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Maternal cardiometabolic markers are
associated with fetal growth: a secondary
exploratory analysis of the LIMIT
randomised trial
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Abstract

Background: To determine the association between maternal cardiometabolic and inflammatory markers with
measures of fetal biometry and adiposity.

Methods: Women included in this exploratory analysis were randomised to the ‘Standard Care’ group (N = 911)
from the LIMIT randomised trial involving a total of 2212 pregnant women who were overweight or obese (ACTR
N12607000161426, Date of registration 9/03/2007, prospectively registered). Fetal biometry including abdominal
circumference (AC), estimated fetal weight (EFW), and adiposity measurements (mid-thigh fat mass, subscapular fat
mass, abdominal fat mass) were obtained from ultrasound assessments at 28 and 36 weeks’ gestation. Maternal
markers included C reactive protein (CRP), leptin and adiponectin concentrations, measured at 28 and 36 weeks’
gestation and fasting triglycerides and glucose concentrations measured at 28 weeks’ gestation.

Results: There were negative associations identified between maternal serum adiponectin and fetal ultrasound
markers of biometry and adiposity. After adjusting for confounders, a 1-unit increase in log Adiponectin was associated
with a reduction in the mean AC z score [− 0.21 (− 0.35, − 0.07), P = 0.004] and EFW [− 0.23 (− 0.37, − 0.10), P < 0.001] at
28 weeks gestation. Similarly, a 1-unit increase in log Adiponectin was association with a reduction in the mean AC z
score [− 0.30 (− 0.46, − 0.13), P < 0.001] and EFW [− 0.24 (− 0.38, − 0.10), P < 0.001] at 36 weeks gestation. There were no
consistent associations between maternal cardiometabolic and inflammatory markers with measurements of fetal
adiposity.

Conclusion: Adiponectin concentrations are associated with measures of fetal growth. Our findings contribute to
further understanding of fetal growth in the setting of women who are overweight or obesity.
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Background
Obesity represents a major global health challenge, with
over 50% of women entering pregnancy in high-income
countries with a body mass index (BMI) greater than 25
kg/m2 [1, 2]. There are well-recognised associations
between obesity in pregnancy and maternal, fetal and
neonatal health outcomes [3]. In the long-term, there

are clear associations between maternal obesity, fetal
overgrowth, high infant birth weight, and subsequent
childhood obesity [4].
In 1969, Pedersen postulated that maternal hypergly-

caemia stimulates hyperinsulinemia in the fetus, which
in turn directly stimulates fetal growth through insulin
growth factors [5]. In the past 10 years, there has been
increasing recognition of the ‘indirect’ pathway, in-
volving leptin, adiponectin, triglycerides, cholesterol and
inflammatory cytokines which is mediated via placental
transfer [6]. Furthermore, maternal obesity during
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critical time points for fetal development has been linked
to fetal programming via epigenetic modification [7].
During pregnancy, triglycerides and fatty acids are

required for fetal development and growth [8]. Lipopro-
tein receptors, binding proteins and lipases hydrolyse
triglycerides to free fatty acids for uptake by the syncy-
tiotrophoblast, enabling transportation to the fetus along
with storage and metabolism within the placenta [9, 10].
Enhanced placental lipid transport in obese women has
been hypothesised [11] but has not been demonstrated
[12, 13]. Higher concentrations of triglycerides and lipids
have been found in women who are obese [12] and those
women who have delivered a large for gestational age
infant [9, 14]. Studies investigating newborn cord blood
concentrations of lipoproteins [15] have shown an
association with adipose tissue in the fetus and newborn,
contributing to higher infant birth weight [9] and
neonatal adiposity [16].
A key component of the fetal overgrowth pathway is

adiponectin, the endocrine link between maternal adipose
tissue and fetal growth [17]. Adiponectin is secreted by ma-
ternal adipocytes, acting directly on the placenta without
crossing into the fetal circulation [17, 18]. While adiponec-
tin is known to be insulin sensitising in the skeletal muscle
and liver [19], it exerts the opposite effect in the placenta
[20]. During pregnancy, adiponectin inhibits insulin medi-
ated amino acid transport in trophoblast cells via the insu-
lin receptor (IRS) and mTORC1 signalling [19, 20]. As
gestation advances, adiponectin levels decline due to the
physiological resistance to insulin in maintaining serum
glucose [21]. In non-pregnant adults, adiponectin concen-
trations are lower in obesity [22], cardiovascular disease
[18] and Type 2 Diabetes mellitus [23]. During pregnancy,
lower concentration of adiponectin is associated with gesta-
tional diabetes [24]. Maternal and fetal adiponectin appear
to have opposite effects in relation to fetal growth [17], with
low maternal concentrations of adiponectin stimulating
fetal overgrowth [22]. Conversely, cord blood and neonatal
adiponectin concentrations have been reported to be up to
7 times higher than maternal concentrations, with positive
correlations with infant birth weight [25] and anthropomet-
ric measures of neonatal adiposity [25, 26].
With the widespread availability and technological

advances in fetal ultrasound, there is growing interest
in the measurement and prediction of fetal overgrowth
and adiposity [27]. However, the current literature is
limited to relatively small sample sizes and mostly
involving women entering pregnancy with a normal
BMI [28–31].
The aim of this secondary exploratory analysis was to

determine if maternal cardiometabolic and inflammatory
markers were associated with fetal growth and adiposity
measured by ultrasound in women who are overweight
or obese in pregnancy at 28 and 36 weeks gestation.

Methods
The research methodology [32] and clinical findings
[33] of the LIMIT randomised controlled trial have
been published previously. The conduct of the LIMIT
randomised trial adhered to CONSORT methodology
[34]. Women with a BMI ≥25 kg/m2, singleton preg-
nancy, without a diagnosis of diabetes and between
10 + 0 and 20 + 0 weeks gestation were recruited be-
tween June 2008 and December 2011 from 3 public
hospitals across metropolitan Adelaide. The women
were randomised to either the ‘Lifestyle Advice Group’,
receiving standard antenatal care and diet and lifestyle,
or ‘Standard Care Group’ receiving standard antenatal
care without additional diet and lifestyle advice. The
intervention was delivered by a research dietician and
trained research assistants. Further details regarding
content of the intervention [33, 35] and the fetal
growth study [36, 37] have been previously published.
Women included in this analysis were those rando-
mised to the Standard Care Group.

Measurement of cardiometabolic and inflammatory
markers
Maternal blood samples were obtained at 28 and 36
weeks gestation, and cord blood was obtained at birth
and the methodology has been previously described in
detail [38]. At 28 weeks, a fasting maternal serum sample
was collected for all participants in the LIMIT trial. The
following cardiometabolic markers were measured; total
cholesterol, triglycerides, non-esterified fatty acids
(NEFA), high-density lipoprotein cholesterol, insulin,
glucose, leptin, adiponectin and C reactive protein. The
majority (glucose, cholesterol, HDL-C, triglycerides,
NEFA and CRP) were measured using Roche Diagnos-
tics commercial kits (Australia) and non-esterified fatty
acids were measured using Wako Pure Chemical Indus-
tries (Japan). All assays were performed on the auto-
mated Hitachi Auto 912 analyser or Cobas Integra 400
Plus with appropriate calibrators and quality controls
(Roche for Roche assays and Wako standard and Sero
QC’s for the NEFA C assay). Plasma leptin (in singulate;
HL-81 K; Millipore, St. Charles, MO, USA) and adipo-
nectin (in singulate; HADP-61HK; Millipore, St. Charles,
MO, USA) were determined by double antibody radio-
immunoassay following the methods from the supplier.
At 36 weeks, a non-fasting maternal serum sample was

collected and total cholesterol, triglycerides, non-esteri-
fied fatty acids (NEFA), high-density lipoprotein choles-
terol, insulin, glucose, leptin, adiponectin and C reactive
protein were measured.

Ultrasound assessment
Women were offered a research ultrasound scan at
approximately 28 and 36 weeks’ gestation, at which time
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fetal biometry, wellbeing and body composition measure-
ments were obtained as previously described [36, 37]. Esti-
mated date of confinement was verified for all women
based on last menstrual period and early ultrasound scan.
All measurements were obtained prospectively by medical
practitioners with specialist or subspecialist training in ob-
stetric ultrasound whilst blinded to the woman’s research
treatment allocation.

Ultrasound outcome measurements

Biometry and estimated fetal weight Fetal biometry
included head circumference, biparietal diameter, ab-
dominal circumference and femur length, measured in
accordance with national and international standards of
practice [39]. Estimated fetal weight was calculated using
the Hadlock C formula [40].

Fetal body composition measurements Mid-thigh fat
mass (MTFM) and lean mass (MTLM), abdominal fat
mass (AFM) and sub-scapular fat mass (SSFM) were
measured using techniques that have been published
previously [36, 37]. Grivell and associates also reported
the inter-observer variability for adiposity measures and
found moderate agreement demonstrated for SSFM,
MTTM, MTFM and fair agreement for AFM and
MTLM [37].

Mid-thigh total, lean and fat mass MTLM was calcu-
lated by obtaining a longitudinal view of the femur and
identification of the midpoint at a zero degree angle.
The transducer was rotated through 90 degrees to obtain
a cross sectional view of the mid-thigh. A trace of the
circumference of the MTTM was performed and area
was calculated, followed by the MTLM incorporating
muscle and bone. A subtraction was performed between
the MTTM and the MTLM to calculate the mid-thigh
fat mass (MTFM).

Abdominal fat mass Abdominal fat mass or anterior
abdominal wall thickness was obtained between the
mid-axillary lines and anterior to the margins of the ribs,
at the level of the abdominal circumference. The sub-
cutaneous fat is represented by the echogenic envelope
surrounding the abdomen and is measured in milli-
metres. Using magnification, 4 measurements were
obtained from one or two separate images, and the mean
was used in the analysis.

Subscapular fat mass Using a sagittal view of the fetal
trunk, the entire longitudinal section of the scapular was
located between the skin surface and the subcutaneous tis-
sue at the interface with the super-spinous and infra-spin-
ous muscles. Two measurements of the subcutaneous skin

width at the end of the bone were taken and the mean
value was used in the analysis.

Statistical analysis
Baseline characteristics of women in the Standard Care
group were assessed descriptively. Normally distributed
continuous variables are reported as mean and standard
deviation or median and interquartile range as appro-
priate. Categorical variables are reported as a number
and percentage and the chi squared statistic was used
accordingly.
For each fetal biometry measured, z scores were calcu-

lated using ultrasound growth charts in clinical use [40].
All cardiometabolic markers were log transformed prior
to analysis due to skewed distributions. Estimates are
back-transformed to the original scale and therefore
represent ratios of geometric means (approximately
ratios of medians).
The investigation concerns cross-sectional relation-

ships, i.e. whether there is an association between
cardiometabolic/inflammatory markers at 28 weeks, and
fetal ultrasound measures at 28 weeks (and similarly for
36 weeks). Because the nature of the association was of
interest, and because most of the cardiometabolic/in-
flammatory markers exhibited skewness in distribution,
each of the cardiometabolic/inflammatory markers was
log-transformed prior to analysis. Estimates represent
the difference in mean fetal measure corresponding to a
1-unit increase in log cardiometabolic marker. For
example at 28 weeks’ gestation, a 1 unit increase in log
CRP corresponds to a decrease in mean EFW of 8.62
(29.88, 12.63) grams (p = 0.426).
Three of the cardiometabolic/inflammatory markers

(CRP, leptin and adiponectin) were measured at both 28
and 36 weeks. For these markers, linear regression
models were used to model the relationship between the
marker and fetal ultrasound measures at each time
point, including a time-by- marker interaction term to
test whether the relationship differs between time points.
Generalised Estimating Equations (GEEs) with ex-
changeable working correlation were used to account for
repeated measures. Triglycerides and fasting glucose
were measured at 28 weeks only; therefore, for these
markers, relationships with 28 week fetal ultrasound
measures only were investigated using linear regression
models.
Both unadjusted and adjusted analyses were per-

formed, with the adjusted analyses including study
centre, parity (0 vs ≥1), maternal BMI category
(25.0–29.9 vs ≥30.0), smoking status, SEIFA IRSD
quintile, and age at consent as covariates.
Although both fetal biometry and adiposity measures

and maternal cardiometabolic and inflammatory markers
varied over time, standard linear regression models with
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GEEs were considered appropriate to model the associa-
tions, as no causal interpretation of the associations was
intended, and there is additionally no plausible pathway
by which the fetal biometry and adiposity outcomes at
the earlier time point could influence the value of
maternal cardiometabolic markers at a later time point.
Statistical significance was assessed at the two sided

P < 0.05 and no adjustment was made for multiple
comparisons. All analyses were performed using SAS 9.4
(Cary, NC, USA).

Results
Demographic characteristics
This secondary exploratory analysis included a total of 1104
women, who were randomised to the ‘Standard Care’ group
of the LIMIT randomised controlled trial. Of these women,
912 women had a minimum of one ultrasound performed at
28 or 36weeks and one woman was excluded from this ana-
lysis due to incomplete ultrasound data (Fig. 1). Table 1 sum-
marises the baseline characteristics of the 911 women who
participated in these analyses. Mean maternal age was 29.6
years (standard deviation 5.5) with 41% of women (n= 377)
overweight, 46.5% (n= 424) obese (BMI 30–39.9 kg/m2), and
12.2% (n= 111) morbidly obese, with BMI greater than 40
kg/m2. Most women (92%, n= 835) were of Caucasian
origin, 40% (n= 369) were in their first ongoing pregnancy,
and approximately 30% (n= 265) were from the highest
quintile of social disadvantage. The baseline characteristics of
the women contributing ultrasound data were comparable to
all women in the standard care group, and to the full
randomized LIMIT cohort [33].

C-reactive protein (CRP)
No consistent associations were found between serum
CRP concentrations and fetal ultrasound measures of
biometry and adiposity (Table 2).

Triglycerides
There were no consistent associations identified be-
tween serum triglyceride concentrations at 28 weeks
and fetal ultrasound markers of biometry and adipos-
ity (Table 3). However, there was a positive asso-
ciation identified between maternal serum triglyceride
concentrations and biometry z-scores. Specifically, a
1-unit increase in log triglyceride concentration was
associated with an increase in mean EFW z-score of
0.20 (0.01 to 0.39; p = 0.041), and an increase in mean
AC z-score of 0.25 (0.05 to 0.46; p = 0.016).

Fasting glucose
There were no consistent associations found between
fasting glucose concentrations at 28 weeks and fetal
ultrasound measures of biometry and adiposity
(Table 4).

Leptin
There were no consistent associations identified between
serum leptin concentrations and fetal ultrasound markers
of biometry and adiposity (Table 5). However, there was a
positive association identified between serum leptin con-
centration and mid-thigh fat mass (MTFM). Specifically, a
1-unit increase in log leptin concentration was associated
with a greater reduction in mean MTFM of − 0.37 (− 0.67,
− 0.07) at 28 weeks (p = 0.015).

Adiponectin
There were consistent associations identified between
serum adiponectin concentrations and fetal ultrasound
measures (Table 6).
There were negative associations identified between

serum adiponectin concentrations and measures of
abdominal circumference (AC) and estimated fetal
weight (EFW). Specifically, a 1-unit increase in log
adiponectin concentration was associated with a
reduction in mean AC of − 0.53 (− 0.83, − 0.22)
millimetres (p < 0.001) and reduction in the mean
EFW of − 100.85 (− 164.98, − 36.71) grams (p = 0.002) at
36 weeks’ gestation.
There were negative associations identified between

serum adiponectin concentration and z scores for
abdominal circumference (AC) and estimated fetal
weight (EFW). Specifically, a 1-unit increase in log adi-
ponectin concentration was associated with a reduction
in the mean AC z score of − 0.21 (− 0.35, − 0.07) at 28
weeks (p = 0.004) and of − 0.30 (− 0.46, − 0.13) at 36
weeks (p < 0.001). Similarly, a 1-unit increase in log adi-
ponectin concentration was associated with a reduction
in the mean EFW z score of − 0.23 (− 0.37, − 0.10) at 28
weeks (p < 0.001) and of − 0.24 (− 0.38, − 0.10) at 36
weeks (p < 0.001).
There was a negative association identified between

serum log adiponectin concentration and MTLM.
Specifically, a 1-unit increase in log Adiponectin concen-
tration was associated with a reduction in the mean
MTLM of − 0.41 (0.77, − 0.05) millimetres at 36 weeks
(p < 0.001).

Time by Cardiometabolic interaction
The associations between serum log adiponectin concen-
tration and mean EFW changed over time. At 28 weeks,
there was a small and not statistically significant asso-
ciation and at 36 weeks, the association was larger in
magnitude and statistically significant (p = 0.008).
The association between serum log Adiponectin

concentration and mean AC changed over time. At 28
weeks, there was a small and not statistically significant
association compared with at 36 weeks, the association
was larger in magnitude and statistically significant
(p = 0.01).
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The association between serum log adiponectin con-
centration and mean HC changed over time, although
neither individual associations were statistically sig-
nificant. At 28 weeks, women with higher log adipo-
nectin concentrations had fetuses with bigger head
circumference, whereas at 36 weeks, women with
higher log Adiponectin had fetuses with lower HC
(p = 0.01).
The association between serum log adiponectin con-

centrations and mean MTLM changed over time. At
28 weeks, there was a small and not statistically sig-
nificant association compared with at 36 weeks, the
association was larger in magnitude and statistically
significant (p = 0.013).

Discussion
The main findings of this secondary exploratory
analysis showed that increasing concentrations of adi-
ponectin was associated with a reduction in abdom-
inal circumference and estimated fetal weight, with
this effect increasing over time. Furthermore, a higher
triglyceride concentration was associated with an
increase in abdominal circumference z score and
estimated fetal weight at 36 weeks gestation. There
were no apparent associations between inflammatory
markers, fasting glucose, triglyceride and leptin con-
centrations with fetal ultrasound measurements.
To the best of our knowledge, this is the first study

to describe the relationship between cardiometabolic

Fig. 1 CONSORT diagram detailing the participant flow in the LIMIT trial and this secondary analysis
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biomarkers with fetal ultrasound measurements of
biometry and adiposity. The current literature to date
has reported on maternal or cord blood sampling and
postnatal measurements of neonatal adiposity [41] or
child growth trajectories [42]. There have been two
large studies which have evaluated maternal cardio-
metabolic markers in the setting of a randomised
control trials testing the effect of an antenatal dietary
and lifestyle intervention [38, 43].
The strength of our analysis is the large sample size of

911 women and the reporting of fetal body composition
as an outcome measurement. This study details an ex-
ploratory and hypothesis-generating analyses rather than
confirmatory study. As a secondary study with a large
quantity of statistical tests, any observed associations
have a larger probability of being due to chance than
indicated by the p value alone. Therefore, we did not ac-
count for the multiple comparisons. The limitation of
this secondary analysis is the lack of a comparator group
of women entering pregnancy with a normal BMI. Fast-
ing measurements at 36 weeks for triglycerides and
glucose were not obtained and this limited our inter-
pretation to one time point only for these two cardio-
metabolic markers, although there is some literature to
suggest that the impact of fasting versus non-fasting
samples may not be as great as initially thought.
The main finding of our secondary analysis relating to

adiponectin is consistent with the current literature. In
women entering pregnancy with a normal body mass

index, Lekva and associates found a reduction in adipo-
nectin concentrations in the 3rd trimester, and this
occurred independently of body mass index and mater-
nal insulin resistance [22]. Low adiponectin concentra-
tion is associated with a higher prevalence of newborns
classified as large for gestational age and increased birth-
weight [22]. Regarding interventions during pregnancy,
the LIMIT trial showed that a dietary and lifestyle inter-
vention did not change the concentrations of the cardio-
metabolic biomarkers in women who were overweight
and obese [38]. The Fit for Delivery intervention in low
risk women [44] showed a reduction in insulin and lep-
tin concentrations, but this did not reduce the incidence
of gestational diabetes, the primary outcome.
While adiponectin concentrations do not alter with

dietary change, there is increasing interest in the supple-
mentation of adiponectin has promising applications in
the adult populations [18, 22, 24]. In vivo and in vitro
studies [2] have shown that adiponectin supplementation
in pregnancy may alter fetal growth through improving
insulin sensitivity [45]. The proposed mechanism relates
to the down regulation of key placental nutrient trans-
porters within the syncytiotrophoblasts, including amino
acid transporters such as System A [22, 45]. Adiponectin
as a therapy may reduce cardiovascular risk in the non-
pregnant overweight and obese mouse model [18].
Further studies with experimental animal models along
with clinical applications are required.
Interestingly, leptin did not show any consistent effect

on fetal growth or adiposity in our study. This was
supported by a recent study by Castro who performed
maternal serum leptin sampling after delivery (to reduce
the effect of placental leptin production), and found no
association with neonatal adiposity [46]. Josefson mea-
sured the concentrations at 36 weeks gestation and
found an association with neonatal adiposity [47]. This
highlights that each cardiometabolic marker has a diffe-
rent pattern during pregnancy and the timing of sam-
pling may impact on the interpretation of results.
Interestingly, fetal exposure to leptin along with high
cord blood concentrations, have been positively asso-
ciated with birthweight, neonatal adiposity, postnatal
and childhood growth trajectories [42].
Maternal triglyceride concentration at 36 weeks was

associated with an increase in z scores for abdominal
circumference and estimated fetal weight. This is
consistent with studies from women with gestational
diabetes, where fetal growth and adiposity correlate
with maternal triglyceride levels, independent of body
mass index [9]. The exact role of maternal triglycerides
[48], lipoprotein receptors, binding proteins and lipases
and the placental flow of maternal fatty acids [9] in the
setting of obesity remains unclear [48] and further
studies are required.

Table 1 Baseline characteristics of the Standard Care group
within the LIMIT Trial

Description

Number (N) 911

Body Mass Index Mean (SD) 32.60 (6.01)

BMI Category

25–29.9 kg/m2 377 (41.3)

30–34.9 kg/m2 271 (29.7)

35–39.9 kg/m2 153 (16.8)

> 40 kg/m2 111 (12.2)

Maternal Age (years)
Mean (SD)

29.6 (5.5)

Nulliparous n (%) 369 (40.5)

Smoker n (%) 101 (11.1)

SEIFA Quintiles Mean (SD)

Quintile 1 Most disadvantaged 265 (29.06)

Quintile 2 223 (24.45)

Quintile 3 143 (15.68)

Quintile 4 142 (15.57)

Quintile 5 Least disadvantaged 139 (15.24)

Caucasian n (%) 836 (91.67)
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The relationship between maternal inflammatory
markers and fetal adiposity is also interesting. There
is evidence to support that maternal obesity increases
pro-inflammatory cytokines [49], which in turn has

been shown to stimulate the inflammatory pathways
within the placenta [50, 51]. The effect of the inflam-
matory milieu related to maternal obesity on the fetus
[52], newborn [53] and child [54] remains unclear

Table 2 Relationship between log CRP and Fetal ultrasound markers
Ultrasound
Measure

Unadjusted
Estimate (95% CI)

Unadjusted
p value

Adjusted
Estimate (95% CI)

Adjusted
p value

EFW 0.559* 0.835*

- 28 Weeks −6.41 (−26.19, 13.36) 0.525 −8.62 (−29.88, 12.63) 0.426

- 36 Weeks −17.06 (−53.13, 19.01) 0.354 −12.50 (−47.91, 22.90) 0.489

SSFM 0.842* 0.850*

- 28 Weeks −0.00 (− 0.10, 0.09) 0.920 0.02 (− 0.08, 0.11) 0.744

- 36 Weeks 0.01 (− 0.14, 0.16) 0.875 0.03 (−0.12, 0.18) 0.675

AFM 0.442* 0.394*

- 28 Weeks 0.00 (−0.10, 0.10) 0.990 −0.00 (− 0.11, 0.11) 0.976

- 36 Weeks 0.07 (−0.09, 0.23) 0.396 0.08 (−0.08, 0.23) 0.353

MTFM 0.988* 0.998*

- 28 Weeks 0.04 (−0.08, 0.17) 0.514 0.05 (−0.09, 0.19) 0.456

- 36 Weeks 0.04 (−0.29, 0.37) 0.817 0.05 (−0.28, 0.39) 0.758

MTLM 0.419* 0.376*

- 28 Weeks 0.04 (−0.06, 0.15) 0.414 0.05 (−0.06, 0.16) 0.367

- 36 Weeks −0.05 (− 0.28, 0.17) 0.636 − 0.06 (− 0.28, 0.17) 0.615

AC 0.698* 0.998*

- 28 Weeks −0.05 (− 0.20, 0.09) 0.473 − 0.07 (− 0.22, 0.08) 0.351

- 36 Weeks − 0.09 (− 0.26, 0.08) 0.296 −0.07 (− 0.24, 0.10) 0.407

BPD 0.114* 0.147*

- 28 Weeks − 0.03 (− 0.06, 0.00) 0.096 − 0.02 (− 0.06, 0.01) 0.167

- 36 Weeks 0.00 (− 0.03, 0.03) 0.883 0.00 (− 0.03, 0.04) 0.770

HC 0.682* 0.568*

- 28 Weeks −0.07 (− 0.19, 0.05) 0.259 − 0.07 (− 0.19, 0.05) 0.280

- 36 Weeks − 0.04 (− 0.15, 0.07) 0.462 −0.03 (− 0.13, 0.08) 0.625

FL 0.961* 0.824*

- 28 Weeks − 0.01 (− 0.04, 0.02) 0.491 − 0.01 (− 0.04, 0.02) 0.428

- 36 Weeks −0.01 (− 0.04, 0.02) 0.478 − 0.01 (− 0.04, 0.02) 0.602

EFW z score 0.466* 0.587*

- 28 Weeks 0.03 (− 0.04, 0.10) 0.380 0.02 (− 0.04, 0.09) 0.482

- 36 Weeks − 0.00 (− 0.08, 0.08) 0.981 0.00 (− 0.08, 0.08) 0.979

AC z score 0.611* 0.791*

- 28 Weeks 0.02 (−0.06, 0.10) 0.609 0.01 (−0.07, 0.09) 0.808

- 36 Weeks −0.01 (− 0.10, 0.09) 0.900 − 0.00 (− 0.09, 0.09) 0.931

BPD z score 0.095* 0.169*

- 28 Weeks −0.05 (− 0.16, 0.06) 0.399 − 0.04 (− 0.15, 0.08) 0.544

- 36 Weeks 0.05 (− 0.04, 0.15) 0.261 0.05 (− 0.05, 0.15) 0.302

HC z score 0.706* 0.637*

- 28 Weeks −0.00 (− 0.08, 0.08) 0.932 − 0.00 (− 0.09, 0.08) 0.914

- 36 Weeks 0.01 (− 0.06, 0.09) 0.738 0.02 (− 0.06, 0.09) 0.674

FL z score 0.942* 0.827*

- 28 Weeks 0.01 (−0.07, 0.09) 0.768 0.00 (−0.08, 0.09) 0.920

- 36 Weeks 0.02 (−0.07, 0.11) 0.726 0.02 (−0.08, 0.11) 0.738

Results are expressed as the expected difference (ratio) and 95% confidence intervals
Adjusted analyses including BMI category (< 30 vs ≥30), study centre, parity (0 vs ≥1), age at consent, smoking status and SEIFA IRSD quintile
* p value for test of time-by-log CRP interaction to test whether the association between fetal ultrasound measure and log CRP are different at 36
weeks to the association at 28 weeks

O’Brien et al. BMC Endocrine Disorders           (2019) 19:97 Page 7 of 12



[55, 56] and requires further evaluation. A reason for
the lack of effect seen in this study may relate
immune modulation in pregnancy, which may dampen
down the chronic, low grade inflammatory response
related to obesity [57].
In this study, maternal concentration of glucose at

28 weeks was not associated with fetal body compo-
sition. While the findings of the HAPO study found
that a modest increase in maternal glucose levels was

associated with an increase in birth weight [58], the
HAPO study included women with a normal BMI.
The effect of obesity has a more significant, stronger
and long term effect on the risk of large for gesta-
tional age infants [59] when compared to pregnancy
mediated insulin resistance, present from 28 weeks
onwards [58].
Understanding of the mechanisms and timing of critical

fetal growth changes represents an evolving area of obesity

Table 3 Relationship between log Triglycerides and Fetal ultrasound markers

Ultrasound
Measure

Unadjusted
Estimate (95% CI)

Unadjusted
p value

Adjusted
Estimate (95% CI)

Adjusted
p value

EFW 26.96 (−19.21, 73.13) 0.252 28.14 (−18.38, 74.67) 0.236

SSFM 0.02 (− 0.21, 0.25) 0.870 0.06 (− 0.18, 0.29) 0.633

AFM 0.02 (− 0.23, 0.27) 0.899 0.01 (− 0.24, 0.26) 0.940

MTFM − 0.01 (− 0.32, 0.31) 0.964 − 0.00 (− 0.32, 0.32) > 0.99

MTLM 0.08 (− 0.19, 0.34) 0.567 0.04 (− 0.23, 0.31) 0.779

AC 0.27 (− 0.07, 0.62) 0.121 0.25 (− 0.10, 0.60) 0.154

BPD 0.03 (−0.06, 0.11) 0.540 0.04 (−0.04, 0.13) 0.334

HC −0.01 (− 0.29, 0.27) 0.946 0.03 (− 0.26, 0.32) 0.851

FL −0.01 (− 0.07, 0.06) 0.842 0.00 (− 0.06, 0.07) 0.908

EFW z score 0.23 (0.04, 0.42) 0.020 0.20 (0.01, 0.39) 0.041

AC z score 0.30 (0.09, 0.50) 0.004 0.25 (0.05, 0.46) 0.016

BPD z score 0.25 (− 0.06, 0.55) 0.113 0.29 (− 0.02, 0.59) 0.067

HC z score 0.03 (−0.18, 0.23) 0.808 0.03 (−0.18, 0.24) 0.796

FL z score 0.05 (− 0.15, 0.26) 0.612 0.07 (− 0.14, 0.28) 0.499

Results are expressed as the expected difference (ratio) and 95% confidence intervals
Adjusted analyses including BMI category (< 30 vs ≥30), study centre, parity (0 vs ≥1), age at consent, smoking status and SEIFA IRSD quintile

Table 4 Relationship between log Fasting Glucose and Fetal ultrasound markers

Ultrasound
Measure

Unadjusted
Estimate (95% CI)

Unadjusted
p value

Adjusted
Estimate (95% CI)

Adjusted
p value

EFW 59.68 (−33.80, 153.16) 0.211 53.52 (−56.64, 163.68) 0.341

SSFM −0.32 (− 0.81, 0.17) 0.201 − 0.17 (− 0.74, 0.41) 0.575

AFM − 0.54 (−1.10, 0.02) 0.058 − 0.10 (− 0.76, 0.57) 0.772

MTFM − 0.25 (− 0.97, 0.47) 0.493 0.02 (− 0.83, 0.87) 0.959

MTLM − 0.28 (− 0.91, 0.35) 0.387 0.03 (− 0.72, 0.77) 0.946

AC 0.16 (− 0.55, 0.88) 0.653 0.33 (− 0.50, 1.17) 0.430

BPD 0.16 (− 0.01, 0.33) 0.067 0.08 (− 0.13, 0.28) 0.460

HC 0.19 (−0.38, 0.77) 0.509 0.05 (−0.63, 0.74) 0.884

FL 0.12 (−0.01, 0.26) 0.077 0.09 (−0.07, 0.25) 0.289

EFW z score 0.33 (−0.09, 0.74) 0.120 0.46 (−0.01, 0.94) 0.057

AC z score 0.08 (−0.35, 0.51) 0.714 0.36 (−0.14, 0.87) 0.153

BPD z score 0.61 (−0.03, 1.25) 0.061 0.42 (−0.32, 1.17) 0.263

HC z score 0.10 (−0.34, 0.53) 0.659 0.07 (−0.45, 0.59) 0.800

FL z score 0.50 (0.06, 0.94) 0.027 0.49 (−0.04, 1.03) 0.071

Results are expressed as the expected difference (ratio) and 95% confidence intervals
Adjusted analyses including BMI category (< 30 vs ≥30), study centre, parity (0 vs ≥1), age at consent, smoking status and SEIFA IRSD quintile
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related research. From a public health perspective, the
only preventive strategy to reduce the intergenerational
transmission of obesity [60] is to optimise maternal weight

and reduce obesity related morbidity prior to pregnancy.
Current studies are underway to assess dietary and life-
style interventions to reduce maternal obesity prior to

Table 5 Relationship between log Leptin and Fetal ultrasound markers
Ultrasound
Measure

Unadjusted
Estimate (95% CI)

Unadjust
p value

Adjusted
Estimate (95% CI)

Adjusted
p value

EFW 0.815 0.785*

- 28 Weeks −40.68 (−79.26, −2.09) 0.039 −41.08 (− 83.65, 1.49) 0.059

- 36 Weeks −32.84 (−95.88, 30.20) 0.307 −31.83 (−95.48, 31.83) 0.327

SSFM 0.925 0.999*

- 28 Weeks 0.01 (− 0.17, 0.20) 0.880 0.14 (− 0.06, 0.34) 0.167

- 36 Weeks 0.03 (− 0.24, 0.30) 0.833 0.14 (− 0.13, 0.41) 0.303

AFM 0.988 0.912*

- 28 Weeks − 0.02 (− 0.22, 0.17) 0.814 0.03 (− 0.19, 0.24) 0.802

- 36 Weeks − 0.02 (− 0.33, 0.28) 0.894 0.01 (− 0.30, 0.32) 0.960

MTFM 0.561 0.563

- 28 Weeks − 0.25 (− 0.51, 0.00) 0.053 − 0.37 (− 0.67, − 0.07) 0.015*

- 36 Weeks −0.08 (− 0.65, 0.49) 0.778 − 0.20 (− 0.76, 0.36) 0.488

MTLM 0.231 0.191*

- 28 Weeks 0.07 (−0.13, 0.27) 0.496 0.00 (−0.24, 0.24) 0.995

- 36 Weeks −0.16 (− 0.50, 0.19) 0.373 − 0.25 (− 0.60, 0.10) 0.167

AC 0.705 0.631*

- 28 Weeks −0.25 (− 0.52, 0.02) 0.065 − 0.26 (− 0.54, 0.02) 0.067

- 36 Weeks − 0.19 (− 0.48, 0.11) 0.221 − 0.18 (− 0.48, 0.13) 0.259

BPD 0.400 0.420*

- 28 Weeks − 0.02 (− 0.09, 0.05) 0.605 − 0.01 (− 0.08, 0.06) 0.735

- 36 Weeks 0.02 (− 0.04, 0.08) 0.614 0.02 (− 0.04, 0.08) 0.525

HC 0.343 0.380*

- 28 Weeks − 0.12 (− 0.35, 0.11) 0.303 − 0.10 (− 0.34, 0.14) 0.425

- 36 Weeks 0.02 (− 0.19, 0.23) 0.878 0.03 (− 0.19, 0.25) 0.791

FL 0.392 0.369*

- 28 Weeks −0.03 (− 0.09, 0.02) 0.244 − 0.02 (− 0.08, 0.04) 0.442

- 36 Weeks − 0.00 (− 0.05, 0.05) 0.880 0.01 (− 0.04, 0.06) 0.729

EFW z score 0.900 0.901*

- 28 Weeks −0.05 (− 0.18, 0.09) 0.476 − 0.06 (− 0.20, 0.09) 0.432

- 36 Weeks −0.04 (− 0.17, 0.10) 0.567 − 0.05 (− 0.19, 0.09) 0.498

AC z score 0.865 0.832*

- 28 Weeks −0.04 (− 0.18, 0.11) 0.603 − 0.05 (− 0.21, 0.10) 0.513

- 36 Weeks −0.02 (− 0.17, 0.12) 0.749 −0.03 (− 0.18, 0.12) 0.668

BPD z score 0.909 0.810*

- 28 Weeks 0.11 (− 0.12, 0.35) 0.344 0.12 (−0.13, 0.36) 0.340

- 36 Weeks 0.10 (−0.07, 0.27) 0.239 0.09 (−0.09, 0.27) 0.336

HC z score 0.970 0.850*

- 28 Weeks 0.04 (−0.11, 0.19) 0.584 0.04 (−0.12, 0.21) 0.607

- 36 Weeks 0.04 (−0.11, 0.18) 0.600 0.03 (−0.13, 0.18) 0.736

FL z score 0.515 0.506*

- 28 Weeks 0.00 (−0.16, 0.17) 0.954 0.03 (−0.14, 0.20) 0.736

- 36 Weeks 0.07 (−0.09, 0.23) 0.407 0.10 (−0.07, 0.27) 0.268

Results are expressed as the expected difference (ratio) and 95% confidence intervals
Adjusted analyses including BMI category (< 30 vs ≥30), study centre, parity (0 vs ≥1), age at consent, smoking status and SEIFA IRSD quintile
* p value for test of time-by-log Leptin interaction to test whether the association between fetal ultrasound measure and log Leptin are different at 36
weeks to the association at 28 weeks
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Table 6 Relationship between log Adiponectin and Fetal ultrasound markers
Ultrasound
Measure

Unadjusted
Estimate (95% CI)

Unadjust
p value

Adjusted
Estimate (95% CI)

Adjust
p value

EFW 0.010 0.008*

- 28 Weeks −5.36 (−42.08, 31.35) 0.775 −8.77 (−45.68, 28.14) 0.641

- 36 Weeks −94.09 (− 158.68, −29.51) 0.004 −100.85 (−164.98, −36.71) 0.002

SSFM 0.110 0.101*

- 28 Weeks 0.11 (−0.05, 0.28) 0.179 0.12 (−0.05, 0.30) 0.160

- 36 Weeks −0.12 (− 0.38, 0.13) 0.343 − 0.12 (− 0.38, 0.13) 0.354

AFM 0.634 0.651*

- 28 Weeks −0.05 (− 0.26, 0.16) 0.651 − 0.00 (− 0.21, 0.21) 0.988

- 36 Weeks −0.13 (− 0.43, 0.17) 0.393 −0.08 (− 0.39, 0.23) 0.607

MTFM 0.688 0.517*

- 28 Weeks 0.00 (−0.23, 0.24) 0.970 −0.01 (− 0.25, 0.23) 0.943

- 36 Weeks −0.11 (− 0.69, 0.46) 0.705 −0.20 (− 0.79, 0.39) 0.509

MTLM 0.035 0.013*

- 28 Weeks 0.09 (−0.11, 0.29) 0.377 0.09 (−0.12, 0.29) 0.405

- 36 Weeks −0.33 (− 0.70, 0.03) 0.074 − 0.41 (− 0.77, − 0.05) 0.027

AC 0.012 0.010*

- 28 Weeks −0.04 (− 0.31, 0.23) 0.768 − 0.04 (− 0.31, 0.23) 0.779

- 36 Weeks −0.51 (− 0.82, − 0.21) 0.001 −0.53 (− 0.83, − 0.22) <.001

BPD 0.056 0.056*

- 28 Weeks 0.06 (−0.00, 0.12) 0.055 0.04 (−0.02, 0.11) 0.176

- 36 Weeks −0.02 (− 0.08, 0.04) 0.545 − 0.04 (− 0.10, 0.02) 0.244

HC 0.042 0.043*

- 28 Weeks 0.09 (−0.13, 0.30) 0.429 0.10 (−0.12, 0.32) 0.363

- 36 Weeks −0.20 (− 0.41, 0.02) 0.071 − 0.18 (− 0.39, 0.03) 0.095

FL 0.061 0.088*

- 28 Weeks 0.03 (−0.02, 0.08) 0.272 0.02 (−0.03, 0.08) 0.406

- 36 Weeks −0.03 (− 0.08, 0.02) 0.179 − 0.04 (− 0.08, 0.01) 0.160

EFW z score 0.986 0.938*

- 28 Weeks −0.24 (− 0.37, − 0.10) <.001 −0.23 (− 0.37, − 0.10) <.001

- 36 Weeks −0.24 (− 0.38, − 0.09) 0.001 −0.24 (− 0.38, − 0.10) <.001

AC z score 0.427 0.371*

- 28 Weeks −0.22 (− 0.36, − 0.08) 0.002 −0.21 (− 0.35, − 0.07) 0.004

- 36 Weeks −0.30 (− 0.47, − 0.13) <.001 −0.30 (− 0.46, − 0.13) <.001

BPD z score 0.685 0.609*

- 28 Weeks 0.04 (−0.18, 0.26) 0.749 −0.01 (− 0.23, 0.21) 0.949

- 36 Weeks −0.02 (− 0.19, 0.16) 0.861 −0.07 (− 0.26, 0.11) 0.434

HC z score 0.759 0.702*

- 28 Weeks −0.10 (− 0.27, 0.06) 0.204 − 0.08 (− 0.24, 0.08) 0.316

- 36 Weeks −0.13 (− 0.29, 0.02) 0.086 −0.12 (− 0.27, 0.03) 0.124

FL z score 0.530 0.645*

- 28 Weeks −0.06 (− 0.23, 0.11) 0.514 − 0.07 (− 0.24, 0.11) 0.454

- 36 Weeks −0.12 (− 0.29, 0.04) 0.150 −0.11 (− 0.28, 0.05) 0.176

Results are expressed as the expected difference (ratio) and 95% confidence intervals
Adjusted analyses including BMI category (< 30 vs ≥30), study centre, parity (0 vs ≥1), age at consent, smoking status and SEIFA IRSD quintile
* p value for test of time-by-log Adiponectin interaction to test whether the association between fetal ultrasound measure and log Adiponectin are
different at 36 weeks to the association at 28 weeks
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pregnancy or in early pregnancy [61]. Further research is
required to assess the role of adiponectin and supplemen-
tation in the setting of obesity in pregnancy [17].

Conclusion
Our exploratory study has contributed to the further
understanding of the fetal overgrowth pathway. High con-
centrations of adiponectin were found to be associated
with a reduction in abdominal circumference and esti-
mated fetal weight in women who are overweight or
obese. Adiponectin is a promising biomarker that may
have a role in the modulation of fetal growth in the future.
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