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Abstract

Background: Obese, type two diabetics are at an increased risk for fracturing their limb bones in comparison to
the general population. Phytoestrogens like as the soy isoflavone genistein have been shown to protect against
bone loss. In this study, we tested the effects of genistein treatment on femurs of ob/ob mice, a model for obesity

and type two diabetes mellitus.

Methods: Twenty six-week-old female mice were divided into obese (ob/ob) control, obese genistein-treated, lean
(ob/+) control, and lean genistein-treated groups (n =5 each). Treatment with genistein consisted of 600 mg
genistein/kg diet. Control mice were given standard rodent chow. At the end of a four-week treatment period,
bone histomorphometric and three-point bending properties were compared among groups.

Results: Obese mice had larger bone areas (B.Ar,; P < 0.05) and total areas (Tt.Ar; P < 0.05), but similar bone volume
(B.Ar/TtAr,; P> 0.05) of the proximal femoral epiphysis in comparison to lean mice. Treatment with genistein
decreased TtAr. and femur length, and increased ultimate force required to fracture the femur and the maximum

deformation to failure (P < 0.05).

Conclusions: Genistein improves resistance to fracture from bending loads.

Background

Diabetes is a widely prevalent disease affecting approxi-
mately 8.5% of the population of the United States. It
frequently presents with a variety of complications in-
cluding hypertension, dyslipidemia, myocardial infarc-
tion, stroke, and kidney failure [1]. Obesity is a risk
factor for Type 2 Diabetes Mellitus (T2DM), which is
associated with an increased risk of limb bone fractures
that take longer to heal and are more likely to result in
infection and complications [2-4]. Recent evidence
suggests T2DM reduces resistance to bending loads due
to inefficient redistribution of bone mass [5].

Leptin is a hormone that is secreted by white adipose tis-
sue to aid in the regulation of obesity by inducing weight
loss and homeostasis of bone. Although obesity alone is
not linked with decreases in bone mass [6], obese individ-
uals with T2DM often exhibit leptin resistance that likely
plays a role in increased incidence of fractures [7—10]. The
ob/ob mouse is leptin deficient due to a spontaneous
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mutation of the ob gene. This model of obesity is a close
counterpart to the human condition, resulting in hyper-
phagia, obesity, and a diabetes-like phenotype including
insulin resistance, hyperglycemia, and decreased limb bone
mass. As an animal model, the ob/ob mouse is commonly
used to study the T2DM phenotype and leptin resistance
characteristic of obesity and T2DM, particularly when
associated with metabolic syndrome [11-15]. While
metabolic syndrome alone is not associated with in-
creased fracture risk, it is when found in conjunction
with T2DM [13, 16, 17].

The objective of this study was to assess the effects of
treatment with genistein on femoral bone structure and
resistance to fracture in female ob/ob mice. Genistein is
a phytoestrogen found in soybeans and soy-based foods.
It is structurally similar to estrogen and can bind to
estrogen receptors with great affinity [18, 19]. Phytoes-
trogens like genistein may prevent the reduction in bone
loss in a manner similar to estrogen replacement therapy
in postmenopausal women, but its full effects in the
obese diabetic mouse model are unknown [19-24].

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12902-016-0144-4&domain=pdf
mailto:jploch@midwestern.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Qdle et al. BMC Endocrine Disorders (2017) 17:1

Methods

Experimental design

Twenty, female obese ob/ob mice and lean ob/+ mice
(B6.V-Lep/], Jackson Laboratory; Bar Harbor, ME, USA)
aged six weeks were used in the experiment. Mice were
kept in an animal facility with a 12 h light/dark cycle
and temperature of 22 °C. Mice were given food and
water ad libitum. These animal studies were approved
by the Institutional Animal Care and Use Committee at
Midwestern University and carefully followed the
National Institutes of Health’s Guide for the Care and
Use of Laboratory Animals.

At the commencement of the experiment, mice were
divided into four groups of equal size (n=5), (1) lean
mice fed a standard diet, (2) lean mice fed a genistein
diet, (3) obese mice fed a standard diet, and (4) obese
mice fed a genistein diet. Genistein diet was formulated
by Dyets Inc., (Bethlehem, PA, USA) and included
600 mg genistein/kg diet administered for the study
period of 4 weeks. This diet is commonly used to study
the effects of phytoestrogens on the T2DM condition in
mouse models is comparable to human soy-based diets
and has been shown to have significant physiological
effects with four weeks of treatment [22, 25-28].

Histomorphometry of the femur

After sacrifice, the hind limbs of each mouse were
removed. Right and left femurs were harvested and
dissected clean of soft tissue. One femur from each
mouse was set aside for three-point bending testing.
The other femur was used to conduct histomorpho-
metric analysis of the proximal epiphysis and diaphysis.
These femurs were dehydrated in 70 and 85% alcohol
with two changes lasting 24 h in each concentration,
cleared using Histoclear (National Diagnostics, Atlanta,
Georgia, USA) in two 24 h washes, infiltrated with Osteo-
Bed Resin A and catalyzed Osteo-Bed Resin A (100 mL
Osteo-Bed Resin A, 140 g Benzoyl Peroxide) with two
changes lasting 24 h, and then embedded in resin (100 mL
Osteo-Bed Resin A, 3.50 g Benzoyl Peroxide; Polysciences
Inc., Warrington, PA, USA). Six ml of embedding solution
were added to vials containing the femurs, which were
capped and placed in a bead bath at 33.5 °C for 48 h to
polymerize. The position and orientation of the femurs in
the vials was standardized to allow consistent orientation
during sectioning.

After the resin hardened, a single section of the prox-
imal femur was taken in the coronal plane and another
was taken of the diaphysis in the transverse plane distal to
the third trochanter using a low speed saw (Isomet;
Buehler, Lake Bluff, IL, USA). Sections were cut at 200 pum
in thickness, polished (MetaServ; Buehler, Lake Bluff, IL,
USA) and stained with Alizarin Red (Sigma-Aldrich, Co.,
St Louis, MO, USA). Sections were then imaged at 40X
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magnification with an Eclipse 55i microscope (Nikon, Inc.,
Melville, NY, USA). Image] v1.6 (NIH) was used to meas-
ure total area (Tt.Ar.), bone area (B.Ar.), and bone volume
(B.Ar./Tt.Ar.) for each proximal epiphysis based on
Alizarin Red staining of bone tissue. The MomentMacro]
plugin (M Warfel and S Serafin) for Image] was used to
calculate cortical area (Ct.Ar), maximum and minimum
second moments of area (IMAX and IMIN) and the
polar moment of area (J). These are measurements
based on engineering beam theory that approximate
resistance to compression, bending, and torsion from
cross-sectional geometry.

Three-point bending test of the femur

One femur from each specimen was subjected to a
three-point bending test until failure to assess fracture
resistance. Prior to loading, the length of each femur
was measure to the nearest hundredth of a millimeter
using digital calipers and the location of the midshaft
was marked in pencil. Force was applied to the midshaft
in the anterior-posterior direction at 0.5 N/s using a tip
with a rounded edge (HP-5 with HSV Test Stand;
Handpi Instruments Co., Ltd, China). Femurs were held
on two supports that were positioned to contact the
proximal and distal ends of the bone. The distance be-
tween supports was not held constant because femur
length varied greatly in our sample and measurements
of material properties of bone are proportional to the
distance between the supports and the diameter of the
bone in the breaking plane [29, 30]. Data on ultimate
force, maximum displacement until failure, and time to
failure were recorded. The location of the fracture
expressed as a percentage of the total femur length along
the long axis was also measured.

Statistical analysis

Statistical analysis was completed using SPSS 19 software
(IBM, USA). Two-way analysis of variance (ANOVA) tests
were used to detect significant differences between treat-
ment groups. Because bone fracture strength is propor-
tional to bone length and diameter, the two-way ANOVA
was repeated with femur length and diameter as covariates
[24]. Statistical significance was set at P < 0.05 for all ana-
lyses. Tests of power, normality and homogeneity of vari-
ance show our analyses have adequate power to avoid
type II errors and do not violate assumptions of the statis-
tical analyses. The dataset is available in the “Additional
files” section (Additional file 1: Genistein Dataset).

Results

Genistein treatment decreased body mass

Obese mice had greater body mass at the start of the
experiment and at the time of sacrifice than lean mice
(P <0.05, Table 1). Mice fed 600 mg genistein/kg diet for
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Table 1 Histomorphometry of the femur two-way analysis of variance

Lean STD  Lean+ GEN Obese STD Obese + GEN Genotype effect (P) Treatment effect (P) Genotype * treatment
interaction (P)
Starting body mass (q) 2214092 21.7+£053 370+186 3654+1.11 0.01 0.73 0.99
Final body mass (g) 248+£092 234+£046 507+228 437+129 0.01 0.01 0.06
PE Bone area (B.Ar; mm?) 0.79+£0.15 050£007 085+006 084+0.04 0.04 0.1 0.12
PE Total area (TtAr; mm?) 146+026 084+013 164+0.17 144+009 0.04 0.03 0.25
MS Cortical area (CtAr; mm?) 1154006 120+006 1.17+003 1.08 £0.07 0.36 0.70 0.22
MS IMAX (mm?) 217+£020 211+025 206+0.12 1.98 +£0.27 0.59 0.75 0.95
MS IMIN (mm®*) 1.07+£012 1.29+£007 125%£006 1.09+0.13 0.91 0.77 0.09
MS J (mm®) 324+031 340+031 331017  3.07+040 067 0.90 053

Data displayed as mean + SE
STD fed standard chow; GEN fed 600 genistein/kg
PE proximal epiphysis of the femur; MS midshaft of the femur

IMAX maximum second moment of area; IMIN minimum second moment of area; J polar moment of area

four weeks had reduced body mass in comparison to
control mice fed standard chow (P < 0.05). There was no
significant genotype * treatment interaction (P > 0.05).

Genistein treatment decreased the total area of the proximal
epiphysis of the femur but not the volume of bone

Obese mice had larger bone areas (B.Ar.) and total areas
(Tt.Ar.) of the proximal femur than lean mice (P < 0.05,
Table 1). However, bone volume (B.Ar./Tt.Ar.) was simi-
lar in lean and obese mice (P >0.05, Fig. 1). Genistein
treatment decreased the total area (P < 0.05), but had no
effect on bone area or bone volume (P > 0.05). No inter-
actions between genotype and treatment were found for
these histomorphometric variables (P > 0.05).

Genistein treatment had no effect on histomorphometric
measures of bone strength

Comparisons of cortical area (Ct.Ar.), maximum and
minimum moments of inertia (IMAX, IMIN), and polar
moment of area (J) between lean and obese mice
showed no differences (P >0.05, Table 1). Comparisons
of these variables between mice fed a standard diet and
those treated with genistein also showed no differences
(P>0.05). No genotype * treatment interactions were
found for any of the variables (P > 0.05).

Genistein treatment decreased the length of the femur
Femurs of lean mice were significantly longer than
those of obese mice (P<0.05, Fig. 2). Treatment with
genistein significantly decreased femur length relative
to mice fed standard chow (P <0.05). For mice fed a
standard diet, femurs of obese mice were 12.3% shorter
than lean mice on average. Treatment with genistein
increased this difference to 14.1%, although no inter-
action between genotype and treatment were found for
femur length (P > 0.05).

Genistein treatment increased the amount of force
needed to fracture the femur

Results of the two-way ANOVA for the three-point
bending test are shown in Table 2. Mice treated with
genistein had femurs that were more resistant to fracture
from bending loads at the midshaft. Ultimate force was
significantly greater in genistein fed mice than mice fed
standard chow (P < 0.05, Fig. 3). There was also a signifi-
cant genotype effect. Femurs of lean mice had a greater
ultimate force than obese mice (P <0.05). Mice treated
with genistein also exhibited greater maximum deform-
ation to failure (P < 0.05). There were no genotype * treat-
ment interactions for variables in this analysis (P> 0.05),
indicating a genistein diet effects fracture resistance in
both genotypes similarly. When the analysis was repeated
with femur length and midshaft anterior-posterior diam-
eter as covariates, the significant treatment main effect
remained (F = 4.40; P < 0.05). However, there was no geno-
type effect nor genotype * treatment interaction (F = 0.45,
P=0.52; F=0.33, P=0.57, respectively). Load—displace-
ment curves derived from three-point bending tests are
displayed in Fig. 4.

Discussion

Leptin deficient ob/ob mice are obese and demonstrate
a clinically-relevant phenotype of T2DM [9]. Leptin is a
hormone involved in metabolism regulation and plays
an important part in controlling food intake as well as in
bone development [7]. Consequently, limb bone length
of ob/ob mice is reduced in contrast to lean mice [8, 23,
31]. Results of our experiment were consistent with
these reports as we found ob/ob mice had significantly
shorter femurs. While the precise mechanism that in-
hibits longitudinal limb bone growth is unknown, genis-
tein and other phytoestrogens have been demonstrated
to effect the thickness, calcification, and chondrocyte
proliferation of limb bone growth plates, as shown in
previous studies [22, 23, 32, 33]. The effects of genistein
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Fig. 1 Comparison of ratios of bone area to total area (B.Ar/Tt.Ar) of the proximal femoral epiphysis for lean and obese mice fed standard rodent
chow or 600 mg genistein/kg diet. No genotype (ob/+ vs ob/ob) or treatment (standard vs genistein diet) effect was found with two-way analysis

.Standard
.Genistein

Obese

treatment on bone length may be due to its inhibitory
effects on growth plate cartilage. Further investigation is
needed to elucidate the mechanism.

Interestingly, we found genistein treatment had no
effect on histomorphometric indicators of bone strength
of the femur (e.g., bone volume, cortical area, IMAX and
IMIN), yet genistein treatment did increase the ultimate
force at the femur midshaft. Genistein has a high affinity

for estrogen receptors and has been suggested to pro-
mote osteoblast activity through activation of ER,
p38MAPK-Runx2, and NO/cGMP pathways and inhibit
osteoclastic activities through inducing osteoprotegerin
inhibition [34]. Other studies have shown genistein
significantly increases bone calcium retention and serum
levels of markers of bone formation in the estrogen-
depleted state to improve fracture resistance [35-38].

16.0 4

Femur length (mm)

Lean

Fig. 2 Comparison of femur length for lean and obese mice fed standard rodent chow or 600 mg genistein/kg diet. Mice treated with a
genistein diet had significantly shorter femurs (P < 0.05). Femur length was also significantly reduced in obese mice in comparison to lean mice
(P < 0.05). There was no genotype * treatment interaction (P> 0.05). Error bars are 2 + SE

- Standard
- Genistein

Obese
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Table 2 Three point bending of the femur two-way analysis of variance

Lean STD  Lean+GEN Obese STD Obese + GEN Genotype effect (P) Treatment effect (P) Genotype * treatment
interaction (P)
Midshaft A-P diameter (mm) 2.14+005 2.19+007 209+002 215+005 042 032 0.86
Ultimate force (N) 131+£147 165+1.27 74+134  122+161 0.02 0.01 0.63
Deformation to failure (mm) 036002 052+005 032+002 046%=0.10 1.00 0.01 0.50
Time to failure (s) 300+055 360+024 260+024 340+068 053 0.16 0.83
Fracture location 483+£126 499+94 384+857 453+100 049 0.69 0.80

(% femur length)

Data displayed as mean + SE
STD fed standard chow; GEN fed 600 genistein/kg

This demonstrates genistein substantially influences bone
metabolism. Bone mineral density and bone histomorpho-
metry have been shown to be unreliable when predicting
in vivo bone strains and fracture rates [39, 40]. However,
bone quality is an important factor of bone health to
consider. Hormone replacement therapy, which has
shown to decrease fracture risk, has also been shown to

increase bone quality [41, 42]. Bone quality is a composite
of various geometric and compositional factors that con-
tribute to fracture resistance [43—45]. Although we did
not test bone composition and molecular structure, our
results suggest genistein treatment improved bone quality
in a manner that increased fracture resistance as indicated
by three-point bending tests. In particular, the increased

treatment and genotype (P> 0.05). Error bars are 2+ SE
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Fig. 3 Comparison of ultimate load for lean and obese mice fed standard rodent chow or 600 mg genistein/kg diet. Treatment with
genistein significantly increased the ultimate force to failure at the femoral midshaft (P <0.01). There was also a significant genotype main
effect. Lean mice had a significantly greater ultimate force in comparison to obese mice (P <0.01). There was no interaction between
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genistein
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Fig. 4 Load-displacement curves derived from three-point bending test results. The test was performed on femora of lean mice fed a standard
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deformation to failure we found with genistein treat-
ment suggests bone quality has been improved. Bones
that are able to withstand greater deformation before
failure are able to better dissipate energy to resist
fracture [46, 47]. This property is largely attributable
to the geometric arrangement and bonds between
collagen molecules [47-49]. Genistein, like estrogen,
may affect these properties to impart greater fracture
resistance. Further study is required to determine the
exact effects of genistein on bone geometry and com-
position to fully explore this hypothesis. Such studies
should include micro-CT data, given phytoestrogen
treatment has been shown to prevent loss of three-
dimensional bone microarchitecture [50, 51]. Volu-
metric data may further explain the improved resist-
ance to bending demonstrated in genistein-treated
samples. Additionally, approaches that highlight the
osteoclast-inhibiting effects of phytoestrogens, such as
TRAP staining, should be used to assess how phy-
toestrogenic suppressive effects on bone resorption
correlate with fracture resistance.

Conclusions

Mice treated with 600 mg genistein/kg diet exhibit
greater resistance to fracture during three-point bend-
ing tests in comparison to control mice fed standard
rodent chow. These data provide support for the
hypothesis that phytoestrogen intake improves limb
bone resistance to fracture, not only in lean mice, but

also in obese mice that display the T2DM phenotype.
Future research needs to focus on markers of bone
quality to determine how genistein effects bone ultra-
structure and material properties.

Additional files

Additional file 1: Genistein Dataset. Data used in the analyses in this
study. (XLSX 12 kb)

Additional file 2: Supplementary tables. (DOCX 35 kb)
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