Age was not included 
in sensitivity-2; BMI was not included in sensitivity-4; TG was not included in 
model 4 of sensitivity-5

Abbreviations: WWI weight-adjusted-waist index, CI confidence interval, OR Odds 
ratios

OR (95%CI)

All population Men Women

Sensitivity-1 1.73 (1.48, 2.01) 1.95 (1.56, 2.44) 1.57 (1.27, 1.95)

Sensitivity-2 1.95 (1.69, 2.24) 2.07 (1.69, 2.53) 1.85 (1.51, 2.27)

Sensitivity-3 1.73 (1.50, 2.00) 1.88 (1.53, 2.32) 1.61 (1.32, 1.97)

Sensitivity-4 2.70 (2.29, 3.19) 3.27 (2.59, 4.14) 2.16 (1.70, 2.73)

Sensitivity-5 2.91 (2.54, 3.33) 3.34 (2.72, 4.09) 2.60 (2.16, 3.12)
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unit increase in WWI, the risk of NAFLD increased by 
72% in the entire population, by 84% in men, and by 63% 
in women.

WWI has attracted considerable attention as a novel 
obesity index since its introduction in 2018. Initially 
proposed by Park et al., WWI was developed to address 
the "obesity paradox" observed in cardiovascular disease 
associated with BMI, while accounting for the high cor-
relation between WC and BMI. They standardized WC 
by body weight and demonstrated a linear correlation 
between WWI and cardiovascular-related diseases and 
mortality rates [21]. Subsequent studies have shown the 
efficacy of WWI in risk assessment for cardiovascular 
diseases [24–26] and its potential value in metabolic-
related diseases, kidney diseases, and other areas [27–
29]. Recently, Shen et  al. investigated the association of 
WWI with liver fat deposition in Americans, further 
expanding the applications of WWI. They quantified liver 
fat deposition and fibrosis using vibration-controlled 
transient elastography and found a significant positive 
correlation of WWI with liver fat deposition. Moreover, 
by fitting the smooth curve, they also found a U-shaped 
nonlinear correlation of WWI with liver fibrosis, and 
on both sides of WWI equal to 10.92, the WWI-related 
liver fibrosis risk showed an opposite trend [30]. Building 
upon Shen et  al.’s study, our research further evaluated 
the association of WWI with NAFLD, yielding significant 
positive associations. These findings provided further 
support for Shen et al.’s results [30], suggesting that WWI 
was a useful index for evaluating liver fat deposition. 

However, it is noteworthy that our study also identified 
a nonlinear relationship between WWI and NAFLD; 
whether in the entire population, men or women, there 
was a gradual attenuation of the positive association 
when WWI approached 10, which contrasted with Shen 
et al.’s findings.

The underlying mechanisms linking WWI and NAFLD 
remain unclear. Several possible explanations included: 
(i) WWI reflects central obesity, which actively contrib-
utes to adipocyte dysfunction, insulin resistance, and 
chronic inflammation, all of which further promote the 
development of NAFLD [10, 36]. (ii) WWI is positively 
correlated with the visceral fat area, and visceral fat, due 
to its unique anatomical location, releases metabolites 
that more easily reach the liver, thus affecting hepatic fat 
metabolism [37]. (iii) WWI reflects muscle mass reduc-
tion. Similar to the mechanisms of obesity, infiltration 
of adipose tissue into skeletal muscle is associated with 
insulin resistance and chronic inflammation, both of 
which contribute to NAFLD development [38, 39].

It is important to note that, in the current analysis 
subgroup of the research, whether in the whole popula-
tion or in the men and women, the correlation between 
WWI and NAFLD was found to be particularly stronger 
in non-obese individuals. In fact, "lean-type" NAFLD has 
garnered increasing attention from scholars in recent 
years [40]. According to the report, about 40% of peo-
ple with NAFLD worldwide are classified as non-obese, 
and nearly one in five of them are thin [41]. Researchers 
have conducted several studies in non-obese populations 

Table 4  Stratified associations between WWI and NAFLD by age, sex, BMI, exercise habits, drinking status and smoking status

Adjusted for sex, age, height, BMI, smoking status, exercise habits, ALT, AST, GGT, HDL-C, TC, TG, FPG, HbA1c and DBP

Note: In each case, the model is not adjusted for the stratification variable

Abbreviations: CI confidence interval, OR Odds ratios; other abbreviations as in Table ​1

All population Men Women

Subgroup adjusted OR (95%CI) P-interaction adjusted OR (95%CI) P-interaction adjusted OR (95%CI) P-interaction

Age (years) 0.1455 0.7311 0.1845

  18–44 1.84 (1.47, 2.29) 2.07 (1.56, 2.73) 1.61 (1.11, 2.33)

  45–59 1.85 (1.53, 2.24) 1.89 (1.39, 2.57) 1.77 (1.39, 2.27)

   ≥ 60 1.01 (0.57, 1.79) 1.43 (0.57, 3.61) 0.83 (0.38, 1.78)

BMI (kg/m2) 0.0016 < 0.0001 0.0290

   < 25 2.59 (2.23, 3.02) 3.21 (2.56, 4.01) 2.38 (1.89, 3.00)

   ≥ 25 1.78 (1.45, 2.19) 1.53 (1.13, 2.09) 1.56 (1.15, 2.12)

Exercise habits 0.8434 0.2454 0.5225

  Yes 1.67 (1.20, 2.32) 1.44 (0.91, 2.29) 1.89 (1.13, 3.18)

  No 1.73 (1.49, 2.01) 1.94 (1.56, 2.43) 1.58 (1.28, 1.96)

Smoking status 0.5799 0.3057 0.1763

  Non 1.81 (1.52, 2.15) 2.11 (1.55, 2.87) 1.70 (1.38, 2.09)

  Former 1.51 (1.08, 2.10) 1.49 (1.05, 2.11) 1.82 (0.74, 4.49)

  Current 1.62 (1.18, 2.21) 1.91 (1.37, 2.68) 0.87 (0.45, 1.68)
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Fig. 2  Restricted cubic spline analysis of WWI for the estimation of the risk of NAFLD; A all population; B women; C men. Restricted cubic spline 
model adjusted for sex, age, height, BMI, drinking status, smoking status, exercise habits, ALT, AST, GGT, HDL-C, TC, TG, FPG, HbA1c and DBP. Note: 
Sex itself is not adjusted in the analysis based on gender stratification. NAFLD: non-alcoholic fatty liver disease; WWI: weight-adjusted waist index
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to explore the potential mechanisms underlying the sus-
ceptibility to NAFLD. These mechanisms may include: (i) 
genetic predisposition is considered the primary cause of 
"lean-type" NAFLD. The PNPLA3 gene has been identi-
fied as a genetic determinant of NAFLD, and lean indi-
viduals are more susceptible to the effects of PNPLA3 
gene polymorphisms, increasing their likelihood of car-
rying risk alleles compared to overweight and obese 
individuals [42–44]. (ii) Diet is an important factor in 
NAFLD. Studies have found that lean individuals tend 
to consume more fructose and cholesterol, which will 
promote the occurrence of NAFLD [43, 44]. (iii) Other 
factors such as metabolic syndrome, disrupted gut micro-
biota, and decreased skeletal muscle mass and function 
have also been implicated in the formation of non-obese 
NAFLD [42–44]. It is noteworthy that non-obese NAFLD 
patients are not at low risk for overall mortality, cardi-
ovascular-related mortality, or liver-related mortality 
[41, 45]. Therefore, while focusing on the obese popula-
tion, attention should also be paid to the occurrence of 
NAFLD in non-obese individuals.

Strengths and limitations
Strengths
(i) For the first time, we found a correlation between 
a new obesity indicator, WWI, and NAFLD, and these 
findings can provide new insights into the risk manage-
ment of NAFLD. (ii) WWI is easy to calculate and suit-
able for practical applications. Moreover, the NAGALA 
project’s samples were drawn from a general health 
check-up population, and it had a sufficient sample size, 
making it applicable for promotion among ordinary peo-
ple. (iii) This study employed rigorous statistical meth-
ods to adjust for non-collinear variables and performed 
four sensitivity analyses, indicating the reliability of the 
research findings.

Limitations
(i) The NAGALA study was conducted in a Japanese pop-
ulation, and further investigation is needed to determine 
its applicability in other regions or populations. (ii) This 
study was cross-sectional in nature and cannot establish 
a causal association of WWI with NAFLD. (iii) The diag-
nosis of NAFLD in this study was based on abdominal 

ultrasonography, which may underestimate liver fat con-
tent in some patients [46]. (iv) Although we included 
and controlled for known covariates, there still may be 
unmeasured confounding variables that could interfere 
with the conclusions of this study.

Conclusions
The current study demonstrated a positive and nonlin-
ear association of WWI with NAFLD, with a more pro-
nounced effect of WWI on NAFLD risk in non-obese 
individuals compared to overweight or obese individuals. 
These findings provided valuable new reference informa-
tion for the risk assessment of NAFLD and added new 
evidence to its prevention.
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