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Abstract 

Background:  Insulin resistance (IR) evolved from excessive energy intake and poor energy expenditure, affecting 
the patient’s quality of life. Amino acid and acylcarnitine metabolomic profiles have identified consistent patterns 
associated with metabolic disease and insulin sensitivity. Here, we have measured a wide array of metabolites (30 
acylcarnitines and 20 amino acids) with the MS/MS and investigated the association of metabolic profile with insulin 
resistance.

Methods:  The study population (n = 403) was randomly chosen from non-diabetic participants of the Surveillance 
of Risk Factors of NCDs in Iran Study (STEPS 2016). STEPS 2016 is a population-based cross-sectional study conducted 
periodically on adults aged 18–75 years in 30 provinces of Iran. Participants were divided into two groups according 
to the optimal cut-off point determined by the Youden index of HOMA-IR for the diagnosis of metabolic syndrome. 
Associations were investigated using regression models adjusted for age, sex, and body mass index (BMI).

Results:  People with high IR were significantly younger, and had higher education level, BMI, waist circumference, 
FPG, HbA1c, ALT, triglyceride, cholesterol, non-HDL cholesterol, uric acid, and a lower HDL-C level. We observed a 
strong positive association of serum BCAA (valine and leucine), AAA (tyrosine, tryptophan, and phenylalanine), ala‑
nine, and C0 (free carnitine) with IR (HOMA-IR); while C18:1 (oleoyl L-carnitine) was inversely correlated with IR.

Conclusions:  In the present study, we identified specific metabolites linked to HOMA-IR that improved IR predic‑
tion. In summary, our study adds more evidence that a particular metabolomic profile perturbation is associated with 
metabolic disease and reemphasizes the significance of understanding the biochemistry and physiology which lead 
to these associations.
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Introduction
Insulin resistance (IR) is a complex metabolic disorder 
characterized by the attenuated responsiveness of periph-
eral tissues, primarily muscle, liver, and adipose tissue, to 
insulin signaling, so insulin release is increased to main-
tain glucose homeostasis [1]. IR is associated with type 
2 diabetes (T2D) or other metabolic risks such as meta-
bolic syndrome, cardiovascular disease, and obesity [2, 
3] and it was shown that inflammatory mechanisms and 
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pro-inflammatory mediators have been largely involved 
in the pathogenesis of IR [4] and other metabolic disor-
ders like T2D [5]. In this case, several pro-inflammatory 
cytokines such as tumor necrosis factor-alpha (TNF-α) 
[6, 7] and interleukin-6 (IL-6) [8] that develop inflamma-
tion through the reactive oxygen species (ROS) genera-
tion and oxidative stress pathways, decisively induce IR 
in peripheral tissues and adipocytes, particularly in a case 
of obesity [9]. Even, gestational weight gain was shown 
to associate with decreased pancreatic beta-cell func-
tion and impaired glucose-insulin metabolism in over-
weight/ obese pregnant women [10]. However, IR can 
also develop in individuals with normal body weight [11]. 
Furthermore, it is also linked with insulin action on pro-
tein and lipid metabolism as well as vascular endothelial 
function and gene expression [12–14].

Homeostasis model assessment for insulin resistance 
(HOMA-IR) was first introduced by Turner of the Uni-
versity of Oxford research group in 1985, which provides 
an estimate of IR based on fasting glucose and insulin 
levels. A higher score of HOMA-IR indicates more severe 
IR. Compared to hyperinsulinemic-euglycemic glucose 
clamp as the gold standard, HOMA-IR has been vali-
dated as a surrogate marker of IR for clinical and large-
scale epidemiological research [15]. Even though it still 
has its limitations in the early diagnosis of IR [16].

The recent advent of techniques for comprehensive 
metabolic analysis, often termed “metabolomics”, has 
provided fresh insights into metabolic disorders [17]. 
Metabolomics is an analytical approach for identifying 
and quantifying endogenous small-molecule metabolites 
(< 1,500  Da) [18]. Alteration in metabolomics profiles 
may facilitate the forecast of specific metabolic diseases 
with high accuracy and help understand related funda-
mental mechanisms as well as metabolic pathways [17, 
19]. Moreover, it is beneficial to classify personalized 
“metabolic signatures” and make it possible to suggest 
tailored therapy [20]. Various metabolomics tools, such 
as nuclear magnetic resonance spectroscopy (NMR), 
ultra-performance liquid chromatography (UPLC), and 
tandem mass spectrometry (MS/MS), have been used to 
generate metabolic profiles from blood, urine, or tissues 
[16].

Prevailing theories for the pathogenesis of IR focus 
on the dysregulation of carbohydrate metabolism, fat 
metabolism, and protein metabolism [1]. Among these, 
branched-chain amino acids (BCAAs), aromatic amino 
acids (AAAs), and acylcarnitines were reported to be 
associated with IR as biomarkers most commonly [11, 
16], particularly BCAAs (leucine, isoleucine, and valine) 
and AAAs (phenylalanine and tyrosine). Also, com-
prehensive lipid profiling demonstrated that fatty acids 
of shorter carbon chain length and lower double bond 

content were associated with IR [21, 22]. Furthermore, 
IR could be caused by metabolic perturbations of fatty 
acid oxidation (FAO) and mitochondrial dysfunction 
[23]. Since the intracellular accumulation of acyl-CoA 
derivatives has been implicated in the development of 
IR, several studies showed its treatment with carnitine 
supplementation. Carnitine is a critical transporter of 
long-chain fatty acids in mitochondria, and its deficiency 
will impair the use of fat as fuel [24, 25]. The strongest 
associations were found for medium-chain acylcarniti-
nes and IR [26]. Thus, accurate biomarkers or parameters 
that indicate IR state and metabolic risks are essential to 
understanding the pathophysiology of IR.

However, the true impact of these metabolites on IR, as 
well as the etiology and source of metabolite alterations, 
are unknown and incompletely understood, especially in 
nondiabetic individuals [22, 27, 28]. Additionally, studies 
have shown that Asians acquire IR at low BMIs [11], and 
even those with metabolic syndrome who do not fit the 
criteria for central obesity can develop IR [3, 29].

Here, we have measured and evaluated a wide array of 
metabolites (30 acylcarnitines and 20 amino acids) with 
the MS/MS method in a population-based study of 403 
non-diabetic Iranian individuals and its association with 
IR.

Materials and methods
The study population (n = 403) was chosen from non-
diabetic individuals from participants of the Surveillance 
of Risk Factors of NCDs in Iran Study (STEPS 2016) who 
had sufficient data on their metabolites profile. STEPS 
2016 is a population-based cross-sectional study con-
ducted periodically on adults aged 18–75  years in 30 
provinces of Iran to investigate none communicable risk 
factors [30]. After checking medical history via question-
naires and laboratory results, all subjects with a history of 
diabetes mellitus, using anti-diabetic medications, poten-
tial undiagnosed diabetes (defined by HbA1c ≥ 6.5% or 
fasting glucose ≥ 100  mg/dL), and who had incomplete 
data about their metabolite concentration were excluded.

Blood sampling and biochemical measurement
Fasting venous blood samples were drawn into EDTA-
containing tubes as well as sodium fluoride tubes. After 
the separation of plasma, the samples were stored at the 
appropriate temperature until analysis. Biochemical ana-
lytes including fasting plasma glucose (FPG), total choles-
terol (TC), high-density lipoprotein cholesterol (HDL-C), 
triglycerides (TG), liver enzymes, uric acid, fructosamine, 
and HbA1c were measured by Cobas C311 auto analyzer 
using commercial kits from Roche Company (Roche 
Diagnostics, Mannheim, Germany). Insulin concentra-
tion was determined by the Electrochemiluminescence 
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immunoassay method using Cobas e411 immunoana-
lyser from Roche Company.

Homeostatic Model Assessment for IR (HOMA-IR) 
values was calculated using the following formula: fasting 
insulin (µU/L) × fasting glucose (mg/dL)/405.

Metabolomics analysis
Plasma concentration of amino acids and acylcarniti-
nes were quantified by a targeted metabolomics analysis 
using flow‐injection tandem mass spectrometry (triple 
quadrupole API 3200 SCIEX with electrospray ioniza-
tion) accompanied by Thermo Scientific Dionex UltiMate 
3000 standard HPLC system. The analysis method, 
including preparation, derivatization, and validation, is 
published elsewhere [31, 32]. Briefly, 10 µL of samples/ 
calibrators/ quality control material were mixed with 
internal standard, and after centrifuging at 4˚C, superna-
tant fluids were separated and dried by a flow of nitro-
gen (99.9%) at 45˚C. In the next step, the samples were 
derivatized by acetyl chloride and 1-Butanol followed by 
incubation at 65˚C for 15 min. Finally, the samples were 
dried again by a flow of nitrogen (99.9%) and dissolved by 
100 µL of acetonitrile and water.

Statistical analysis
The metabolic syndrome was diagnosed according to 
the NCEP ATP III definition [33]. Based on this defini-
tion, the study participants were identified as having 
metabolic syndrome if they had three or more of the 
following features: 1) waist circumference ≥ 102  cm 
in men and ≥ 88  cm in women; 2) TGs ≥ 150  mg/
dl; 3) FBS ≥ 100  mg/dl (or diagnosed diabetes); 4) 
HDL-C < 40 mg/dl in men and < 50 mg/dl in women; and 
5) systolic blood pressure ≥ 130 mmHg or diastolic blood 
pressure ≥ 85 mmHg. The HOMA-IR cut-off point in the 
detection of metabolic syndrome was determined using 
the Yuden index, and the participants were classified into 
two groups: HOMA-IR < cut-off and HOMA-IR ≥ cut-off.

The data were checked for normality using descriptive 
analysis and Kolmogorov–Smirnov test. In each group, 
continuous variables were presented as mean ± SD and 
median (IQR) depending on the variables’ normality. 
Categorical variables were expressed as numbers (%). 
Chi-Square and t-test were used to compare the results.

Univariate logistic regression was used to evaluate 
the correlation between metabolomics and HOMA-IR 
after the variables were standardized by Z value estima-
tion. For multiple comparisons, obtained P-values were 
adjusted with the Benjamini–Hochberg method. Corre-
lation between metabolomics variables was assessed by 
Pearson correlation, and a correlation matrix was pro-
vided. Considering the high correlation between metabo-
lites, principal components analysis (PCA) was employed 

to make independent factors, in which the appropri-
ateness was checked by Kaiser–Meyer–Olkin (KMO) 
and Bartlett sphericity tests. Factors were made based 
on eigenvalue more than 1 using varimax rotation with 
maximum likelihood [34]. A factor score was calculated 
for each individual based on the linear combination of 
amino acids and acylcarnitine and the loading factor for 
each component. The relationship between each compo-
nent and the level of HOMA-IR was evaluated by logistic 
regressions separately, which were adjusted for age, sex, 
and BMI. Finally, the relationship between significant 
components in separate analyses was evaluated and the 
HOMA-IR level was investigated by a multiple regres-
sion model. Standardization was applied for the score of 
the components in all the logistic regression models. The 
significance level for statistical tests was 0.05, and R soft-
ware version 3.6.1 was used for data analysis.

Results
The study comprised 403 people (mean age 
54.63 ± 12.13 years). Of them, 197 (48.9%) were male, and 
206 (51.1%) were female. The mean HOMA-IR among 
the participants was 2.09 ± 1.58, and 118 (29.3%) of the 
subjects had metabolic syndrome. The HOMA-IR opti-
mal cut-off was 1.95 based on the Yuden index to detect 
people with metabolic syndrome. Thus, 180 patients 
(44.7%) had a HOMA-IR equal to or more than 1.95, 
and 223 patients (55.3%) had a HOMA-IR less than 1.95. 
Sensitivity, specificity, PPV and NPV of this cut off point 
in IR detection were 68.4% (95% CI: 59.46% -76.87%), 
65.26% (95% CI: 59.42% -70.78%), 45% (95% CI: 37.59% 
-52.58%) and 83.41% (95% CI: 77.86%—88.04%), respec-
tively. The basic characteristics of the subjects in terms of 
HOMA-IR are presented in Table 1. A higher proportion 
of those with low IR were men (57.8% vs. 42.2%). People 
with high IR were significantly younger and had higher 
education level, BMI, waist circumference, FPG, HbA1c, 
ALT, TG, cholesterol, non-HDL cholesterol, uric acid, 
and a lower mean of HDL-C.

Table 2 shows the characteristics of individuals’ metab-
olites by the level of IR. Table  3 shows the association 
between metabolites and IR for each metabolite, with 
or without adjusting the effect of age, sex, and BMI. 
After adjusting for age, sex, and BMI, among acylcarni-
tines, a higher C0 and C18: 1 respectively increased and 
decreased the chance of IR. Also, the higher levels of 
amino acids, including alanine, leucine, phenylalanine, 
valine, and tryptophan were associated with a greater 
chance of IR.

Figure 1 shows the metabolite correlation matrix. The 
strongest correlations were found between leucine and 
valine (r = 0.907), C8 and C10 (r = 0.970), and C8 and 
C10: 1 (r = 0.943, Additional file 1).
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According to PCA results, the sampling adequacy value 
with the KMO test was 0.867, and according to the Bar-
tlett test, the correlation between metabolites was sig-
nificant enough to perform PCA effectively (p < 0.001). 
Nine components were identified based on the Scree plot 
diagram (Additional file 2), accounting for 69.19% of the 
total variance. The findings for each component and its 
members are based on the maximal factor loading (Addi-
tional file  3). The first component includes C0, C4OH, 
C2, C5DC, C14, C14OH, C16, C16: 1, C16OH, C16: 
1OH, C18OH, C18, C18: 1OH, and C18: 1, the second 
component includes C4, C4DC, C6, C8, C8: 1, C10, C10: 
1, C12, C14: 1 and C14: 2, the third component includes 
leucine, tyrosine, valine, methionine, phenylalanine, ala-
nine, glutamic acid, and threonine, the fourth component 
includes C3, C3DC, C5, C5OH, and C5: 1, the fifth com-
ponent includes lysine, glutamine, asparagine, histidine, 

tryptophan, phenylalanine, alanine, glutamic acid, and 
threonine, the sixth component includes citrulline, orni-
thine, and proline, the seventh component contains argi-
nine and aspartic acid, the eighth component includes 
glycine and serine, and the ninth component was C18: 
2OH.

Figure 2 depicts the association between each compo-
nent and IR after adjusting for the effects of age, sex, and 
BMI. Components 3, 4, and 8 were significantly associ-
ated with IR, and since the loading of all amino acids in 
this component is positive, a higher amount of this com-
ponent is associated with an increased chance of devel-
oping IR (OR = 2.48; p < 0.001). Loading of all metabolites 
in the fourth component was positive, so higher levels of 
this component were associated with an increased risk of 
developing IR (OR = 1.30; p = 0.029). The eighth compo-
nent, including glycine and serine, had positive loading, 
and with increasing the amount of this component, the 
chances of IR decreased (OR = 0.757, p = 0.021). Multiple 
logistic regression findings revealed that when the effects 
of age, sex, BMI, and components were adjusted, the 
eighth and third components were substantial predictors 
of IR, but the fourth component lost its impact (Table 4).

Discussion
Excessive energy intake, especially from simple carbohy-
drate and total carbohydrate, and low energy expenditure 
caused the development of IR [35]. IR is a condition in 
which a particular concentration of insulin produces 
a less-than-expected biological effect; that makes up a 
broad clinical spectrum including diabetes, obesity, and 
metabolic syndrome, which will affect the patient’s qual-
ity of life (Fig. 3) [25].

In this study, we included 403 non-diabetic patients 
from STEP2016. All metabolite measurements were 
quantified with the MS/MS-based metabolomics plat-
form, which allowed for a comparison of the absolute 
concentrations across all individuals. The optimal cut-off 
point of HOMA-IR for the detection of IR in our study 
population was calculated to be 1.95.

The most noticeable finding is a strong positive asso-
ciation of serum BCAAs (valine and leucine), AAAs 
(tyrosine, tryptophan, and phenylalanine), alanine, and 
C0 (free carnitine) with IR (HOMA-IR); while C18:1 (ole-
oyl L-carnitine) was inversely correlated with IR. Eleva-
tion in the BCAAs and AAAs has been previously found 
in IR state and was strongly associated with early IR and 
T2D prediction regardless of BMI [19, 36, 37]. So, they 
are detectable about one decade before the onset of T2D, 
suggesting these metabolites might serve as potential 
biomarkers to predict future T2D [38–40].

The mechanism between BCAAs and IR is not com-
pletely understood [37, 41]. However, there is some 

Table 1  Baseline characteristics of study population according 
to HOMA-IR level

Continuous variables are presented as mean ± SD and categorical variables as 
Number (%)

BMI Body mass index, WC Waist circumference, HC Hip circumference, SBP 
Systolic blood pressure, DBP Diastolic blood pressure, FPG Fasting plasma 
glucose, TG Triglycerides, Chol Cholesterol, HDL-C High-density cholesterol, ALT 
Alanine aminotransferase

Variable HOMA-IR level P-value

< 1.95
(n = 223)

≥ 1.95
(n = 180)

Gender, N (%) Female 93 (41.7) 104 (57.8) 0.001

Male 130 (58.3) 76 (42.2)

Age (year) 56.80 ± 13.28 51.94 ± 9.94  < 0.001

BMI (kg/m2) 25.05 ± 4.56 26.17 ± 4.43  < 0.001

WC (cm) 88.57 ± 11.84 98.60 ± 10.89  < 0.001

HC (cm) 97.6 ± 10.4 105.8 ± 8.9  < 0.001

SBP (mmHg) 129.3 ± 21.19 128.8 ± 18.56 0.81

DBP (mmHg) 79.26 ± 11.82 80.77 ± 11.14 0.195

Education years, N (%) 0.015

  < 1 year 47 (33.2) 38 (21.1)

  1–7 years 76 (34.1) 58 (32.2)

  8–12 years 48 (21.5) 57 (31.7)

  > 12 years 25 (11.2) 27 (15.0)

FPG (mg/dL) 85.5 ± 9.3 90.2 ± 6.9  < 0.001

HbA1c (%) 5.41 ± 0.387 5.57 ± 0.337  < 0.001

Fructosamine (µmol/L) 233 ± 19 234 ± 25 0.81

TG (mg/dL) 104.1 ± 52.42 157.3 ± 88.86  < 0.001

Chol (mg/dL) 162.2 ± 33.54 174.1 ± 34.60 0.001

HDL-C (mg/dL) 44.56 ± 11.36 39.14 ± 11.13  < 0.001

Non-HDL Chol (mg/dL) 117.7 ± 33.77 134.9 ± 34.25  < 0.001

ALT (IU/L) 17.79 ± 9.32 23.46 ± 13.02  < 0.001

AST (IU/L) 22.74 ± 9.12 23.41 ± 7.84 0.43

Uric acid (mg/dL) 4.82 ± 1.20 5.42 ± 1.40  < 0.001
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evidence supporting this correlation. Insulin is a regula-
tor of branched-chain α-ketoacid dehydrogenase (BCKD) 
complex, a rate-limiting enzyme of BCAA catabolism. 
Reduced enzyme activity and perturbation of the BCKD 
complex in hyperinsulinemia and diabetes have been 
observed [36, 42–44]. Also, findings suggest that the 
effects of leucine, but not other BCAAs, inhibit insulin-
sensitive glucose uptake via the mTOR signaling path-
way [45, 46]. Moreover, in BCAA dysmetabolism, some 
potentially toxic intermediates might be accumulated, 
resulting in impaired cellular or organ function [47]. 
Olson et  al. found that toxic BCAA metabolites, rather 
than BCAAs themselves, can cause mitochondrial dys-
function [48].

Alanine also showed a positive association with 
HOMA-IR. Glutamate is produced in the first step 

of BCAA catabolism. Glutamate accumulation may 
increase the transamination of pyruvate to alanine, which 
may promote gluconeogenesis and therefore contribute 
to the development of glucose intolerance [22, 49]. Inter-
estingly, because the alanine increase is dependent on 
BCAAs, its alteration is less significant than BCAAs and 
AAAs in our results.

Tryptophan levels tended to show a substantial asso-
ciation with IR. These results verified previous find-
ings that tryptophan and its downstream metabolite 
serotonin (5-hydroxytryptamine), kynurenine, and xan-
thurenic acid play important roles in the regulation of 
IR, pancreatic beta-cell function, and glucose homeo-
stasis [50]. Furthermore, tyrosine was discovered to be 
substantially linked to IR as well as obesity in children 
[51]. Tyrosine was also discovered to be a significant 

Table 2  Metabolites concentration according to HOMA-IR level

Acylcarnitines 
(µmol/L)

HOMA-IR level Amino acids (µmol/L) HOMA-IR level

< 1.95 ≥ 1.95 < 1.95 ≥ 1.95

C0 54.30 ± 13.47 57.61 ± 13.02 Alanine 364.7 ± 94.59 432.6 ± 95.16

C2 13.62(11.18—16.84) 13.84(11.61—16.17) Aspartic Acid 11.8(9.800—13.85) 12(9.600—14.00)

C3 0.735(0.551—0.963) 0.831(0.638 -1.06) Glutamic Acid 64.65(57.97—71.57) 67.9(60.20 -75.20)

C3DC 0.074(0.053—0.102) 0.0665(0.054 -0.091) Leucine 114.9 ± 24.02 127.8 ± 23.66

C4 0.382(0.286—0.500) 0.404(0.297—0.551) Methionine 26.9(23.85—30.40) 27.7(24.90—32.70)

C4OH 0.049(0.036—0.066) 0.0465(0.037—0.064) Phenylalanine 59.49 ± 12.56 63.76 ± 10.53

C4DC 0.063(0.051—0.079) 0.065(0.055—0.080) Tyrosine 64.38 ± 12.76 74.18 ± 13.78

C5 0.199(0.152—0.259) 0.2175(0.169—0.268) Valine 238.0 ± 46.06 266.5 ± 41.97

C5:1 0.03(0.025—0.044) 0.032(0.026 -0.041) Arginine 67.56 ± 20.88 69.52 ± 18.74

C5OH 0.06(0.051—0.074) 0.06(0.051—0.070) Citrulline 40.03 ± 10.91 36.78 ± 9.43

C5DC 0.306(0.235—0.429) 0.285(0.236—0.364) Glycine 256.1(221.6—323.7) 239.7(204.6—313.0)

C6 0.152(0.112—0.227) 0.1545(0.109—0.218) Ornithine 91.2(77.20—110.7) 89(75.40—105.5)

C8 0.25(0.165—0.377) 0.237(0.171—0.352) Proline 241.3 ± 91.09 259.6 ± 77.52

C8:1 0.289(0.202—0.437) 0.3185(0.213—0.439) Threonine 139.09 ± 38.38 141.33 ± 32.34

C10 0.337(0.229—0.550) 0.311(0.219 -0.491) Serine 107.7 ± 31.73 99.59 ± 24.88

C10:1 0.333(0.235—0.488) 0.316(0.234—0.471) Histidine 80.87 ± 13.69 83.29 ± 15.89

C12 0.141(0.098—0.196) 0.1225(0.092—0.179) Lysine 170.7 ± 40.54 170.08 ± 40.09

C14 0.058(0.044—0.077) 0.051(0.041—0.068) Tryptophan 66.24 ± 14.83 72.82 ± 16.16

C14:1 0.123(0.088—0.180) 0.107(0.078—0.153) Asparagine 43.6(33.47—54.90) 38.7(30.30—49.90)

C14:2 0.097(0.069—0.135) 0.086(0.065—0.117) Glutamine 489.9 ± 111.2 478.0 ± 110.0

C14OH 0.012(0.009—0.017) 0.012(0.009—0.015)

C16 0.173(0.143—0.216) 0.1705(0.146—0.204)

C16OH 0.011(0.008—0.014) 0.01(0.008—0.013)

C16:1OH 0.016(0.013—0.023) 0.015(0.012—0.019)

C16:1 0.045(0.034—0.061) 0.043(0.032—0.058)

C18 0.066(0.055—0.088) 0.062(0.051—0.075)

C18:1 0.184(0.144—0.232) 0.1685(0.140—0.212)

C18OH 0.008(0.006—0.010) 0.008(0.006—0.010)

C18:1OH 0.012(0.009—0.016) 0.012(0.009—0.014)

C18:2OH 0.027(0.021—0.034) 0.026(0.021—0.033)
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predictor of diabetes in males from South Asia [52]. 
Also, findings showed that AAAs are higher in obese 
compared to lean subjects. This is probably because 
of the “large neutral amino acids” (tryptophan, pheny-
lalanine, tyrosine, leucine, isoleucine, valine), which 
include both BCAAs and AAAs, compete for transport 
into mammalian cells via the large neutral amino acid 
transporter (LAT1). Assuming that persistent BCAA 
increases limit AAA transfer into cells and tissues [22, 
53].

Acetylcarnitine levels rise during acetyl-CoA over-
load which occurs when glycolysis or β-oxidation sur-
passes the tricarboxylic acid (TCA) cycle activity and 
has contributed to substrate switching and glucose 

homeostasis [54, 55]. When IR is present, free fatty 
acids overload β-oxidation on skeletal muscle and liver 
in an attempt to maintain energy substrate [19].

Long-chain acyl-CoA and other fatty acid metabolites 
accumulate in skeletal muscle and heart, impair insulin 
signaling and contribute to the development of IR [56, 
57]. Furthermore, carnitine could modulate the intrami-
tochondrial acetyl-CoA/CoA ratio and the activity of 
the pyruvate dehydrogenase complex (PDHC), alter the 
expression of glycolytic and gluconeogenic enzymes, 
stimulate the IGF-1 axis and IGF-1 signaling pathway, 
and alter the expression of insulin signaling pathway 
genes [24].

Table 3  Associations between metabolites and HOMA-IR level with and without adjustment for age, sex, and BMI

All p values are adjusted for multiple testing using the Benjamini–Hochberg false discovery rate
a OR is measured per SD as data were transformed into Z-scores after adjustment for age, sex, and BMI
b Un-adjusted p-value
c P value is adjusted for age, sex, and BMI

Acylcarnitines ORa (95% CI) P valueb P valuec Amino acids ORa (95% CI) P valueb P valuec

C0 1.287 (1.051—1.576) 0.044 0.013 Alanine 2.149 (1.70—2.73)  < 0.001  < 0.001
C2 0.924 (0.754—1.13) 0.569 0.774 Aspartic Acid 1.035 (0.85—1.26) 0.831 0.7662

C3 1.18 (0.966—1.45) 0.226 0.142 Glutamic Acid 1.163 (0.933—1.50) 0.320 0.3545

C3DC 0.849 (0.691—1.04) 0.236 0.838 Leucine 1.75 (1.41—2.17)  < 0.000  < 0.000
C4 1.14 (0.934—1.40) 0.333 0.380 Methionine 1.312 (1.07—1.61) 0.030 0.089

C4OH 0.892 (0.729—1.09) 0.398 0.431 Phenylalanine 1.452 (1.18—1.79)  < 0.000  < 0.000
C4DC 1.03 (0.843—1.25) 0.891 0.963 Tyrosine 2.21 (1.74—2.81)  < 0.000  < 0.000
C5 1.18 (0.963—1.43) 0.235 0.153 Valine 1.96 (1.56—2.45)  < 0.000  < 0.000
C5_1 1.07 (0.879—1.30) 0.629 0.537 Arginine 1.103 (0.905—1.35) 0.463 0.536

C5OH 0.999 (0.82—1.22) 0.989 0.774 Citrulline 0.721 (0.585—0.888) 0.013 0.766

C5DC 0.752 (0.61—0.928) 0.029 0.413 Glycine 0.844 (0.689—1.03) 0.226 0.146

C6 1.01 (0.831—1.23) 0.933 0.983 Ornithine 0.916 (0.751—1.12) 0.511 0.983

C8 0.983 (0.806—1.20) 0.908 0.983 Proline 1.243 (1.01—1.52) 0.090 0.153

C8:1 1.09 (0.899—1.33) 0.499 0.983 Threonine 1.064 (0.874—1.30) 0.652 0.983

C10 0.957 (0.783—1.17) 0.780 0.988 Serine 0.747 (0.605—0.922) 0.029 0.1400

C10:1 0.956 (0.779—1.18) 0.780 0.988 Histidine 1.179 (0.966—1.44) 0.226 0.192

C12 0.887 (0.725—1.09) 0.394 0.811 Lysine 0.984 (0.808—1.20) 0.908 0.766

C14 0.744 (0.599—0.923) 0.029 0.267 Tryptophan 1.555 (1.26—1.93)  < 0.000  < 0.000
C14:1 0.782 (0.635—0.965) 0.061 0.142 Asparagine 0.777 (0.63 – 1.00) 0.056 0.267

C14:2 0.854 (0.694—1.05) 0.252 0.413 Glutamine 0.897 (0.735—1.10) 0.416 0.983

C14OH 0.795 (0.647—0.979) 0.079 0.463

C16 0.906 (0.742—1.11) 0.463 0.7662

C16OH 0.858 (0.701—1.05) 0.252 0.983

C16:1OH 0.727 (0.586—0.902) 0.022 0.267

C16:1 0.871 (0.699—1.09) 0.362 0.413

C18 0.717 (0.578—0.889) 0.013 0.146

C18:1 0.743 (0.596—0.926) 0.029 0.013
C18OH 0.89 (0.729—1.09) 0.398 0.988

C18:1OH 0.753 (0.611—0.928) 0.029 0.153

C18:2OH 0.98 (0.803—1.20) 0.908 0.983
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In the area of IR, the notion of lipotoxicity associated 
with dysfunctional β-oxidation is well acknowledged, 
and increasing emphasis has been paid to intramito-
chondrial changes and impairments in mitochondrial 
FAO, particularly on acylcarnitines [58, 59]. Further-
more, acylcarnitines may induce NF-κB signaling and 
cytokine production in macrophages and epithelial 
cells as well as alter insulin sensitivity through a pro-
inflammatory response [4, 60] and in this case, anti-
inflammatory therapy such as an interleukin-1 receptor 
antagonist showed improvement in insulin sensitivity 
[61]. Acylcarnitine rise could be a secondary manifes-
tation of IR because of perturbation in mitochondrial 

function. However, acylcarnitine by itself could accen-
tuate IR intensity with NF-κB signaling which could 
be a vicious circle. According to our results, the asso-
ciation of the BCAA and AAA cluster with IR was 
stronger than that observed from acylcarnitine clusters, 
which is supported by the Newgard et al. study as well 
[22]. This strengthens the secondary manifestation role 
of acylcarnitine in IR.

Dysregulation of the outer mitochondrial membrane 
enzyme carnitine palmitoyltransferase (CPT1) and 
mitochondrial matrix protein CPT2 with subsequent 
effects on energy production from FAO and impaired 
feedback regulation of glucose metabolism could 

Fig. 1  Collorogram of metabolites concentration correlation
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underlie the alteration in acylcarnitines [62, 63]. In our 
study, IR was associated with an increase in C0 and a 
reduction in C18 which is comparable to clinical pres-
entation of CPT1 deficiency disease [64].

The concept of increased, though incomplete, FAO by 
disproportional regulation of FAO, TCA cycle, and res-
piratory chain is attractive to explain IR. However, there 
remains doubt about this mechanism, and there is no 
proof that acylcarnitines play a role in the induction of 
IR itself. Acylcarnitines are present under physiological 

conditions, and their levels vary according to dietary 
circumstances [65]. Carnitine supplementation demon-
strates an improvement in IR states. However, little het-
erogeneity existed in the studies [25]. Our factor analysis 
demonstrates that the eighth component consisted of 
glycine and serine inversely associated with IR. In line 
with our finding, Sekhar RV showed that glycine and 

Fig. 2  Association of components and HOMA-IR adjusted for age, sex, and BMI

Table 4  Multiple Logistic regression on the association of 
metabolomics factors with HOMA-IR level. P value was adjusted 
for age, sex, BMI and components

Components Coefficient SE OR 95% CI P value

PC 3 -0.408 0.132 2.74 2.00 – 3.75  < 0.001

PC 4 0.053 0.138 1.05 0.804 – 1.38 0.702

PC 8 1.01 0.161 0.665 0.513 -0.862 0.002

Fig. 3  Association of insulin resistance with cardiovascular disease, 
type 2 diabetes mellitus, obesity and metabolomic perturbation
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N-acetylcysteine supplementation improves the impaired 
mitochondrial FAO and decreases IR [66].

Limitations of our study include unknown generaliz-
ability to ethnic groups causes IR-related biomarkers 
particularly, BCAAs seem to be race dependent due to 
the different genetic backgrounds [41]. Therefore, the 
valuable result of this study must be compared with other 
ethnic groups. Also, HOMA-IR might be considered an 
“imprecise” method for assessing IR. However, individu-
als from opposing HOMA-IR index categories had clear 
differences in the concentrations of TG and HDL-C, sup-
porting the idea that these individuals had true differ-
ences in insulin sensitivity.

Novel markers may aid to elucidate aspects of meta-
bolic dysfunction that contribute to diabetes risk and 
improve the early detection of this condition [41]. 
Because T2D has a progressive onset, metabolite pro-
files at multiple time points before T2D diagnosis would 
be useful to identify new, early diagnostic biomarkers 
of T2D [67]. In the present study, we identified specific 
metabolites linked to HOMA-IR that improved IR pre-
diction. However, further studies are required to target 
the related metabolites with therapeutic strategies and 
assess their power in predictive risk scores. To asso-
ciate metabolites in a predictive matter, observations 
must be performed prior to the development of disease 
to determine the risk of disease and comorbidities. In 
conclusion, our study adds more evidence that a specific 
metabolomic profile is associated with insulin resist-
ance and reemphasizes the significance of understand-
ing the biochemistry and physiology which lead to these 
associations.
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