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Abstract

Background: Nonalcoholic fatty liver disease (NAFLD) is considered a critical hepatic manifestation of metabolic

syndrome. Berberine (BBR) exerts anti-hyperglycemic and anti-dyslipidemic effects and can also ameliorate NAFLD.
Thus, BBR might exert its therapeutic effect on NAFLD by improving glucolipid metabolism. Here, we investigated
the aspects and extent to which glucolipid metabolism were affected by BBR in rats with NAFLD.

Methods: Three groups of Sprague-Dawley rats were studied: a control group (n=6) fed a normal chow diet and
a NAFLD group (n=6) and a NAFLD + BBR group (n = 6) fed a high-fat diet. Normal saline and BBR (150 mg/kg
body weight/day for 16 weeks) were administered by gavage. All rats were infused with isotope tracers. The rates
of glucose appearance (Ray), gluconeogenesis (GNG) and glycerol appearance (Ray,) were assessed with ’H and
13C tracers, whereas the rates of hepatic lipogenesis and fatty acid B oxidation were measured using the *H tracer.

Results: When the NAFLD model was successfully induced by administering a high-fat diet, body weight, insulin
resistance and dyslipidemia were significantly increased. After the BBR treatment, weight loss, decreased lipid
profiles and HOMA-IR, and increased ISI were observed. Meanwhile, BBR reduced Rag,, GNG and hepatic
lipogenesis, whereas the rate of fatty acid 3 oxidation in skeletal muscle showed an increasing trend. Rag, showed
a decreasing trend. Based on the results of the histological analysis, BBR obviously attenuated the ectopic liver fat
accumulation.

Conclusions: BBR improved NAFLD by inhibiting glucogenesis and comprehensively regulating lipid metabolism,
and its effect on inhibiting hepatic lipogenesis was much stronger. The improvement may be partly mediated by

weight loss. Berberine might be a good choice for patients with NAFLD and glucose metabolic disorder. Future
clinical trials need to be conducted to confirm these effects.
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Background

NAFLD has become the second most common liver disease
in China after viral hepatitis [1]. Due to the alterations in
lifestyle and the epidemic of obesity, the prevalence of
NAFLD is increasing worldwide [2]: up to 30% in devel-
oped countries and nearly 10% in developing nations [3].
NAFLD encompasses the whole spectrum of liver diseases
that are not associated with significant alcohol consump-
tion, including simple hepatic steatosis, non-alcoholic
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steatohepatitis (NASH), cirrhosis, liver failure and even
hepatocellular carcinoma (HCC) [4]. However, the precise
mechanisms underlying the pathogenesis of NAFLD
remain unclear. A well-known “two-hit” hypothesis has
been proposed for NAFLD progression [5]. The “first hit” is
the development of hepatic steatosis as a result of insulin
resistance, whereas in the “second hit”, proinflammatory
mediators induce hepatic inflammation, hepatocellular
injury, fibrosis and cirrhosis. Furthermore, lifestyle modifi-
cations are the only suggested remedy to avoid progression
of benign steatosis to NASH and fibrosis [6]. With the
exception of preventive lifestyle intervention, anti-diabetic,
lipid-lowering or anti-hypertensive agents may be used to
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control NAFLD comorbidities. Currently, no approved
pharmacological agents are available for NAFLD [5].
Recently, Chinese herbs, including berberine (BBR), have
received more attention as treatments for NAFLD.

BBR, an isoquinoline alkaloid, is a natural compound
in numerous Chinese herb plants such as Berberisaris-
tata, Coptischinensis, Coptis rhizome, etc. [7]. Low doses
of BBR have been widely used to treat intestinal
bacteria-related diarrhea with good safety for thousands
of years. Over the last few decades, many animal studies
and clinical trials have reported the anti-hyperglycemic
and anti-dyslipidemic effects of BBR [8—10]. Interest-
ingly, in these investigations, BBR was also reported to
have a potent effect on reducing hepatic steatosis [8, 10].
Although the bioavailability of BBR was reported to be
less than 1% in some studies [11, 12], other studies indi-
cated that BBR was typically concentrated in the liver (at
levels 50-70 times higher than the plasma levels) after
oral administration [10, 13]. Moreover, in some animal
experiments, BBR was shown to alleviate TG deposition
in the liver following an intraperitoneal injection or oral
gavage [6]; therefore, BBR is indeed suitable as a treat-
ment for NAFLD [13]. However, the mechanism under-
lying its therapeutic effect is still unclear. Many possible
metabolic pathways have been suggested, such as
decreasing the severity of liver and adipose tissue inflam-
mation [4], modulating ER stress [6], regulating the
expression of hepatic genes related to glucolipid metab-
olism [10] and gut microbiota [14], etc. However, com-
prehensive studies on the aspects and extent to which
glucolipid metabolism in visceral and peripheral tissues
in NAFLD were affected by BBR are lacking.

In the present study, we used isotope tracers to
explore the effect of BBR on hepatic and extra hepatic
glucolipid metabolism in rats with NAFLD.

Methods

Animal model establishment and experimental design
Eighteen male Sprague-Dawley rats (8 weeks old) were
obtained from Shanghai Laboratory Animal Center in
China. The animals were maintained on a 12/12-h light/
dark cycle in a temperature-controlled room (22 + 2 °C)
and given free access to food and water. After 1 week of
acclimation, the animals were randomly divided into two
groups: a control group (NCD group, 7 = 6) receiving a
normal chow diet (NCD:65.5% carbohydrate, 20% pro-
tein and 10.3% fat) and a HED group (1 = 12) fed a high-
fat diet (HFD:40% carbohydrate, 20% protein and 40%
fat). After 16 weeks, the NAFLD Model was successfully
induced in these 12 rats (verified by ultrasound diagno-
sis), which were further subdivided into two groups (6
rats per group): (i) the NAFLD group, which was admin-
istered an equal volume of normal saline, and (ii) the
NAFLD + BBR group, which was treated with 150 mg
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BBR/kg body weight/day (Sigma-Aldrich, USA) by gav-
age for 16 weeks.

Body weights and fasting blood glucose (FBG) levels
were measured every 2 weeks. Glucose levels were
immediately measured using an electronic glucometer
(Terumo, Tokyo, Japan). Lipid profiles, including the
total cholesterol (TC), triglyceride (TG), low-density
lipoprotein-cholesterol (LDL) and free fatty acid (FFA)
and insulin levels, were assayed at the 0™, 16™, and 32"
weeks using Siemens Dimension MAX (Siemens Health-
care Diagnostics Inc.) and ELISA kits (Shibayaji, Japan).
Then, the HOMA-IR and insulin sensitivity index (ISI)
were calculated from the FBG and fasting insulin (FINS)
levels using the following detailed formulas: HOMA-IR
= FBG*FINS/22.5; ISI=Ln[1/(FBG*FINS)] [15]. All ex-
perimental procedures were conducted in accordance
with the ethical principles in animal research adopted by
the Department of Laboratory Animal Science and ap-
proved by the Animal Experimental Ethical Committee
of Jiaotong University School of Medicine, Shanghai,
China.

Isotope infusion

All rats were fasted overnight and studied the following
morning. After local anesthesia was induced with lido-
caine, the lateral tail vein was catheterized for the infu-
sion of tracers and the tail artery was catheterized for
blood sampling using previously described methods [16].
The animals were conscious and relaxed throughout the
experiments; in addition, the animals could groom
themselves normally, drink water freely or sit calmly to
minimize experimentally induced stress (Fig. 1). When
the FBG levels returned to baseline (usually within
30 min), 6,6-2D-glucose (2 pmol/kg/ min) and U-'*C-

Fig. 1 Experimental conditions used for tracer perfusion. The lateral
tail vein was catheterized for tracer infusion and the tail artery was
catheterized for blood collection. Throughout the experiments, all rats
were conscious and relaxed, with the ability to groom themselves
normally and drink water freely. Thus, the experimentally induced
stress was minimized
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glycerol (0.84 pmol/kg/min) were constantly infused
through the iv. infusion line driven by a Harvard mini-
infusion pump (Harvard Apparatus, Holliston, MA,
USA) for 90 min. At 60 min, 1 uCi of 9,10->H-palmitic
acid was injected. During the final 10 min, three arterial
blood samples (0.5 ml each) were collected at 5 min
intervals and were used to quantify steady state glucose
and glycerol metabolism (Fig. 2). Then, the animals were
euthanized by opening the heart under anesthesia with
pentobarbital (50 mg/kg). A strip of gastrocnemius
muscle (approximately 13*3*1 mm) was promptly
obtained to examine (B oxidation of 9,10-*H-palmitic
acid (1 pCi) in vitro. Livers were also harvested swiftly,
immersed in liquid nitrogen and stored at -80 °C.
Plasma samples were prepared on ice, centrifuged at 4 °
C, separated and stored at —80 °C until further analysis.

Measurement of isotope tracers

Plasma samples were processed with methoxyamine-
HCIl and BSTFA to obtain the trimethylsilyl derivatives
of 6, 6-2D-glucose and U-">C-glycerol. Hydroxylamine
hydrochloride was used for derivation to avoid interfer-
ence from the reaction of 6,6-2D-glucose to 1,2,3->C-
glucose formed in GNG via U-"3C-glycerol. Then, the
enrichment of the derivatives was measured using gas
chromatography/mass spectrometry (GC-MS, Agilent
5975C, Agilent Technologies). lons with mass-to-charge
ratios (m/z) of 319 (unlabeled glucose) and 321 (labeled
glucose) were monitored. The peak area 321/319 ratio
was calculated, and the corresponding enrichment was
determined from standard curves. A similar method was
used to obtain the m/z 221/218 U-"*C-glycerol and m/z
215/212 1,2,3-"*C-glucose ratios and determine their
corresponding enrichment.

Lipids were extracted from the liver using the Folch
method [17], and triglyceride concentrations were
assayed using an ELISA kit (Jiancheng, Nanjing,
China). Then, pure triglycerides were isolated using
thin layer chromatography (TLC). In addition, *H,O
converted from 9,10-*H-palmitic acid during the
process of P oxidation was obtained by removing the
lipids with chloroform. *H radioactivity from both
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liver triglycerides and *H,O was determined using
liquid scintillation counting (LS6500 Multipurpose
Scintillation Counter, Beckman, USA) as previously
described [16].

Calculations

The appearance rates (Ra) of glucose and glycerol
were calculated with the steady-state equation from
the respective tracer infusion rates (F) and mole per-
cent excess (MPE). The infusion rate of 6,6-2D-glu-
cose was divided by the MPE of plasma glucose to
yield Rag, [18]. The detailed formula for Ra,, was
described previously [16]. The glycerol gluconeogene-
sis rates were calculated using the following formula:
1,2,3-"* C-glucose MPE"Rag, /U-3C-glycerol MPE
[18]. The percent of glycerol converted to glucose was
calculated using the following formula: Ragly*BC—glu—
cose MPE/Fy,. Fatty acid B oxidation rates were
deduced by measuring the specific activity of *H,O.
Moreover, the hepatic fat synthesis rate was calculated
by dividing the total concentrations of triglycerides by
the radioactivity of the corresponding labeled triglyc-
erides [19].

Liver pathomorphology

After the rats were sacrificed, part of their livers was
fixed in 4% paraformaldehyde, dehydrated with ethanol
and xylene, embedded in paraffin, and sliced into 5 pm
sections on a microtome (SLEE, Germany). The sections
were stained with hematoxylin and eosin (H&E) and an-
alyzed under an optical microscope (CKX41, Olympus,
Japan) to examine the pathologic structures of the livers.

Statistical analysis

The software package SPSS version 17.0 was used for
data analysis. All data are presented as the means +
standard deviations (SD) and statistical significance was
assessed by one-way ANOVA followed by LSD for mul-
tiple comparisons as appropriate. P <0.05 was consid-
ered statistically significant.

9,10-3H-palmitic

L

Blood draw acid injection Blood draw
Catheter ‘l’ ‘L ‘l’ ‘l' ‘L
I I I | 1|
-30’ 0’ 60’ 80’ 85’ 90’

| 6,6-2D-glucose and U-3C-glycerol infusion |

Fig. 2 Protocol for the isotope tracer infusion. This figure shows the process used for tracer infusion and blood collection
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Results

Berberine reduced body weight gain and regulated the
FBG levels

Prior to the experiment, no differences were observed in
body weights or FBG levels between the three groups.
When the NAFLD model was successfully established, a
significant increase in body weight was observed
(NAFLD: 648 +69.95; NAFLD + BBR: 641.67 + 35.90;
NCD: 5685 +36.09, P<0.05), but the FBG levels
remained unchanged. After the 16-week BBR interven-
tion, the NAFLD + BBR group (736 + 20.80) exhibited a
significant reduction in body weight compared with the
NAFLD group (828.67 + 86.78) (P < 0.05, Fig. 3a). How-
ever, the FBG levels were obviously decreased during the
first 8-week treatment period (P < 0.05, NCD vs NAFLD
vs NAFLD + BBR: 3.60+0.59 vs 4.12+0.28 vs 2.74
0.78, respectively), whereas similar FBG levels were ob-
served in the three groups (NCD vs NAFLD vs NAFLD
+ BBR: 4.77 + 1.44 vs 5.35+0.42 vs 4.98 + 0.84, respect-
ively) at the end of the experiment (Fig. 3b).
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Berberine improves insulin resistance

After 16 weeks of feeding the HFD, the FINS concen-
trations (NAFLD: 2.44 +0.87; NAFLD + BBR: 2.75+
0.85) and HOMA-IR (NAFLD: 0.53 + 0.14; NAFLD +
BBR: 0.54+0.17) in the two HFD groups were signifi-
cantly higher than the values in the NCD group
(FINS: 1.36+0.48; HOMA-IR: 0.23 +0.07, P<0.05).
However, no differences were observed between
NAFLD group and NAFLD + BBR group (Fig. 3¢ and
d). In contrast, the NCD group (-1.46 +0.50) had a
higher ISI than the two HFD groups (NAFLD: -2.46
+0.25; NAFLD + BBR: -2.46 +0.32, P<0.05), but no
difference was observed between the latter two groups
(Fig. 3e). However, after the 16 weeks intervention
with BBR, the NAFLD + BBR group showed an obvi-
ous improvement in the FINS concentrations (1.57 £
0.39), HOMA-IR (0.37 +£0.15) and ISI (-2.07 +0.39)
compared with the NAFLD group (2.73 +1.18, 0.65 +
0.22, -2.65+0.31, respectively), although the differ-
ences were not statistically significant.
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Berberine attenuated the plasma lipid profiles

Compared to the NCD group (TG: 0.80 £+ 0.33; TC: 1.56
+0.18; LDL: 0.19+0.02), the two HFD groups had
higher TG (NAFLD: 1.16 + 0.43; NAFLD + BBR: 1.30 +
0.38), TC (NAFLD: 1.67 +0.13; NAFLD + BBR: 1.76 +
0.17) and LDL (NAFLD: 0.24 +0.03; NAFLD + BBR:
0.21 £0.06) levels beginning at the 16™ week, but the
differences between groups were not significant (P > 0.05).
Over the next 16 weeks, the rats with NAFLD had the
highest plasma TG (1.11 + 0.05), TC (1.92 + 0.44) and LDL
(0.41 £ 0.09) levels. BBR reversed the elevated plasma lipid
profiles of the NAFLD + BBR group (TG: 0.70 + 0.16; TC:
1.55+0.21; LDL: 0.25 + 0.07) to levels similar to the NCD
group (TG: 0.72 + 0.05; TC: 1.66 + 0.06; LDL: 0.24 + 0.03),
particularly the TG and LDL levels (Fig. 4a and b). During
the entire trial, differences were not observed in the FFA
levels between the three groups (P>0.05, data not
shown).

Berberine decreased Rag,, Ragy, GNG from glycerol and
the percent of glycerol converted to glucose (%)
Although significant differences in Rag, were not ob-
served between the three groups, Ray, was still the high-
est in the NAFLD group (69.74 + 27.95) and was similar
in the NCD (47.64 + 6.36) and NAFLD + BBR (49.36 +
18.60) groups (Fig. 5a). Rag, was significantly increased
in the NAFLD group (111.32 +51.88, P<0.05, vs NCD
or NAFLD + BBR), whereas the NCD (67.24 + 12.68) and
NAFLD + BBR (57.97 + 10.44) groups had similar Rag,
values (Fig. 5b). The GNG from glycerol primarily
increased in the NAFLD group (16.64 +7.93, P <0.05, vs
NCD or NAFLD + BBR), whereas it was comparable in
the NCD (3.63 +1.44) and NAFLD + BBR (5.09 + 2.82)
groups (Fig. 5c). Similarly, the percent of glycerol con-
verted to glucose displayed the same trend (P <0.05,
NAFLD: 25.82 +13.03%; NCD: 7.81 + 3.49%; NAFLD +
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Berberine inhibited hepatic lipogenesis and promoted
fatty acid B oxidation in skeletal muscle

The new synthesis of triglycerides in the liver displayed
an increasing trend in the NAFLD group (3.47 + 0.53 vs
NCD: 3.05 + 0.56, P> 0.05). Compared with the NAFLD
group, BBR significantly reduced hepatic lipogenesis
(NAFLD + BBR: 2.25+0.44, P<0.05) (Fig. 5e). The
rates of fatty acid P oxidation in skeletal muscle
decreased dramatically in the NAFLD group (3.07 +
1.70%, P<0.05), but no difference was observed
between the NCD (6.01 +1.93%) and NAFLD + BBR
(5.04 £ 0.98%) groups (Fig. 5f).

Changes in liver morphology

Under the light microscope, normal liver tissue struc-
tures and well-arranged hepatic lobules without liquid
droplets were observed in the NCD group (Fig. 6a),
whereas a disordered arrangement of the hepatic lobules
and fatty degeneration of the hepatocytes was observed
in the NAFLD group (Fig. 6b). However, the injury to
the hepatic lobules and hepatocyte steatosis observed in
the rats in the NAFLD + BBR group were all noticeably
improved (Fig. 6¢).

Discussion

NAFLD is already considered a critical hepatic manifest-
ation of metabolic syndrome [4]. In addition, dietary
habits and genetic background are thought to be respon-
sible for the pathogenesis and development of hyperlip-
idemia with NAFLD; therefore, many mouse and rat
models of NAFLD have been induced by feeding the
animals a high-fat-diet in previous studies [4, 20, 21]. In
our study, the rat model of NAFLD was also successfully
established by providing nourishment with a high-fat
diet for 16 weeks, at which time, the body weight was
greatly increased. Meanwhile, increased fasting insulin
concentrations, HOMA-IR and decreased ISI were
observed in the rats with NAFLD. This result verified
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that obesity and insulin resistance are two main risk fac-
tors for the initiation or exacerbation of NAFLD [14].
After the BBR treatment, obvious weight loss was
observed. The possible mechanism was associated with
changes in the expression of multiple key genes control-
ling energy expenditure [22]. Previous studies found that
at least a 5-7% of weight loss was required to improve
hepatic steatosis [23]. Weight loss could improve hepatic
insulin resistance and attenuate liver fat accumulation
by reducing FFA flux to the liver for hepatic de novo
lipogenesis [24]. Also, weight loss likely attenuates mito-
chondrial oxidative flux by alleviating the load of FFA
and lipotoxicity to hepatic mitochondria [25]. Thus,
weight loss is one of the cornerstones of treatment of
NAFLD. Moreover, the fasting insulin levels and

HOMA-IR decreased, and ISI obviously increased,
although the differences were not significant. However,
in some previous animal experiments, BBR significantly
attenuated insulin resistance [4, 6]. This finding may be
associated with the different species of animals and the
different degree of obesity induced by the HFD. In
addition, concomitant reductions in the total cholesterol,
triglyceride, and low-density lipoprotein-cholesterol
levels were observed in the BBR-treated rats, and the
levels of the latter two were dramatically reduced. These
findings may be attributed to the observation that
berberine modulates the gut microbiota by up-regulating
intestinal Bacteroidetes-to-Firmicutes ratio, which might
decrease the animals’ capacity to harvest energy from
the diet. Moreover, berberine increases the levels of

Fig. 6 Histopathological changes in the liver (H&E staining, magnification x 200). Compared with the NCD group (a), the NAFLD group (b)
exhibited a disordered arrangement of the hepatic lobules and fatty degeneration of hepatocytes. BBR noticeably improved the injury to the
hepatic lobules and hepatocyte steatosis in the rats in the NAFLD + BBR group (c)
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serum glucagon-like peptide-1 and neuropeptide Y and
decreases the levels of orexin-A, which may also modify
the gut bacteria and regulate food intake, energy metab-
olism, circadian rhythm, etc. [26]. Therefore, based on
these results, BBR indeed exerted a certain protective
effect against hepatic steatosis.

According to the results of the isotope perfusion ana-
lysis, Rag, was much lower in the NAFLD + BBR group
than that in the NAFLD group, although the differences
between the three groups were not significant. Glycerol
is one of the products of lipolysis. During fasting, the
main source of glycerol is peripheral adipose tissue deg-
radation. Moreover, glycerol released by lipolysis cannot
be resynthesized into adipose tissue, since it lacks glycer-
okinase. Therefore, the Rag, in the blood can reflect the
extent of lipolysis [16]. According to the results, BBR
partially inhibited lipolysis in the rats with NAFLD. In
fact, the obesity-associated dysfunction of adipose tissue
plays an important role in the development of NAFLD,
since adipose tissue not only delivers excess free fatty
acids to the liver to facilitate hepatic steatosis but also
secretes proinflammatory factors to trigger or exacerbate
liver inflammation [4]. Although the levels of the associ-
ated inflammatory factors were not detected in the
current study, BBR, a recognized anti-inflammatory
drug, certainly had a powerful anti-inflammatory effect
on both hepatocytes and adipocytes.

We also used 9,10-*H-palmitic acid to assess hepatic
lipogenesis in vivo and its metabolic utilization in
skeletal muscle in vitro. 9,10-*H-palmitic acid has many
of the same features as normal fatty acids; it is able to be
taken up by the liver for triglyceride synthesis and by
skeletal muscle to produce *H,O via p oxidation. The
results showed that BBR significantly reduced the rates
of hepatic lipogenesis, whereas the BBR treatment
increased the rates of fatty acid B oxidation in skeletal
muscle. In addition, liver histology revealed that BBR
obviously attenuated ectopic fat accumulation in the
liver, consistent with previous findings showing that oral
administration of BBR alleviates TG deposition in the
liver [6]. Based on these results, BBR comprehensively
improved lipid metabolism in NAFLD by inhibiting
hepatic lipogenesis and lipolysis in adipose tissue, as well
as by promoting fatty acid p oxidation in skeletal muscle.
Moreover, BBR exerted the strongest effects on hepatic
lipogenesis and fat deposition, possibly because BBR was
typically concentrated in the liver (at levels 50-70 times
higher than the plasma levels) after oral administra-
tion [10, 13]. BBR may have improved lipolysis in
adipose tissue and fatty acid p oxidation in skeletal
muscle by adjusting energy metabolism pathways,
such as PPAR signaling pathways; however, additional
animal experiments are required to confirm this
hypothesis.
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In the basal state, hepatic glucose production (HGP) is
equivalent to the glucose appearance rates (Rag,) after
an overnight fast. In the current study, the highest Rag,
was observed in NAFLD group and was apparently
reduced in the BBR-treated rats. The FBG levels were
also significantly decreased in the first 8 weeks of BBR
treatment, although there were no differences between
the three groups at the end of the experiment. Gluco-
neogenesis is one of the major mechanisms used to
maintain normal FBG levels [16]. Gluconeogenesis was
primarily increased in rats with NAFLD and significantly
decreased (including glycerol converted to glucose (%)
and GNG from glycerol) in the BBR-treated rats com-
pared with the vehicle-treated rats in this study, indicat-
ing that BBR attenuated high-fat-diet-induced GNG
from glycerol. As described above, insulin resistance,
with an increased HOMA-IR and decreased ISI, was
apparent in the NAFLD group, but the FBG levels
remained within the normal range. Thus, the FBG levels
alone cannot predict the metabolic risk in NAFLD.
However, the increased Ra,, and GNG in combination
with the unaffected FBG levels indicate that the dynam-
ics of glucose metabolism have been actively initiated in
the early state. BBR may not only have a beneficial anti-
hyperglycemic effect but may also begin to decrease hep-
atic glucose production in the early stage of glucose
metabolic disorder, suggesting that BBR may be a more
effective therapeutic strategy for patients with NAFLD
and glucose metabolic disorder. Based on these findings,
BBR might be an effective treatment to prevent the
progression of prediabetes to diabetes, but further
animal studies and human trials are required to confirm
this hypothesis.

In our study, we comprehensively observed the effects
of BBR on hepatic and extra hepatic glucose and lipid
metabolism in rats with NAFLD using isotope tracer
technology. Tracer techniques have been widely used to
study the metabolism of glucose, lipid and other mole-
cules. Previous tracer studies in rat models often
involved invasive surgical placement of catheters in the
carotid artery and jugular vein [27], which would obvi-
ously cause stress. This stress may considerably interfere
with the metabolic flux of the substrate and thus affect
the results. In the present study, we inserted catheters
into the rats’ tail arteries and veins and maintained the
rats in a conscious and relaxed state throughout the
experiment to limit and reduce stress and to prevent
disturbances in glucose and lipid metabolism (Fig. 1).
However, our study has some limitations. For example, a
single dose of BBR was used; therefore, we could not
observe the effects of different doses of BBR on NAFLD.
In future studies, we will make up for these deficiencies
and further explore the molecular biological mechanism
by which BBR regulates glucose and lipid metabolism.
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Conclusions

BBR, a compound derived from herbal medicine, im-
proved NAFLD and prevented its metabolic disorder-
related complications by comprehensively regulating
glucose and lipid metabolism. The improvement may be
partly mediated by weight loss. The most important and
beneficial effects of BBR on NAFLD were to inhibit
hepatic lipogenesis and fat deposition. In clinical prac-
tice, BBR may have a better therapeutic effect on pa-
tients with NAFLD and glucose metabolic disorder.
Further clinical trials need to be conducted to confirm
these effects.
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